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ABSTRACT

A body of recent work has used coupled logistic maps to show that these model
metapopulations show a decrease in global extinction rate in the chaotic region of model
behaviour. In fact, many of the main ecological candidates for low dimensional chaos are
continuous-time host-parasite and predator-prey systems, driven by strong seasonal ‘forcing’
of one or more population parameters. This paper therefore explores the relationship between
seasonal forcing and metapopulation extinction for such systems. We base the analysis on
extensive simulations of a stochastic metapopulation model for measles, based on a standard
compartmental model, tracking the density of Susceptible, Exposed. Infectious and Recovered
individuals (the SEIR model). The results show that, by contrast with coupled logistic maps,
the increased seasonality which causes chaos maintains or increases levels of global extinction
of infection, by increasing the synchrony of sub-populaticn epidemics. The modei also
lustrates that the population interaction (here between susceptible and infective hosts) also

has a significant effect on patterns of synchrony and extinction.
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INTRODUCTION

A recurrent theme in ecology has been the role of spatial heterogeneity in reducing the
extinction rate of populations (Huffaker, 1994; Pimentel et al.1963; Hilborn, 1975; Hassell et
al.1991: Allen et al.1993) Recently, Allen et a (1993) and Ruxton (1994) have used
coupled logistic maps to derive important theoretical results about the influence of non-linear
spatial dynamics on the persistence of metapopulations. They show that increasing the
average population reproductive rate (which generates the well known transition from limit
cycles to chaos in the logistic map (May, 1976)). decreases local population persistence, while
enhancing the overall persistence of the metapopulation.  Allen et al {who used stochastically
perturbed maps) atmmbute this increase in global persistence to the effect of chaos in
amplifying local noise n systems with intermediate coupling. Ruxton (1994) has since shown
thar this difference in local and global persistence is also generated in the deterministic case -
essentially, aithough there is ncreased local exunction in the chaotic region, the fluctuations in

local populations are sufficiently out of phase to reduce global extinction.

In fact, many of the main ecological candidates for low dimensional chaos are continuous-time
host-parasite and predator-prey systems, driven by strong seasonal ‘forcing” of one or more
population parameters (Hanski ez al.1993: Aron & Schwartz. 1984: Olsen & Schaffer, 1990;
Olsen er a/.1988). In particular. there is a large literature debating the presence or absence of
chaos in measles dynamics in developed countries before the vaccinaton era (Olsen et
al.1988: Olsen & Schaffer. 1990: Pool. 1989: Nychka er a/.1992: Ellner, 1991; Rand &
Wilson, 1991; Drepper. 19881, Measles is a particularly good testbed for studies in nonlinear
dynamics, because of the availability both of relatively long notification time series (Fine and
Clarkson, 1982; Anderson ef al.1984; Grenfell and Anderson, 1985) and plausible population
models (Hamer, 1906; Soper. 1929; Bartlett, 1957: Bartiett, 1960: Black, 1966; Schenzle,
1984: Anderson & May, 1991), Whether or not measles dynamics are chaotic, the effects of
seasonality (which arises from the seasonal aggregation of children during schoo! terms}

certainly has a strong dynamical impact (Fine & Clarkson, 1982: Schenzle, 1984).



Viewing Allen et al and Ruxton’s results in the context of measles dynamics gives rise to two
general questions. First, for the forced SEIR model for measles, it is increased seasonality
which produces chaotic epidemic patterns (Aron & Schwartz, 1984; Olsen & Schaffer, 1990),
However, synchronous seasonality might also be expected o magnify the correlation of
sub-populations; this mighr then increase metapopulations extinction rates, by synchronising
local extinctions. This hypothesis prompts the question: which of these roles of seasonality

predominates, in other words, does increasing seasonality reduce or enhance the extinction

rate of model metapopularions?

The second question concems the influence of the underlying ecological interaction on the
chaos-persisience interaction. In particular, the candidates for seasonally-driven chaos (notably
measles and Fennoscandian vole-musteilid cycles - Hanski et al.. 1993) reflect the impact of
seasonality on functional predator-prey interactions (represented by infectious and susceptible
individuals respectively in the case of measles). In this broad class of systems, we therefore
address the question: how does the underlying population interaction affect patterns of

extinction?,

In this paper, we explore these issues using simulations of a model for seasonally forced
measles dynamics in a simple host metapopulation. We begin by introducing the structure of
the model, then present the results of simulations and tinally discuss their ecological

implications.

THE MODEL

Model structure

We use a spatial extension of the standard compartmental mode! for measles - the SEIR
model. Though this simple formulation has its shortcomings as a model for many aspects of
measles dynamics (Schenzle, 1984; Grenfell, 1992: Bolker & Grenfell, 1993), its well known
transition to chaos with increasing seasonal forcing of the infection rate (Aron & Schwartz,
1984; Olsen & Schaffer, 1990) suits our purpose here. Following Allen et al (1993), we
divide the constant total host population, of size Ny into 10 egual sub-populations (Nj, j=1, ...

»

10). The deterministic dynamics of infection in sub-population j are then described by the

following equations.
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E = OEJ' - (p+Y)IJ

S, E, [, and R, respectively represent the density of Susceptibie, Exposed, Infectious and
Recovered individuals, in a constant local population of size N=S+E+[+R;. Average life
expectancy, disease incubation. and infectious periods are 1/u. 1/, and 1/y respectively. The
infection rate of susceptibles by infectious individuals 1s controlled by the parameter f(t),
which is assumed to be the same for all sub-populations. Seasonality is introduced by making
B an annuaily penodic function of time © B(U) = be(1+b, cos(2m)); b, measures the amplitude
of seasonal variations around the baseline b, Finaily, cross-infection between sites 1s
controlled by a parameter, v, which can span the range from zero coupling (v = 0) to complete

homogeneous mixing (v = 1).

The simulagons

Noise is ntroduced into the model in two ways. First, we allow for demographic noise by
simulating the model with a fully stochastic Monte Carlo procedure (Bartlett, 1957; Olsen et
4i.1988: Olsen & Schatfer, 1990: Bolker & Grenfell, 1993). This approach allows explicitly
for the probability of extinction of the infection in the troughs berween epidemics. Second, we
simulate environmental noise by adding multiplicative Gaussian perturbations to the infection

parameters {Rand & Wilson, 1991).

Basic model parameters were adapted from Oisen et al (1988); b, = 0.010107, 0=45.6, v=73,
p = 0.02. Uniess otherwise stated, we assume a total populaticn of Ny = 1 million hosts,
equally divided between the m=10 sub-populations (which therefore each have population size
100,000). This metapopulation size was chosen to give significant global extinction of
infection at the minimum level of seasonality used (b, =0.2). The above level of b, is

appropriate for an isolated population of size 100,000; for a given level of coupling (v), b, 1s

4
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scaled down by a factor (1+(m-1)v), to maintain a comparable average force of infection
between simulanons (Grenfell, 1992).  Simulation output was analyzed for 100 years
foltowing a 200 year transient. A Poisson immigration rate of 21 infective individuals per
year {divided equally across the model metapopulation} was used to reintroduce the infection
following global extinction of the infection (Olsen et al., 1988; Grenfell, 1992). Because these
simulations are very numerically intensive we only show results for one simulation at each
level of seasonality. Further numerical work (replicating a subset of simulations) indicates that

the results shown below are representative of model behaviour.

RESULTS

(a) Seasonalitv and fadeout

Fig. 1 shows parterns of giobal extinction from simulations at a range of seasonal forcing
amplitudes and sub-population couplings. Simulations with demographic noise only and
demographic+environmental noise are explored in Figs la and b respectively.  The figures
also display bifurcation diagrams (Allen er a/.1993), showing the transition of the deterministic
SEIR maodel to chaotic dynamics with increasing seasonalitv.  Overall, these results indicate
that there is no tendency for decreased global fade out of infection in the chaotic region of
model behaviour. Indeed. if anything, the global extinction rare Increases with seasonality,
particularly at the higher coupling levels (v=0.01,0.1). Since superimposing environmental
noise (Fig Ib) onto the basic demographic variability (Fig. la) does not affect this qualitarive

conclusion, we focus on the demographic case only in the rest of the analysis.

Figure 2 analyses these results in terms of the correlation structure of the metapopulation. It
shows the relationship between seasonality, chaos and the cormrelation of sub-population for the
case of demographic noise only (corresponding to Fig. 1a). In the simple deterministic, non-
spatial, SEIR mode!, increased seasonal forcing causes period doubling and eventually large
amplitude chaos (Figure la). However, as shown in Figure 2, increased seasonality in the
spatiai analogue also causes an increased correlation between sub-populations. Contrary to the
result for the logistic map (Allen er al.1993; Ruxton, 1994), this increased correlation offsets
any tendency for chaos-amplified noise 10 decrease overall population fade out. We stress
that the absence of a negative association between chaotic dynamics and fade out is not

specific to measles but is likely to be a generic property of forced predator prey systems.

&)
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Fig. 2 also indicates that the slope of the approximately linear relationship between correlation
and seasonality increases with the degree of coupling of the metapopulation. Although this
effect is partly a function of the slight increase in fadeout with coupling (Fig. 1), it derives
mainly from the correlation structure. Specifically, increased coupling raises the lower limit of
correlation between sub-populations (which occurs at the Jowest level of seasonality - Fig. 2).
For a given level of coupiing, increased seasonality then magnifies correlation and hence

fadeout.

(b) Metapopulation_persistence and host-parasite dvnamics

(a)Dvnamics of extinction Unlike the logistic map models of Alien et al. (1993) and Ruxton

(1994), the above results arise from a population interaction. between infective and susceptible
hosts. The effects of this (essentially predator-prey) interaction on parterns of metapopulation
persistence are explored in Figs 3 and 4. Fig. 3 begins with tota) susceptible (S) and infective
(1) mezapopulation trajectories from a section of simulation in the chaotic region (b,=0.33),
which shows significant degrees of fadeout of infection. The time series (Fig. 3a) and
associated S vs I phase plot indicate two major epidemics. separated by an infective trough in
which the infection repeatedly becomes extnct and is reintroduced by the infective
immigration rate. These results clearly illustrate the impact of the underlying population
interaction on patterns of metapopulation extinction of infection. First (years 200 and 201) the
initial large epidemic depletes the overall density of susceptibles and the infection disappears.
Infection is then repeatedly reintroduced by immigration (vears 2001-202.5). However,
although there are minor epidemics. associated with the seasonal increase in infection rate (the
latter illustrated by point size in Fig. 3), a major epidernic (year 203) can only occur when
susceptible density has been increased sufficiently by births. The equivalent phase portrait
(Fig. 3b) . which reflects the characteristic clockwise loop of predator-prey interactions,

illustrates this buildup of susceptibles very clearly.

These results for the metapopulation aggregate could, in principle, conceal significant spatial
detail in the dynamics. Fig. 4 shows the infective and susceptible time series for individual
sub-populations, corresponding with the aggregate results of Fig. 3a and b. Overall, the
sub-populations are well correlated - the mean correlation of each with the rest of the
aggregate is 0.873, with range 0.43 to 0.96. In other words, most of the susceptible series

reflect the decline and subsequent approximately linear increase of the aggregate susceptibles

A | i
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(Fig. 3a).

Finally, we can explore the timing of epidemics by calculating the critical local threshold
density of susceptibles above which a reintroduced infection will become established. From
the equilibrium of equations (1), it is routine to show that the etfective reproductive ratio of
infection is greater than unity - and that a reintroduced infection will therefore spread

(Anderson & May, 1991) - above the susceptible threshold,

S = Y
T BOM+(m-1)v]

Fig. 4 displays this threshold; it is periedic, dropping seasonally as infection rates increase.
According 10 simple theory. epidemics are more likely to estabiish when the local susceptible
density is above this limit. Both the sub-population series (Fig. 4) and, in particular, the
aggregate data (Fig. 3ua) indicate that this is a 2ood approximate criterion  for the seasonal
sequence of minor epidemics. as well as the synchronous accumulation of susceptibles before

the major epidemic in vear 203,

(b} Dvnamics of metapopulation persistence For comparison with these results, Fig. 3 also
shows a time series (Fig. 3¢) and phase plot (Fig. 3d) from a section of the same simulation
with no fadecuts. The metapopulation dynamics are dramatically different, reflecting an annual
pattern of epidemics which is of much lower amplitude than the 3 year cycle of Fig. 3a. The
local dynamics (Fig. 5) are even more distinet; the aggregate annual cycles are formed from an
irregular and out-of-phase mixwure of 1.2 and 3-vear epidemics ar the local level. This local
iregularity is reflected in the generally low correlation of suscept:bles in each sub-population
with the rest of the aggregate (mean correlation 0.198, range -0.65 to 0.86) - though there is

considerable local fadeout. populations are sufficiently out of phase to offset global extinction.

In summary, the details of the population interaction (as well as the pattern of seasonality)
have a strong influence on the uming of metapopulation extinction. These results also
tilustrate that high degrees of fadeour are associated with global svnchronisation of local

susceptible populations, following large global epidemics.

DISCUSSION
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This paper illustrates that the interaction between chaos and metapopulation persistence
depends crucially on the origins of the former. By contrast with coupled discrete maps,
simple models of seasonaily forced predator-prey and host-parasite systems (such as measles)
illustrate that strong seasonality tends to maintain or increase metapopulation extinction rates
in chaotic systems, by offsetting the ability of chaos to generate local differences in dynamics
(Allen er al.1993; Ruxton, 1994), As discussed below, periodic windows in model behaviour
can enhance infection persistence. however the predominant effect of high seasonality 1s to
maintain gobal extinction rates. This effect occurs over all the levels of population coupling
examined. It is also not affected by our implicit assumption that only infected individuals
move between sub-populations. Indeed, the coupling effects of seasonality would be
magnified if susceptible movement werc also allowed. Our resulis. along with those of Allen
et all and Ruxton. stress the potential importance of measuring the local correlation of

metapopulations when assessing probabilities of extinction.

The second point to emerge from this analysis is that the underlying population interaction

also has a sigmficant impact on pattermns of persistence. The general point here is that the
probability of a successful reintroduction after global extinction depends on the current state of
the system. In the context of our model measles metapopulation, this translates to the
familiar requirement that there be a sufficient local density of susceptibles for the epidemic to
become established (Fig. 4). A corollary of the large epidemics that generate global fadeout of
the infection is that the infection dynamics of sub-populations are relatively synchronmised (Fig.
4); it is the lack of this synchronisation which prevents extinction (Fig. 5). The later effect is
exactly that postulated by Allen et al (1993) and Ruxton (1994) to explain the reduction in
extinctions. Our results show that both periods of persistence und extinction are possible
over a wide range of seasonal forcing amplitudes. given the complex intermittent dynamics of
the SEIR model (Schwartz. 1985 Bolker & Grenfell, 1993}, However, the synchronised major
epidemic behaviour, with associated global fadeouts, is maintained or increases with increased

seasonality.

As illustrated in Figs 3-5, adding spatial heterogeneity to the forced SEIR model superimposes
another level of complexity onto an already intricate dynamical picture. For example, point A

in Fig. la (the leve! of fadeout for b,=0.32, v=0.001) indicates a lower extinction rate of
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infection than the points surrounding 1t (at b;=0.31,0.33). Extensive simulations of the
deterministic model with random starting conditions indicates that the attractor for by;=0.32 has
& propensity for relatively low amplitude (low fadeout) biennial cycles, compared with b,=0.31
and U.33.. However, in the spatial stochastic sysiem, this manifests itself as a comparatively
high frequency of annual metapopulation epidemics, with a significant component of out-of
phase biennial paterns in the sub-populations. These results reinforce the point (Sugihara er
al.1990) thar the apparent effect of dynamic nonlinearities can depend crucially on the spatial
scale on which they are observed. More work clearty needs to be done to clarify the
nonlinear behaviour of forced spatial epidemic models. An imporant first step here has been
made by Schwartz (1992}, who anafyzed pairs of weakly coupled centres. However, much
less work has been done to clanfy spatial chaos in more complex forced systems in the
presence of noise. We also need to examine further how stochastic effects, and in particular
noise-siabilised chaos at relatively low forcing amplitudes (Rand & Wiison, 1991), affect
pattems of persisience. However, the present conclusion - that metapopulation extinction rates

generaily remain high or increase in forced chaotic systems - seems robust.

[deally, any attempt t¢ mode! patterns of metapopulation extinction shoutd be related to the
persistence of equivalent real systems.  Measles, is particularly suitable for this purpose, since
relatively long records of incidence are available at a range of spatial scales (CLiff & Haggert,
1988). A major problem with the forced SEIR mode] is that it appears unable to generate
realistic patterns of fade out. The crucial parameter here is the crinical community size, the
average size of urban population to maintain an endemic infection without fade out between
major epidemics (Bartletr, 1957: Bartlert, 1960; Black. 1966). This size is observed to be
significantly less than a million invididuals (probably around 300-300,000) whereas even
spanally disaggregated SEIR models seem unabie 1o persist ar populations below several

million (Bolker and Grenfell, In preparation).

The problem probably arises because currently models do not cerrectly represent the impact of
spatial and other sources of heterogeneity in measles transmission. For example, one possible
spaual refinement is o subdivide our metapopulation more finely. Preliminary analyses
indicaie that this can reduce the degree of global extinction of infection. However, it also
tends to generate unrealistic annuai cycles (analogous to those in Fig. 3¢.d). Our model also

implicitly neglects the effect of distance on mixing of subpopulations. High "local’ mixing
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could again act to promote persistence of the infection (Hassell, ez al.1991). Preliminary work
indicates that demographic noise and long range mixing in the stochastic SEIR system tend to

destabilise low amplitude, low exrinction patterns arising from local mixing.

Including other heterogeneities, such as a age structure, mitigates these problems of fadeout
somewhat (Bolker & Grenfell, 1993). However, fully explaining the dynamics of
metapopulation persistence in measles (along with morbilivirus infections of other mammals;

(Grenfell er al.1992, 1994)) remains a challenge for both epidemiologists and ecologists.
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FIGURE LEGENDS

Figure 1 Level of global fadeout (extinction) of infection versus seasonal forcing amplitude
for the measles metapopulation simulations described in the text. Fadeout is measured as the
proportion of weeks without cases. The figure shows the results for coupling (v) equal to
0.001, 0.01 and 0.1, which probably spans a realistic range for developed-country urban
populations (Bolker and Grenfell, in preparation). The corresponding bifurcation diagram for
the deterministic artractor is also shown on the figure. At each level of seasonal forcing (b)),
the deterministic system (equations (1)) was simulated for a transient of 1000 years and then
the infective density was sampled annually (at the start of each year) for 100 year to generate
the points shown. (a) Simulations with demographic noise only. The detailed pattern of
fadeout here depends partly on the structure of the attractor ar each valye of seasonality. For
example, for v=0.001 the simulations at point A (b =(.32) fade out less than surrounding
points. This appears to be partly because. for many starting conditions, the deterministic
auractor shows a tendency for regular (low amplitude) bienmal cvcles art this point in phase
space. This point is taken up in the Discussion. (b) Fade-out proportion vs. seasonality for a
spatial Monte Carlo model with added noise: all model parameters are as 1n (a), but now b,
reflects ‘environmental noise’ - random changes affecung epidemiological processes - by
incorporating 5% Gaussizn noise {Rand and Wilson, 1991). At each Monte Carlo step, a new
random varate g(t) was picked from a standard normal distribution, and the effective contact

rates for that step became (B(r)*(l+().05*g(t))).

Figure 2 Cross-correlations vs. fade-out proportion.  The figure shows cross-correlations
against fade-out proportions (weeks with zero cases) for each of the simulations shown in
Figure 1(a). Correlations show overall means of 20-vear cross-correlations (Pearson’s r) of
weekly numbers of infectives in each sub-population.  Different svmbols show the range of
values of cross-coupling (v=0.001.0.01. 0.1). Lines are least squares regressions berween
fadeout (y) and correlation (x}, for each level of coupling. Increased coupling between
sub-population increases average correlation (the mean position of the lines} by synchronising

large epidemics.

Figure 3 Dynamics of total susceptible and infective density for simulations with demographic

noise only (as in Fig. ia, with b,=0.33). (a),(b) section of simulation with a period of global

11
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fadeout of infection; (a) and (b) are respectively time and phase space plots for Susceptibles
and infectives and the dot size 18 proportional 10 the seasonal swing of infections rate (B,

(c).(d) - as (a).(b), but for a region of the simulation with no fadeouts.
Figure 4 Time plots of susceptible (bold dots) and infective {dashed line) densities for 4 of
the 10 sub-populations, corresponding 10 Fig. 3a. The periodic dotted curve is the critical local

density of susceptibles for establishment of the infection, calculated from equation (2).

Figure 5 As Fig. 4, but for the simulation of Fig. 3c.
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