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INTRODUCTION

The process of defining. modeling, and estimating parameters useful for the study
of dynamic contact structures is of greal importance to such fields as social dy-
namics, epidemiology. population genelics, cultural anthropology. demography,
evolutionary biology, ecology. and immuneclogy. For example, age-dependent con-
{act structures have been used in the study of the dynamics of communicabie dis-
cases (CDs) and mathematical epidemiclogy since i974 (1-7). CDs such as mea-
sles, chicken pox, influenza, and colds are transmitted mostly through casual
conlacts. Mathematical models help one understand and quantify the effects that
age-dependent contact structures have on the transmission dynamics of CDs. Out-
breaks usually begin in schools where the rate of casual contacts is higher than in
other social settings. The high level of contacts between children has been used 10
¢xpluin primary and secondary outbreaks of some CDs (4).

Casual contacts, the main mode of transmission of CDs, ate modeled adequately
through the use of proportionate mixing. in which all individuals are assigned age-
dependent activity levels and where contacts are assumed 1o vccur in proportion to
age-dependent activity levels weighted by thetr corresponding density {8.9). On
average. children may have more contacts because they are more active and/or
becuuse they represent a larger proportion of the age-structured population.

The contact structure is not the only feature of importance in the study of the
transmission dynamics of CDs: for example. time scales may be quite relevant
{5.6). In many instances, there is a significant difference between a host's life
expectancy and the average length of the disease’s infectious pericd. To study
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single epizootic events it is common to ignore demographic effects by assuming that
the population under consideration has reached a stable age distribution. This last
assumption also may be useful in the study of the long-term dynamics of CDs where
disease-induced mortality is not a factor and where the rate of population growth is
not significant. The use of proportionate mixing and the assumption that a popula-
tion has reached a stable age distribution have been quite useful in the study of
disease persistence (endemicity), in the evaluation of disease control strategies, and
in the study of the effectiveness of vaccination programs {3,7.10). The usefulness of
these assumptions in today's world is becoming limited for modeling of treatable
and untreatable sexually transmitted diseases (STDs) because of large increases in
migration and travel rates within and between populations,

Proportionate mixing provides an appropriate model of population heterogeneity
in the context of CD dynamics but does not provide an all-purpose model. Epide-
miologic data. biological and sociological realism. and important demographic con-
siderations did not play an important role (with some exceptions, see refs. 11-16Yin
the development of mathematical and theoretical epidemiology until the dramatic
rise of human immunodeficiency virus (H1V) and acquired immunodeficiency syn-
drome (AIDS). The spread of HIV/AIDS, particularly in industrialized matons.
forced theoreticians to examine potential mechanisms for the spread of HIV using
more plausible scenarios. Realistic models incorporating the role of long and vari-
able incubation periods. age-of-infection infectivity, and social dynamics have been
developed by many (17-27). The importance of social dynamics. the main topic of
this chiapter, emerged with the generation of models that incorporate relevant socio-
logical/epidemiological factors including varying degrees of sexual activity. alter-
nate modes of transmission (needle sharing. anal sex. etc.), sexual preference (bi-.
hetero-, and homosexual activity), and heterogeneity in pairing/contact structures
18.9.28-50).

Research on statistical and mathematical approaches to HIV dynamics has been
extensive over the last 7 vears. Several volumes devoted to issues of importance to
HIV/AIDS dynamics including parameter estimation, short-term predictions. fore-
casting. social dynamics. and immunology have appeared over the last several years
(19.51.52). The recent book by Hethcote and Van Ark (53} provides a detailed data-
driven study of HIV dynamics, and the encyclopedic book by Anderson and May
{7) gives a panoramic view of the growing field of theoretical epidemiology with
emphasis on the extensive contributions of Anderson, May. and their collaborators

Although the contact structure of a popitlation is one of the main factors influenc-
ing the incidence of sexually wransmitted diseases, it has proved difficult to deter-
mine population mixing patierns from observable data. Even in situations where
reasonable samples have been drawa from selected 1arget populations (such as col-
lege students, bar patrons, or participants in drug treatment programs), members of
the target group interact significantly with members outside the target group. This
latter situation is problematic for existng models that implicitly assume thaf the
popuiations are closed. that is. all social or sexual contacts occur within the groups
specified i the model. To enable such models to be employed. a procedure is
needed to “close” the population on the basis of incomplete observations.
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This chapter proposes a new approach to the estimation of nonrandom contact
patterns that explicitly recognizes the interaction between members of a target popu-
lation (who can be sampled) and individuals in nontarget populations (who cannot
be sampled). Included in vur contribution is a method for estimaling the size of the
nontarger population that is interacting with the target population sampled. This
allows us to construct a pattern of interactions among target and nontarget popula-
tions that is consistent with known axioms of population mixing. Qur technical
work developed alongside our empirical study of dating and sexual activity among
vollege students (54-57). This survey reveals that random mating is aot descrip-
tively accurate. and highlights convincingly the strength of the social or sexual
nteraction between the target and nontarget populations. Although our study may
not be representative of all U.S. college students, the features we infer from our
sample via cur modeling approach are in line with our daily unscieatific observa-
tions (e g.. strong within-class mixing, women prefer to mix with oider men). The
devetopment of a methodology that incotporates these features into models of STD
transmission dynamics is the goal of this chapter.

We proceed as follows: First we describe a general axiomatic approach for muod-
eling contact processes in heterogeneous mixtng populations. The next section
employs this framework to model dating, sexual mixing, and pair formation in the
context of heterosexually active populations. The data structure wsed te illustrate
tur approach 1o constricting mixing matrices is described next. Then. we present a
mark-recapture model for estimating the size of the nontarget population that inter-
acts with our sampled 1arget population. We next reduce the problem of completely
specifying mixing matrices to that of estimating a single parameter, and illustrate
our completion algorithm using the data from cur survey of college undergrady-
ates. Finally we summarize our results and discuss potential applications of the
algorithm.

MIXING BETWEEN 7 INTERACTING SUBPOPULATIONS

Busenberg and Castillo-Chavez (8.9 have shown that all mixing structires in
which individuals interact with members of ali subpopulations can be expressed as a
muluplicative perturbation of proportionate mixing. In this section we bnetly surm-
marize their result using a population compnisang / distinet types or groups The ith
group has T.(1) individuals at time 7 and an average nember of C', partners per person
per unet ime. The social/sexual contact structure of the population is modeled by an
/<! matrix of probabilities Pir). where £ lry gives the peobability that a partner
selected by a sexually active individual at time / in group ¢ 15 a member of group ;.
The matrix A{0) must satisfy the following constramts or mixing axioms

LAIYP (n=0for 1= j=<{and all 1.

:
(AN X P = ) for L i g and all 5

p=

ANCTAOP (0 = CTAnP 41 for Py p=fand ali r
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Constraints (A1) and (A2) make P a stochastic matrix, and (A3) guarantees con-
servation in the number of new pairingsicontacts per unit time between types. Busen-
berg and Castillo-Chavez's representation theorem states that any P that satisfies the
constraints (A1)-(A3} may be written in the form:

P, :;E,[ gipg.’ + (b”] for 1 =i, ;=/ B
where
(‘F T‘J‘
— ! - . . Al
P =¥ Gty tor U= .

=1
represents random or propurtionate mixing between groups,

f
0.=1- E P, for 1=i=/, 13

a1

i
V=% P 141

A=

and & =1{d,} s an 7 x/ symmetric matrix. The matrix & 15 a measure ol mutogl
prefetence or atfimity for sexual partners berween pars of groups (31,3658 &0
Specific preference struetures are determined by the elements of the & matniy For
example. tollowing Blythe and Castillo-Chavez 161). we may parametrize & oas
follows.

I. Each d,, can take one of only two values. o or b, where O=b=y-. .
2. All the efements in each diagonai or oft-diagonal of the & matrix ure the same.
forexumple, for f = 4, the & mainces may look like:

a b b ok [P A
b b oa b b ordh = a o a b
b b u b b u u o
b b b ou Lb b a

This restriction vn the mixing parameters {d,} gaves Us 3 mixing framework (the
lunction on the right-hand side of Equation | 1]) that s fairly ssimple tonly twa values
are used to describe the & matrix) and capable of considerable flexibility. We note
that1f a = b we recover proporionate mixing. whereas a flexible form of like-with-
tike mixing is obtained with the patametrization &, = a 1f i =/, b, = b otherwise
Multigroup models for STDs have been studied by a variety of groups including
Lajmanovich and Yorke (62), Jacquez et al. (45), Castillo-Chavez et 2), (27,
Huang et al (25). and Huang (63). Manv researchers have been satisfied with the
use of propormonate mivng (Equativa [2}) or preferted muxing hecause of thewr
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mathematical simplicity {but see refs. 22,25.63). Since our main objective in this
chapter is to present our method for determining the shape of the mixing matrix, itis
important to keep in mind as reference models the shapes of the proportionate mix-
ing and of the preferred mixing matrix. The latter matrix is given by

(i-h)P
Py=hb, (1 =h) ——"—

L —hy Py
k=1

where the h,"s are nonnegative constants between O and |. These constants represent
the proportions of group contacts/partnerships that are “reserved™ for within-group
mixing. The term &, equals 1 if i = and 0 otherwise. Consequently, those parniner-
ships that are not reserved for within-group mixing are assumed to follow proportio-
nate mixing. Figure | ilustrates the shape of a random or proportionate mixing
matrix (h, =0 for all i} obtained from the aggregated data presented below in the
Example section with corresponding pair-formation parameter equal to 2. Figure 2
shows a preferred mixing matrix with 2, =0.2 for all i, a "diagonal” perturbation
from Fig. |. Another perturbation is presented in Fig. 3. using hy =h;y=0.4. hy =
hs= 0.3, and h,; =0.2. Preferred mixing, as shown by Blythe and Castillo-Chavez
i64), corresponds to the (frequency dependent) preference function cb,,:h,ﬁ,,l?,.
Thus. to maintain a fixed proportion of contacts with one’s group regardless of the
population dynamics, individuals must continually adjust their preference. This
again highlights the deficiencies of this model.

Finally, because the data collected come from two-sex sexual or dating interac-
tions. we are forced to modify the framework of this section to include this added
social structure. This is the topic of the next section in this chapter

Proporagon
T
=1
o

Narmer Ciap

Subject Gop

FiG. 1. Example graph of one-sex random mixing.
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Praporion
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Subject Group

FIG. 2. Example graph 1 of one-sex preferred mixing.

TWO-SEX MIXING STRUCTURES

In this section. we introduce two-sex mixing structures in a heterosexually active
population with (/ + /) groups. The notation is similar to that above, except that we
use superscripts m and { and subscripts i and j for men and women. respectively.
This population 1s divided into groups or subpopuiations that are defined by gender
and possibiy, race, socioeconomic background, average degree of sexual activity,

Proporion
o
=
1

Pastner {iroup

Subject Group

FIG. 3. Example graph 2 of one-sex preferred mixing.
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and so forth. We consider / sexually active groups of men and J sexually active
groups of women. The foliowing definitions are needed:

P70 = traction of partnerships of men in group ¢ with women n group ; at time ¢
Pj,(.') = fraction of partnerships of women in group j with men in group 1 af time 1

C7" = average {constant) number of female partners per men in group i per unit
time, or the pair-formation rate of ith male group

! = average (constant) number of male partners per women in group j per unia
tirne, or the pair-formation rate of jth female group.

The set of mixing probabilities {Pryand PL(n :i=1. . fandj=1... .. J}
establishes the mixing/pair-formation structure in heterosexually active populations
provided they satisfy the foilowing definition:

Definition: {P20), P1(o} is called a mixing/pair-formation matrix if and only if it
satisfies the following properties at all times:

(BH 0=PPin=<land 0=Pl =1 fori=1.. . fj=1. Jandallr
7 i

iBh Ei Phin=tfori=1... . Jandallr, T lPﬁ,{r)=l forj=1, . Jandall:
= =

(B CPTNL O =CI TP infori=1. 1. j=1.. _Jandallr

Property {BJ) can be interpreted as a conservation of partnership-formation rates
between two groups. A useful particular solution is the Ross solution, which corre-
sponds to proportionate mixing in the context of heterosexually active populations
The Ross solution is denoted by {P7. P4}, where

or o
Pl= T T and P{="7 16]
¥ orry > o
=1 J=1
forj=1... . Jandi=1... . f Netethat £ CPTH0=5/_, ¢/ T/ aall

umes by (B3). All solutions to axioms (B1)-{B3) can be generated as multiplicative
perturbations of the Ross solution. Figures 4 and 5 illustrate the shape of feasibie
male and female random mixing matrices generated from our survey data under the
assumption of heterosexual random mixing. The real mixing matrices for the first
four groups, using the same pair-formation parameter, are sketched in Figs. 6 and 7
It is clear that this sample from the target population does not mix at randem. To
describe nonrandom mixing in mathematical terms. that is. all perturbations of the
Ruoss solution satisfying (B 1)-(B3), we need the following definitons:

;= measure of preference that proup : men have for group y women, i=1. . ./
and j=1.....J

. L Bmom . . . ‘

™= ¥ P{&7=weighted average preference of group rmen, i= 1. . ./
=1

Q= t=1Ni=1,..., i
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FIG. 4. Exampis graph of two-sex random mixing for men

We require at all times that 0=0Q7< 1 and that
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FIG. 5. Example graph of twg-sex random mixing for woman
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FIG. 6. Exarnple graph of two-sex mixing for men.
Similarly, we let
&, = measure of preference that group J women have for group ¢ men. )= [
andi=1.. ../
d .
i= I P’ =weighted average preference of group j women. j=1... . J
o=

Fr=t-dy=1.. .1
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FIG. 7. Example graph of two-sex mixing for women
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Again, we require at all times that 0= =1 and that
4 _ ! _ _
> UF= D 2 Plol, Prl. 18]

Using the above notation, Castillo-Chavez and Busenberg (35) have shown that
all solutions to axioms (81)-(B3) are given by the following multiplicative pertur-
bations to the Ross solution {P; P}:

_ gl or _ e
Py=PrY I +dy 3"dPL=P‘: L =4, (9]
le P.' QT' l’zl P,:QJ"
fori=1..... 1. j=1. . 21 Their theorem expliculy states: ;o
Theorem: Let {d]} and {¢f,} be two nonnegative matrices. Let If"=kl‘: IPL"(bf: and
i =
== Pl where (P P j=1. .. Jand i=1. .. . I} denotes the Ross
1=1
solution. Let @"=1—-1"i=1, . Jand ¢ =1-t.j=1, .. L [d]and b,
I

!
are chosen in such a way that 0=Q7=1, 0=Q!=1, X | P/ <1, and T Iij P,
= =

then

! $10]

ol -
m m k=1 {
(bi; = ‘b‘:: + Q; th 1

if and only if all solutions to axioms (B1)-(B3) are given by Equation [9].

Although the above representation theorem looks complicated, we can easily use
it to generate many solutions with only one or two parameters. [t is possible to
generate the type of mixing observed in the data used below to test our algorithm
because Hsu Schmitz et al. (65) have shown that all parametrizations for {$]} =
{dﬂ,}T are legitimate (i.c.. they satisfy al! the conditions of the above theorem in-
cluding Equation [10}). This result immediately allows the generation of a nich and
flexible class of parametric solutions. However, we will not pursue this direction in
this chapter. In general the assumption that C;"and C/ are constant is inconsistent
and (B3) must be modified. This is easily done (see ref. 65).

DATA STRUCTURE OF NONCLOSED NETWORKS

The mixing structures discussed earlier are applicable to closed populations by
the implicit assumption that all population groups are captured in the model For
data collected from the real world, the population covered probably 1s not ¢losed.
Usually the data cover not only the target population but also the nontargel popula-
tion. If the nontarget population plays a considerable role in the network, then we
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should not ignore it. Without direct information on the nontarget population, the
mixing matrices are not complete., and demographic dynamics and disease transmis-
sion cannot be predicted comrectly. Therefore, the issue of how to obtain indirect
information on the nontarget populations and their effect on network interactions
must be addressed before further study. In this section. we describe the potential
data structure of nonclosed two-sex mixing populations. Then we conditionaily
“close” the network and complete the mixing matrices. An illustrative example is
provided last.

Following the notation presented earlier, we let the /th male group and the Jth
female group consist of individuals from the nontarget populations (i.e.. they are
members of an unobservabie subpopulation). The first /— | male groups and the
first / — | female groups are composed of men and women from the target popula-
tions, respectively. Suppose we are interested in the heterosexual contact structure
of a given target population at a given time and we know the sizes of the target male
groups, R"(i=1, ..., —1), and of the target female groups. R (j=1,....J- 1)
To gather data for this study, we do stratified sampling at a given time to randomly
select respondents from those [ - | male groups and thase J — { {emale groups to our
questionnaire. The questions concerning a given time period (our time unit} are: if
they were sexually active or not; if yes. how many distinct partners they had; and
how many of those partners belonged to different target and nontarget groups. In
our data the term “sexually active™ means having sexual contacts during the time
period. The data are represented by the following notaticn:

8§ sample size of ith target male group, t=1, .. ., /-1

§* - sample size of jth target female group. j=1.. ../ ~1

AT number of sexuvaily active individuals among S

A - number of sexually active individuals among 5/

¥ - number of distinct female partners of individual & 1 AT

Y’ - number of distinct male partners of individual r in 4/

X;} . among Y7, number of distinct female partners from the target population
X!, : among ¥/,. number of distinct maie partners from the target population
£ - among ¥, number of distinct female partners from group /

U, - among ¥/.. number of distinct male partners from group i.

We can summanze the data by

i

X

Y= }':',I Y7 = total number of female partners of ndividuals in A}

¥, = total number of male partners of individuals in A/
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A"
X'= ‘gl X =among Y77, total number of female partners from the target population
A
i foe ' :
X ~r§| Y, =among ¥,.. total number of male partners from the target population
y"‘ f-1
=N oy ., o . - - :
P Y7 = total number of femate pariners of all sampled sexually active men
v 1
L= F Cof s
"2, ¥, = total number of male partners of all sampled sexually active women
X!H !
=% oy, -
F=E X"=among Y7 total number of fernale partners from the target population
, 41
X.=x y' = 0 ¥/
< A =among ¥ total number of male partners from the target populstion;

A
Ay

o . .
Ly = AS:I Ul = amaeng Y7, tonal number of female partners from group ;.

AJ
}
[ - 1 p
U, = ; U, = among /., total number of male partners from group |

r

We can obtawn point estimates of the average number of paniners per person per unit
ume and of the entries in the mixing matrix as follows:

n_ e am_ i :

[ lr.n‘.‘, = average number of female partners per sexually active man in group ¢
perunitime, =1, . J—]

=y Al < -

U= Y /A; = average number of male partners per sexually active woman in group
peruni time, j=1, . .. J-1

gy ) : .

P = UTY " = fraction of sexual contacts of men in group { with women in group ;

atthe giventime, i=1.. _ f—landj=1. .  J

P o e N .

P = (J{,..}j. = [raction of sexuval contacts of women in group j with men in group
at the giventime. j=1. .. .. J—landi=1.. [

The matnix 1P, P/} from the above data structure is not complete hecause we do
not have a closed network: individuals in the nontarget male and female populations
were not surveyed. so the rows {P]7} and {P4,} are missing. Below we show how to
conditionalty “close” the network and complete thys matrix but do not guarantee that
{17 = U', as required by theory. The problem arises from the fact that we are deal-
ing with a sample and not a census (this is evident in Tables 2 and 3). Usually data
satisfy axioms (B1} and possibly (B2) but not axiom (B3). The same is true for
estimates of {P7} and {P} In general (B3) is formulated with CT and €7 functions
of the number or proportions of sexually active individuals (see rel 65}
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MARK-RECAPTURE METHODOLOGY FOR ESTIMATING
NONTARGET POPULATION SIZES

We assume that the group sizes in the target population are known. However, the
sizes of the sexually active subgroups, TS (g=morf.v=1.. . . [—lorJ— 1) are
not known. The assumption that al] individuals in these groups were sexually active
is certainly not realistic. A natural way to estimate the sexually active group sizes is
given by the following formulas:

Tr=RTx (A7iSTY and T/ = R % (A4S}, {11y
where R)"and R{ denote the known target group sizes, if l._ S lfl and j=
l.. .., J—L. In fact, these estimators are the maximum likelihood estimators (see

ref. 55). Because the survey's definition of sexually active is tied up with a specific
time period (a narrow definition), individuals in the target po_pulalior_l who are sexu-
ally active but did not have sexual contacts during that spf:cmc_penod dO not con-
tnbute to the above estimates. Since we do not have direct information on the
nontarget male and femaie populations, the size of their sexually active s_ubscts have
to be estmated by other methods. Rubin et al. {55) introduced modified mark-
recapture methods to obtain conditional estimates of the size of these subsets The
general procedure is summarized in two steps below. ‘

First mark a random sample of size n, from a population of size N (unknown} and
release them. After a certain period of time. the second step that collects a random
sample of size n, from the same population 15 enforced. The numbcr of marked
individuals in this second sample is denoted by m;. Bailey (66) introduced the
tinomial model as a useful approximation to the classic hypcrgcomelric_mo@ei that
arises when only a single capture is possible after marking. His model is given by
the expression

3 n

Pl =} ()1 - 3 ™ (12
It individuals are sighted by observers. instead of physically captured, then since
different observers may sight the same individuals. ndividuals in the population
may be sampled with replacement. If sampling is done with replacer_nen_(. then th_e
bml}mml model holds exactly (see ref. 67). Because the maximum liketihood esty
mitor for N. namely N* = ny/m, (the meoln-Pe}ersen estimalor)r. 15 bia-segi. Bai-
ley {66) suggested the following estimator for ¥, N. and for its variance, ¥(N):

o Mina+ 1) i
= (131
‘,(M:(n,)'ln:+ Dy —may (1]

(ma+ 1ma + 2)

These estimators are less biased with proportional biases of order expi—n ,n:{M and
(712N exp(— n,m/N), respectively. For the data structure described earlier. we
assume that all sexually active individuals of & given gender g in the target popula-
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tion are marked and those in the sample constitute the first sample of size 7%
individuals sampled who were sexually active serve as observers who “sight” their
partners of the other gender by sexualsocial contact. Thus, those partrers from the
target (marked) and nontarget (unmarked) populations constitute the second sample.
Because different observers may have the same sexual partners, the second sam-
pling procedure for partners must be done with replacement. Bailey's binomial
model is exact in this case and hence more appropriate for our data. By Equation
[13], the estimates of the total number of sexually active individuals in the target
and nontarget populations for both genders are:

ooyt . ;o ym
=T*(y‘+|}ande=- T T+

5
X+ X7+ [15]

Note that the information in the second sample is from observers of the other gen-
der. The estimated variances of N™ and N are analogous to those in Equation [ 14).
However, T2 and 77, are not known in our case. We estimate them as

-1 -1
7= 2 Trand 7%, = 2 fj' [16]

= | J=1

and use these estimates to obtain the maximum likelihood estimates of the total
number of sexually active individuals, N*:

ot / . i) "
P D e Py

Nm
X+ X741

17
The estimated variances of N™ and N are provided by Rubin et al. (55). These
variances incorporate the additional variation due to T and 77, . Since N™ and N/
include sexually active_indiyidual§ from the target and nontarget populations, that
is. N"=T7 +77and N'=T/, + T, the estimated sizes of sexually active nontar-
get popuiations are

. . 3 Fmoovl oy PR oy —xm

T,Tr:Nm‘T’::T‘- (Y+ X*)andT'G:NI_TJL: T+(Y+ X+]

(18
X ¥l xm o1 8

However. sexually active individuals in the nontarget population will not be
“sighted” if they did not engage in sexual activity with individuals from the target
population. Therefore, 77 and T are conditional estimates that count only those
individuals in the nontarget population who had at least one sexual contact with
partners from the target population of the opposite gender during the surveyed pe-
riod. This is one of the first data sets of this type. and its limitations may be per-
ceved as too strong. However, this data structure brings to the forefront the even
stronger limitations that are implicit in current mathematical and statistical models.

We also observe that individuals with high contact rates are more likely to be
“sighted.” It is nearly impossible to modify the sampling procedure (o take into
account this effect. An alternative approach is to modify these equations 10 incorpo-
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rate the effects of the biases. Modifications should be closely connected to data and.
consequently. to survey design. Our data. used in the Example section. do not seem
to be seriously affected by this source of bias as the “average” contact rates of the
interacting subpopulations do not vary that much.

COMPLETION OF THE MIXING MATRIX

We assume that the combination of our target and nontarget sexually active popu-
lations of both genders constitute a closed mixing network and hence its associated
mixing matnx satisfies axtoms (B1)~(B3). Using the mark-recapture methodology
described above, we obtain conditional estimates for T7and T . However, the rows
{P7} and {P];} and the averages C7and C; are not yet known. We can obtain point
estimates of these unknown parameters by assuming that the data are consistent with
the above two-sex mixing framework. which reduces the estimation of all the un-
known parameters to that of estimating a single pair-formation parameter. Then the
shape of the complete mixing matrix can be calculated from the data. The procedure
descrnibed in this section is an alternative version of thart in ref. 57.

First we sum over j on both sides of the equation in axiom (B3) and obtain

CrFr=K!+ CITPL, [19]
where K/ = ;‘2 : C’;f",’P’:, 15 nonnegative (because € and TJ" are positive, and Pj,’
are nonnegative} and can be computed from the data (it 1s therefore known). Rear-
ranging Equation {19] for i =1 yields

CL T Pl =C T~ K =0, (20}
which leads to a lower bound for (7"
Cr=K4iTn (21]
Similarly, we sum over i on both sides of the equation i axiom (B3) and obtain
. CiT)= K+ CITTPT, (22)

!
where K "= 4)1| C'TTP 7Y also is known and nennegatve. Rearranging Equation
[22] for j=J yields

CrIvPn =0T, - K=, (23]

which gives a lower bound for C'y
Ch=k7 T (243
Since only those sexually active individuals who had at least one sexual contact

during the surveyed tume period are under consideratton. ;" and C' must be greater
than or equat to one. Therefore, we can use the following refined lower bounds

Crzmax(K T and ) =max(k 7T {35]

548 PARAMETER ESTIMATION IN SOCIAL NETWORKS

To ﬁl‘.ld (J?c relationship between C7and /), we sum over and f on both sides of the
equation 11 axiom (B3) and obtain

! !
2 crtr= Y . 26|
1=

Jel
or equivalently
CrTT-C, M, =G'~G™, {27
- s :
where G = 2 C'TMand G'= Z o
e = 0T d_G /=1 C, T} Both can be computed from data.
ecause of insutficient information in the data, there Is no way of estimating
i . N '

unigue values for ¢ ,_and . But if one of these two parameters is known, then the
othpr one can bf: umqu;:ly obtained through Equation [27]. Without independent
estirmators fo_r Clor €, estimates of the rows {PT} and (P4} are not possible
Estimation of ali the unknown parameters must be conditioned on the assumption

at ei ~m [
Uj:t either C"or Ch is known. If we assume that C7" is an appropriate vajue for
€7 the patr-formation parameter, then

C) =T G! + 6T, 128}

Plugging C7and ¢ into Equations | 19] and [22] specifies the values of P/, and P
respectively: A i

(CTFT = K04 Fotori=1, . 11

Phi=¢ \
CTTT=KNIC, ) for i =1 b9l
s JCTT KM@ T for =1 g
= - - - N
LR kT CTT for j=2 1l

By Fqualions [281. 291, and 130, the first derivatives of 7 and P, with respect
to CTare:

a _ Ii " m

P G -G"+K]

ey NI (31
A s IRGT -G k)
:?C:," s (C",”f;",(;f+cm)2 132]

Clearly the sign of G/ -G + K 7determines if P7} increases or decreases with "
Jp:] the sagn of G - G' + K determnes the behavioe of Bl X P increases w1:h'
Cr.then some P7i=1, - 1) must decrease by axiom (B2). Similarly, if P/
mcreases with C7) then some P, (7= 1, . . . /- 1) must decrease. . !

Thus. once we know the pair-formation parameter C7', that is, the average num-
ber of partners per male in the nontarget population, we can obtain the average
number_ of partners per female in the nontarget population. C'. and the mixing
proportions for nontarget populations. {P7}and {PL} The mixXing matrix is now
vompleted under the condition that all the sexually active individuals in the non-
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target populations have at least one sexual contact with indtviduals in the target
populations. In general Equation [26] does not hold and in fact is not necessary {sce
ref. 65},

Recall that we assume the combination of our target and nontarget sexually active
populations of both genders constitutes a closed network with a mixing matrix satis-
fying axioms (B1)~(B3). However, data collected from the real world may violate
axiom (B3). and may result in estimated values of {P7} and {P%) that do not satisfy
axioms (B1) o (B3). Since our main objective is to roughly determine the shape of
the mixing matrix for a real population from a single sample. this violation is toler-
ated until a better method is developed.

EXAMPLE

This example deals with the surveyed sexual behavior of colflege students as
reported in refs. 49 to 52. The target populations are male and female college stu-
dents in a given university. Students of each gender are categorized by school year
into four groups; | (freshman), 2 (sophomore), 3 {junior), and 4 (senior). In addi-
tion 1o these four groups, one more group. here referred 0 as “other.” accounts for
their partners who do not belong to the target population. The sizes of groups |
through 4 for both genders are known because they are available from the university
registrar's office.

Table 1 lists the group sizes (R}, sample sizes (3). sexually active subsample sizes
(A). sexually active proportions in the samples (A +5), and estimated sexually ac-
tive subgroup sizes (T, all rounded 1o integers. Table  also includes the sums of
the four groups in the target population. The observed overall sexually active pro-
portion for male students is 34.1%. which is significantly smatler than the observed
overall sexually active proportion of 43.5% for female students (one-sided p=
.015). The sexual partnership distribution (£). the mixing proportions (P), and the

TABLE 1. Population sizes and sample sizes lor man* and women”®

Sexuafly active Estimated sexually
Population  Sample subsample Sexually active  active subpopulation
Group size size size propartion size
i R s A A+S T
’ 1,673 79 16 0.203 339
1,278 68 20 0.294 376
5 1,589 60 24 0.400 636
1.308 68 26 0.382 500
3 1,59 [x} 20 0.317 505
1.277 61 36 0.590 754
4 1,686 47 25 0.532 897
1,348 56 28 0.500 674
6.538 249 85 0.341 2,377
Total 5.211 253 10 0.435 2304 (1)
*Upper ling.
®Lower ling.
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TABLE 2. Sexual partnership distribution of male studenis by counts* and propartions®

Male Female partner group j
group Subtotal 5 Total Average
i 1 2 3 4 xr {Other) Yr cr
1 12 3 1 1 17 10 27 1.69
0.444 0.11% 0.037 0.037 0.370
2 2 9 2 2 15 17 32 1.33
0.063 0.281 0.063 0.063 0.531
3 ¢ 4 4 4 12 14 26 1.30
0.000 0.154 0.154 0.154 0.538
4 1 4 7 11 23 12 35 1.40
0.029 0.114 0.200 0.314 0343
Total 15 20 14 18 B7(X7T) 53 120(¥7) 1.44
0.125 0.167 0117 0.150 0.442
*L37. upper lina.
“Pﬁ’. lower lina.

total (¥ and average (C) number of distinct partners for sexually active male and
female students are presented in Tables 2 and 3, respectively. Male students have a
higher overall average number of distinct sexual partners (1.41) than female stu-
dents {1.24); however, the difference is not significant (two-sided p=_147). The
overall proportion of sexual relationships with partners of group 5 (other} is 44.2%
for men and 50.0% for women. Hence, the interactions with members of group 3
should not be ignored in the study of the effects of mixing patterns on the dynamics
of sexuatly transmitted diseases.

To quantify the potential effect that individuals in group 5 may have on disease
transmission, we need o estimate the elements of the last rows of the mixing ma-
tnx. The incomplete male and female mixing matrices are plotted in Figs. 8 and 9,
respectively. Despite the fact that these figures ignore the effects of group 3. they
sti}l show strong evidence of like-with-like mixing between members of the first
four groups and a tendency for oider men to interact with younger women. Obvi-

TABLE 1. Sexual partnership distribution of female students by counts® and proportions®

Male partner grougp i

Female
group Subtotal 5 Total Average
i 1 2 3 4 X! {Othar) Y! "

1 8 3 4 k<l 15 14 29 1.45
0172 0.103 0.138 ¢.103 0.483

2 1 13 5 2 21 15 a6 1.38
0.028 0.361 0.139 0056 0.417

3 2 4 11 7 24 18 42 117
0.048 0.095 0.262 0.167 0.429

4 Q 0 1 7 8 21 29 1.04
0.000 0.co0 0.034 0241 0.724

Toral 8 20 21 19 6aix’.y 68 136(Y",) 1.24
0.059 0.147 0.154 0.140 0.500

", . upper line.

°P lower line
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FIG. 8. Male incomplete mixing mattix from data.

ously the usual assumption of random or propottionate mixing used in the mathe-
matical modeling of STDs does not fit here.

To use the mark-recapture methodology, we assume that sexuaily active college
students are marked and sexually active individuals of group 5 are unmarked. The
number of groups for men and women are the same, namely [ = J = 5. Qur observers
are the surveyed sexually active students. From Equation [ 18] we estimate the sizes
ot sexually active subgroups in group 5 of both genders:

m_ 2377 (136 — 68) 2304 (120 - 67)

T7 =233 and T4 = =179

68 + 1 67 + 1

A
A AN

|

LA ANV

h \
<

AN

Preportion

farnes Cuoep

Female Subect Group

FiG. 9. Fenala incomplate mixing matnx from data.
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Since KT = 1445.129 and K% = 1437.012, the lower bounds for the average number
of partners for individuals in group 5 are

§ = max(1437.0122343, 1) = max(0.613, 1) = |
C% 2 max( 1445 1291796, 1) = mux(0.805, 1) = 1.
In addition. Equation {28} implies that
Ch=(2343/1796) CT+ (3331.09 — 2818.34)/1796 = 1.305 CT+0.285=C7

That is. the average number of partners per woman in group 5 is greater than that for
men. whereas the sitation is reversed among individuals in groups |, 2, and 4 (the
values are very close in group 3). If we assume that C7 =1, then CL = 1 59 and
from Equations [29] and [30] we obtain

P =0.086, P = 0062 FT,=0.194, P7y = 0.056, P = () 683,
Py=0 146, PLy=0160. Py = 0.081, Ph, =0.296, Pl = 0.117

Because of rounding, T, P75 is not exactly equal o 1. The above calculation is
used only to demonstrate the estimation procedure. Table 4 lists ¢ {7 T and (P}
calculated with double precision for different values of ¢7. It is clear that ¢, P
and P’;s increase with €7, whereas, for other values of i and j. P and P4, decrease
with (5" Figures 10 through 13 Hlustrate the shape of the compieted matrices with
different values for the pawr-formation parameter €7 A second example that uses
dating data from the same college population exhibits similar results (see ref. 57).

In this example. the data satisfy axioms (B1) and (B2) but not axiom {B3) The
same 3s true for the estimated {P;}} and {£4}. Axiom (B3) is violated because we
coutd not survey all individuals in the population.

TABLE 4. Mixng proportions of men* and women® in group 5 for different average numbers
of partners (T

AT or PLY
jori
cr ¢ 1 2 3 4 3
oo s oWE O%e e ks oe
N 3 S S R 7R - -
2,000 2.897 o o 0 oo 00w v 0825
2500 3% G0 G oo ot om
sowam 09E o@D doR o
300 4B oole pom ook o ok

*Pg. upper ling
PZ, lower line
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FIG. 10. Completed male mixing matrix from data with pair-formation parameter
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FIG. 12. Completed female mixing matrix from data with pair-forration parameler = 1.
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FIG. t1. Completad male mixing matrix from data with pair-formation paramater = 2.

FIG. 13, Compieted female mixing matrix from data with pair-tormation parameter = 2.
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CONCLUSIONS

Meodels for the dynamics of STD transmission have implicitly assumed that the
mixing network is closed. Sociologists, epidemiologists, and theoreticians inter-
ested in connecting their models to data have not only found it difficult to coflect
these data but also have been forced by the modeling structure to construct data that
assume that the mixing network is closed. For example. some researchers have used
ractai data on mamages and assumed that the social/sexual mixing structure of a
population is proportionally reflected in these data. This assumption not only im-
poses a like-with-like mixing structure but also may impose a like-with-like mixing
structure that is independent of population dynamics such as preferred mixing. The
danger of these assumptions may become more evident when we observe that the
data presented here also took the existing superimposed social structure used in
U.S. universities (first year, second year, etc.).

In this chapter we have presented a mechanism for estimating the shape of a
mixing matrix from a single survey. The data structure section helps identify the
parameters needed for this estimation. We hope that this may be useful to re-
searchers planning to construct survey instruments to identify the social structure of
the population.

The role of nontarget populations was highlighted because it played such a proms-
nent rote in our example. With data collected from a survey that asks specific ques-
tions about sexual behavior, the size of the sexually active nontarget population can
be conditionally estimated by using mark-recapture methodology  The condition is
that all individuals in this sexually active nontarget population have at least one
sexual contact with individuals from the 1arget population. We also have assumed
that the average contact rates between target and nontarger populations are simi-
lar—an assumption that couid be refaxed if more data were available. Even after the
estimation of the size of the sexually active nontarget population was completed,
one row was still missing in our mixing matrix for each gender. Point estimates of
the elements of this row were carried out by assuming that the elements are consis-
tent with the two-sex mixing axioms, which reduces the computation to that of
estimating 2 single pair-formation parameter, namely the average number of part-
ners for men (or women} in the nontarget popuiation. Lacking an independent esti-
mate of this parameter left us no alternative but that of declaring it a free parameter.
The larger the free parameter, the larger the mixing proportion from the nontarget
population of a given gender 1o the nontarget population of the other gender, and the
smaller the cormesponding mixing proportions to the target population.

The example of sexual behavior of college students reveals that the proportion of
relationships with individuals from the nontarget population 1s high (44.2% for men
and 50.0% for women). Mixing matrices that exclude the nontarget population may
not provide a complete picture of the soctal network and may lead 10 emoneous
conclusions. The example shows that random mixing is unlikely for this college
population with the university’s supenimposed classification. There is some evi-
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dence of like-with-like preference and of pairing between older men and younger
women within the groups in the target population.

If we use different criteria to categorize individuals (.g.. sexual activity) and
consider members of the nontarget population to be prostitutes, injecting drug users,
or bisexuals who may not be willing to respond to a survey and who may be at high
risk of HIV/AIDS, what picture do we get? Long-term forecasting of HIV/AIDS is
being carried out without estimates of the mixing matrices that model realistic,
inconvenient social structures. Even the standard classifications used by the Centers
for Disease Control and Prevention lead to conclusions that may not hold up under a
different classifying system. The fact that social and disease dynamics have not
been studied systematically provides one more significant example of the impor-
tance of interdiscipiinary research 1o understand better the spread of CDs.
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