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ABSTRACT

Two new general methods for incorporating like-with-like preference into one-sex
mixing models in epidemiology are presented. The first 1s a generalization of the preferred
mixing equation. while the second comprises a transformation of a general preference
function for partners of similar sexual activity levels, Both methods satisfv the constraints
implicit in a mixing model. The behavior of the transformation preference method is
illusirated. and it is compared with the standard proportionate mixing model.

INTRODUCTION

In models of the dynamics of sexually transmitted diseases (STDs) within
populations with heterogeneous sexual activity, it is necessary to specify the
contact preference (who mixes with whom). Thus, for each level of sexual
activity (number of new partners per unit time) we must know the fraction
of partners coming from all other levels of activity. For practical modeling
purposes, we require some function of activity that not only makes analysis
straightforward but also is a reasonably accurate characterization of ob-
served mixing patterns. Until recently the proportionate mixing
model—equation (1), below—was the most common description of the
mixing process available in analytic form, although arbitrary rules may, of
course, be applied in stochastic simulations of the interaction of individuals.
Proportionate mixing has been used extensively in a variety of situations by
Barbour [3], Nold [151, Andersen and May [1], Dietz and Schenzle [7],
Anderson and Grenfell [2]), Hethcote and Van Ark [8], and Castillo-Chavez
et al. [5. 61. While this model has also proved useful in the study of the
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epidemiology of STDs (see Hethcote and Yorke [9] for an outstanding
example), it has become clear in recent years that more realistic mixing
models are required for any detailed understanding of the transmission
dynamics of HIV-1 and for any study of the possible value of various control
measures.

At present there are few robust data on contact preference in a given
community, although estimates of the distribution of numbers of sexual
partners have been derived from various surveys. In the absence of detailed
mixing information, models of HIV-1 transmission must take into account as
many mixing patterns as possible if the impact of any preferential mixing in
a given population is to be better understood.

Preliminary work on preferential mixing was done by Nold 15] and
Hethcote and Yorke [9]. Their idea. as Nold [15] says, was to “supplement
the proportionate mixing model with one which allows for more social or
geographic separation of groups.” In the development of their two-sex group
model for the transmission of gonorrhea for very active and active subpopu-
lations, Hethcote and Yorke [9] note that it may be that “a very active
person may be more likely to have an encounter with a very active person”
and therefore for the extreme case in which only like-with-like people mix we
have “proportionate mixing within the very active sub-population and
within the active subpopulation, but there is no interaction between these
sub-populations.” Hethcote and Yorke conclude that “actual mixing is
probably somewhere in between the extremes of proportional mixing in the
entire subpopulation and proportionate mixing in the activity levels.” Ear-
lier, Nold [15] had reached the same conclusion and introduced a mixing
matrix M that is 1~s times the mixing matrix for proportionate mixing
plus s times the matrix for proportionate mixing in the activity levels (e,
within subpopulations). The parameter s was a measure of the separation
between groups. Hethcote and Yorke called it the “selectivity constant.”

Recently Sattenspiel [16, 17] questioned the use of proportionate mixing
in dynamic models for the spread of disease in structured populations. She
emphasizes those diseases for which the geographic and social structure
plays an important role. Sattenspiel was the first to provide a very general
formulation that allowed for truly distinct levels of interactions between
individuals. More specifically, her framework allowed two distinct levels of
random mixing: (1) nonsocial vs. social behaviors, with the condition that
nonsocial individuals had within-group mixing only, and (2) two types of
intragroup mixing, one involving individuals who interact only with neigh-
bors (the local groups), and the second type involving individuals who
interact randomly with all groups. Although her formulation was motivated
bv her work on the spread of hepatitis A among preschool children.
Sattenspiel is aware (see [16]) that her framework could be applied to a
variety of situations including the spread of STDs. Later. with Simon [18],
she refined the mathematical analysis of their n-group model.
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Hyman and Stanley {10, 11} have examined some approximations to
like-with-like mixing; in addition. their simulations have illustrated the
possible dangers of using proportionate mixing. Recently, Hyman and
Stanley {11} have developed a model where the preference of half of the
population may be specified by the modeler and the other half is defined by
the preferences of the first, and Jacquez, Koopman, Sattenspiel, and Simon
have explored a form of mixing slightly more general than Nold’s that they
called preferred mixing (see Sattenspiel et al. {19], Jacquez et al. [13], and
Koopman etal. [12]). All of these approaches represent important and
valuable contributions to the study of STD epidemiology.

In this paper we generalize the previous mixing framework by extending
it to continuously distributed characteristics. In addition, we introduce two
new solutions that satisfy the necessary mixing constraints: (1) generalized
preferred mixing and (2) neighborhood mixing. A numerical example is
provided to illustrate the effect of like-with-like mixing through the use of an
appropriate chosen preference function. For further examples and extensions
of this approach, see Blythe and Castillo-Chavez [4].

MIXING FUNCTIONS

In any one-sex model with heterogeneous sexual activity we have the
mixing function p(s, r), and hence ["**'p(s, u) du specifies the fraction of
partners that a person with activity s has among individuals with activities in
the activity interval [r, r + Ar). There are three constraints that p(s, r) must

satisfy for all s and r:

1) p(s,r)>20,

() f5e(s,r)dr=1,

(i) p(s,r)sN(s)=p(r,s)rN(r),
where N(x) is the number of people in the population with activity x. This
is, of course, a function of time; however, we have suppressed time notation
because (i)-(iii) must be true at all times. Conditions (i) and (ii} arise
because p(s, r) is in effect a probability density function, while condition
(iii) expresses the requirement that the total number of partnerships of
s-people with r-people must equal the total number of partnerships of
r-people with s-people. We observe that if we look for solutions of the form
riN(r)A(s, r), then condition (iii) implies that A(s, r) = A(r,s). These con-
straints are simple and obvious, but it is not easy to find functional forms
for p(s, r) that satisfy them simulitaneously for all s, r, and time ¢.

We express the standard mixing model for proportionate mixing as

plsiry ==L (1)

uN{(u) du
0

Here p(s, r) is actually independent of s and may be interpreted as saying
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that the fraction of partners taken by any individual in the population from
individuals with activity r is proportional to the total number of partner-
ships formed by all r-people and clearly satisfies (i)~ (iii).

A preferred mixing function is an extension of Equation (1) to include a
preference of individuals for partners with exactly the same activity level. In
the continuous variables r and s used here, Nold’s preferred mixing be-
comes

p(5.7) = (1- a) 1)
uN(u) du

0

+ad(s—r), (2}

where 8(s — r) is a Dirac delta function and the constant a represents the
bias toward partners of exactly the same activity. We define ¢(s,r) =
ad(s — r) and call it the preference function. A discrete version of this model
has been used recently by Jacquez etal [13]. Although very useful for
modeling purposes, and sufficient to demonstrate that even a small bias
toward like-with-like can have a profound effect on epidemiological patterns.
Equation (2) is rather restricted as a general model of preference.

A more general alternative to proportionate mixing has been derived by
Hyman and Stanley [11] and in its continuous form can be expressed as

rN(r)
p(r.S)SN(S), r<s
p(s.r)= f{s,r)rN(r) s (3)
(1—_/;p(s,u)du), r>s,

fwf(s, u)uN(u) du

where p(r, 5) for r < s is arbitrarily specitied by the modeler to suit available
data and the rest of the values are derived from this constraint. The function
f(s.r) appears to be arbitrary and may be used to fine-tune the behavior of
p(s,r) to the modeler’s needs. It can be shown that Equation (3) satisfies
(1)—-(111).

We now introduce two new mixing functions that satisfy constraints

(1)=(1if).
GENERALIZED PREFERRED MIXING

The first mixing model is a direct generalization of Nold’s additive
equation, Equation (2). A generalized mixing function that allows prefer-
ences for partners with activities that are arbitrary multiplies of one’s own
and that is based on Equation (2) is provided in this section. An alternative
version 1s provided in the next section.
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To describe the mixing function of this section. we require the use of
2m+1 delta functions with weights {a, }. describing the preference of
individuals with acuvity s for individuals with activity s/a,,5/@a,...,
5/dy,. . - We assume that the sequences {«, } and { g, } satisfy the following
conditions:

1 .
(a) am+l+gl=a bl j=1’25"'ym_1; alm.a-l:lo

m+1-;

(b) am41+;=am+]-j' j=1'2*"'1m_1'

2m=1|

(¢ 3 a=L

=1

We now define our preference function ¢(s, r) by the following symmet-
ric expression on s and r,

¢(S‘r)=lmz+laf8(s—§). (4)

i=1 !

and observe that assumptions (a) and (b) imply that

m

o(s,r)=a,, 8(s—r}+ Y a,[S(s—a,r)+8(a[s—r)]. (5)

{m]
In addition, we make the following assumptions and definitions:

(d) 8(x)=xN(x),
(&) A=sup xN(x); A<oo, .

H Q(s)=j(;m¢(s,r)B(r)dr=am+19(s)+ Y a,[B(f}) + 8( a,s)],

P=1
e 1 oc
(8) W=f0 O(u) du——+ ; 0(u)Q(u) du.

Usicg these definitions and assumptions. we proceed to define the mixing
function p(s, 7).

EITSTLRST 63V (L[ V2V N DY S

p(s,r)

It is now straightforward to check that p(s. r) satisfies conditions (i) and
(ii). Since (s, r)=¢(r,s), condition (iii) is satisfied. For like-with-like
preference we could further assume that a,, ., > a,,,,_,., and that a, . >
&,y e for j=12,.. m—1 with weights { a; } with a2 maximum at ay. [t
mayv in practice be a serious deficiency that there are “gaps”in the preference
function between the arbitrarily chosen positions of the deita functions.
Nonetheless. Equation (6) may be useful for preliminary investigations of a
like-with-like preference distributed around s = r.
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A NEIGHBORHOOD MIXING FUNCTION

Instead of the delta-function model of Equation (6), we should like to be
free to specify like-with-like preference by some arbitrary function with
well-understood properties. In particular we wish to use “neighborhood”
functions that express preference as a continuous function with a single peak
at r = s, falling off to either side. We know of no such functions that may be
used directly, satisfying (i)-(ux). Equation (6) provides a clue as to how one
might make use of an arbitrary continuous function, ¢(s, r), as our prefer-
ence function. We must ask: What transformation of the function o(s,r)

¢ 0.2 +

0.20 T

0.05 +

0.03 +

0.02 +

-0.00 4+
[ Il nd

FiG. 1. Behaviorof (a} éi5.ryand thy p(s.ryfor ki =01. ¢ =05 and 5 =1.0
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satisfies (1)-(iii)? If we restrict our choice of ¢ to functions with the propertv
&(s — r)=¢(r —s) and state that

[ Tetn =1,

e a}
then we find that the transformation

-p(_s,r)= n:cf(r)P(r)P(s) +rN‘£r)¢{S_r) 7
uN(u) P(u)du
0

$ o0.25 ¢

0.20

0.05 ¢+

20

L=}

wn
°
-
wun

.08 4

Q.06 +
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satisfies (1)-(i11). In (7),

L

P(r)=1—%j{;xu."\/(u}¢(xﬁu}d:z {

and A is a constant. We consider this constant further below. It is trivial to
show that Equation (7) satisfies all the mixing constraints: the value of A4
must be large enough to give P(x) > 0 for all x, which in turn is sufficient to
satisfy (1). If we assume that &(s — r) is bounded by a constant M. that is,

0.25 T

¢

c.20 +

0.15 =+

10 15 20

(=)
1841

0.10 +

0.05 +

10 15 20

o B
W

FiG 3 Behaviorof tay ots. ryand b wis. ey for A =00, v =0% and , =10.0

N
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sup.¢(z) =M. =5 — r, then the choice
A=M[ uN( ) du (9)
0

15 sufficient; for a delta function, P(x) involves point values rather than

integrals. For the special case of the previous section. since A roughly
corresponds to A, 4> max _xN(x) is sufficient,

0.05

V]
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AN EXAMPLE

In this section we consider a simple example for which p(s.r) can be
calculated. We are not concerned here with a time-varying activity distribu-
tion (which would be the case in a real application or a dynamic model), and
we choose the convenient exponential form

N(s) = Lke™** . (10)

where N(s) is the distribution of sexual activity in the population, L is the

0.05 +
o a
0.04 +
0.03 +
0.02 +
0 5 10 15 20
r
P
0.15 + b
9.10 +
G.05 +
-0.00 +
2 5 " 5 e
r
FIG. 5. Behavior of vy &ty ryand thy pov, ryfor A =05 =01, and » =350
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total population size, and 1/k is the mean sexual activity. For the neighbor-
hood preference functions ¢(s. r), we choose

¢ v - o
$ls.r)=3e "7, (11)
which becomes more sharply peaked as c¢ increases. In Figures 1-10 we take
values of ¢ in the interval (0.2]: then choosing A = L/k is suffictent. It 1s
trivial to calculate the expression for P(x) and p(s.r) given Equations (10)

0.05 +
a
o
0.04 +
003 T
0.02 1
0 5 10 15 20
r
P b
0.15 +
0.10 +
0.05 4+
-0.00 -+
a 5 10 15 20
T
FiG. 6. Behavior of (ay é(s. ryand by pts.r) for A =3, ¢ =01, and v =10.0,

I
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and (11), and in the figures we present some illustrative examples. We have
graphed p(s. r) as a function of r for different values of s and for a variety
of values of ¢ and k. with 4 =N/k.

In Figures 1-3 we illustrate p(s,r) for k =0.1 and ¢ =05, and 5 =1.0,
5.0, and 10.0, respectively. In this case p(s.r) retains the sharply peaked
form of ¢(s,r) except when s is small, in which case p(s.r) 1s much
smoother. This case corresponds to a very narrow neighborhood function.
with 50% of the area under ¢(s. r) lying in the interval r = s +2In2, and a
large average activity: 1,/k =10.0 partners per unit time.

°T

0.12 +

0.0 +

0.08 +

004 -

0.02 T+

-0.00 ~

Fig. 7. Behaviorof twy v ryand iby gis myfor £ =025 0 =10, and v =10
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0.5 1

4

0.2 +

10 15 20

o
o
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b
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0.05 +

-0.00 i

F1G. 8. Behavior of (a) ¢(s.ryand (b) p(s.r) for & =025 ¢ =1.0. and 5 = 5.0.

In Figures 4-6 we illustrate p{s,r) for k =0.5 and ¢ = 0.1, with the same
range of s values. In this case the neighborhood function is very broad and
contributes very little to the shape of p(s. 7)., which always behaves as rN(r)
(that is, like proportionate mixing).

In Figures 7-10 we illustrate the case K = 0.25 and ¢=1.0 for s =1.0, 5.0,
10.0, and 20.0. respectively. Although here the neighborhood function is
narrow. the mean sexual activity 1s small and the interplav between Nirj
and p(s.r) 1s complicated. The essential form of p(s.r) is a mixture of
proportionate and like-with-like mixing. At a small s ( <1/k. Figure 7),

/32
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a
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p{s,r) 18 very much like ¢(s.r) but with a more pronounced tail. As s
increases (Figures 8-10), the componen: due to &(s, r) decreases. until bv
the time s = 20.0 proportionate mixing is predominant.

We remark that the fidelity of the transformation p(s. r} to the underly-
ing neighborhood function ¢(s, r), given Equations (10) and (11), depends
upon the width of ¢, the mean activity 1 /k, and the value of s in relation to
1/k.

We observe that the above simple example fares well when dealing with
those reported in the literature. To iHustrate this point, we have superim-

2z
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o 0.4 +

0.2 Tt

0.06 +

0.04 +

0.02 +

-0.00 +

T

F1G. 10. Behavior of (a3 é¢s. riand thy pty. rifor k=025 ¢=10.and ¢ =10.0.

posed (in Figure 11) three curves. They include the exponental function
N(x) of this paper with a mean of about two new pariners per month,
Hyman and Stanley’s cubic (see Hyman and Stanley [10)), and data of
Anderson and May (1987, as reported in Hyman and Stanlev [10]).

These numerical simulations have been repeated using a “Gausslan’
preference function, and the results have been consistent with those reported
in this paper; however (not surprisingly), those involving different functional
forms have produced significantly different results (see Castillo-Chavez and
Blvthe [4]).
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CONCLUSION

We have presented two new like-with-like mixing functions, one based on
proportionate mixing biased at m values of the ratio s/r and the other
based on a transformation of a general neighborhood function ¢(s,r). A
simple example for a static population indicates that the second mixing
function behaves like the neighborhood function. provided that the latter is
sharply peaked and the mean activity in the popuiation is relatively high. In
other cases proportionate mixing may be regained. with or without a level of
bias toward like-with-like preference. These results support some of the
numerical experiments of Hyman and Stanley [10. 11} regarding the role of
the width (variance) of the neighborhood preference function and its rela-
tionship to proportionate muxing.

Much work remains to be performed before we have a complete under-
standing of the transformation method for an arbitrary neighborhood func-
tion, and the behavior of this p(s,r) in a fully dynamic epidemiological
model must be investigated. For further results the interested reader is
referred to Castillo-Chavez and Blythe [4). Finally, we speculate that if
estimates for N(s) (the activity distribution in the population) and ¢(s.r)
(tendency for like-with-like mixing) can be obtained from survey results.
then examination of the transformation p(s, r) of Equation (7) may be able
to tell us whether or not the like-with-like preference is important in a given
population and thus whether a proportionate mixing description is adequate
or a more complicated model is required.

We thank S. A. Levin, J. M. Hyman, E. A. Stanley, and S. A. Colgate for
their stimulating conversations; John Jacquez, C. E. McCullogh, and an
anonymous referee for their comments; and L. Sattenspiel for her provocative
ideas. This research has been partially supported by Haich project NYC
151-409, USDA 1o C C-C.
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