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A central aspect in the study of the dynamics of sexually tran m..ed diseases is
that of mixing. The study of the effects of social structure in di- ase dynamics has
received considerable attention over the last few years as a re 1it of the AIDS
epidemic. In this paper, we formulate a generalization of the Blythe and
Castillo-Chavez social/sexual framework for human interactions through the
incorporation of age structure, and derive an explicit expression in terms of a
preference function for the general solution to this formulation. We emphasize
the role played by proportionate mixing, the only separable solution to this
mixing framework, through the discussion of several specific cases, and we
formulate an age-structured epidemic model for a single sexually active homo-
sexual population, stratified by risk and age. with arbitrary risk- and age-
dependent mixing as well as variable infectivity. In the special case of proportion-
ate mixing in age and risk, an expiicit expression for the basic reproductive
number is computed.

Keywords: AIDS; HIV transmission: epidemic modelling; mixing probiem;
proportionate mixing; risk and age structure; basic reproductive number,

1. Introduction

RECENT estimates put the number of HIV-infected individuals (i.e. infected with
the human immunodeficiency virus, the aetiological agent for AIDS) at between
800000 and 1200000 in the United States. The World Health Organization
estimates the number of HIV carriers worldwide at 5-10 million. The Center for
Disease Control in Atlanta (USA) reports, as of December 1990, more than
162 000 cases of ‘full-blown’ AIDS. of which over 70 000 individuals have died.
Estimated costs for the treatment of and caring for individuals with AIDS run
into the billions of dollars. This grim scenario has motivated researchers to
develop mathematical models to identify and/or improve our understanding of
the mechanisms responsible for HIV transmission and for the evaluation of the
relative merits of possible control measures. Recent reviews of the literature on
models include those of Anderson (1988, 1989), Castillo-Chavez (1989a, b), and
Schwager er al. (1989), while an extensive study of some of the most recent work
i
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2 STAVROS BUSENBERG AND CARLOS CASTILLO-CHAVEZ

on the use of mathematical and statistical modelling of the dynamics of HiV at
the individual (immune system) or population level can be found in a recent
collection of articles (see Castillo-Chavez, 1989b).

Some of the questions that can be approached through the use of mathematical
models (see Hethcote & Yorke. 1984; Anderson, 1988, May & Anderson. 1989-
Castillo-Chavez er al., 1988, 1989a.b.e; Diekmann er al., 1990) include: the
possibility of invasion (i.e. whether or not a disease can colonize successfully a
given population of susceptibles at steady state), the determination of threshoids.
the possibility that a disease may reach an endemic state, and whether or not a
discase can regulate a population. The preliminary work of several AIDS
modelling research groups (see Anderson, 1988; Castillo-Chavez, 1989b) has
already made numerous contributions. Researchers have demonstrated that the
infectious period distribution with its large mean and variance implies that a rise
in seropositivity will precede the rise in AIDS, possibly by years. Furthermore.
heterogeneity in infectivity and the possibility of two infectivity peaks (see Francis
et al., 1984; Lange er al., 1986; Salahuddin er a/., 1984) will have a major effect
on the shape of the epidemic curve (see Hyman & Stanley, 1989; Thieme &
Castillo-Chavez, 1989, 1991). Selection due to AIDS-induced mortality will de-
crease the population’s mean sexual activity, i.e. the average rate of sexuat
partner change, and hence make the evaluation of the effectiveness of education
programmes difficult (see Castillo-Chavez er al., 1989d; Anderson et al., 1989).
The magnitude of the basic reproductive number, or the number of secondary
infections generated by a ‘typical’ infectious individual in a population of
susceptibles, in combination with the shape of the incubation period distribution,
will have a major effect on the first episode and potentially on the long-term
dynamics of HIV as well. Predictions are not possible without an increased
understanding of social dynamics (see Hyman & Stanley, 1989; Jacquez er al..
1988; Gupta er al., 1989; Castillo-Chavez er al., 1989¢c, d; Huang er al., 1991;
Cooke et al., 1991; Dietz, 1988; Dietz & Hadeler, 1988; Hadeler, 1989a, b; May
& Anderson, 1989; Blythe & Castillo-Chavez, 1989; Castillo-Chavez & Blythe,
1989; Anderson er al., 1989). These researchers have shown that epidemic models
can be very sensitive to changes in the sexual/social mixing structures, and that
not all of them exhibit the same global dynamics.

Much of this recent work has highlighted the need to study systematically the
effects of mixing in disease dynamics. An in-depth study of the effects of mixing
requires a suitable axiomatic framework incorporating the natural constraints
involved in mixing. Recently, Blythe & Castillo-Chavez (1989) and Castillo-
Chavez & Blythe (1989) — hereafter both articles will be referred to as BCC -
formulated such a framework for continuously distributed characteristics and
found a large class of new solutions to the mixing constraints. Their family of
solutions is based on the use of a preference or acceptance function ailowing for
the incorporation of preference in the mixing process. This family of solutions
includes Noid’s preferred mixing (see Nold, 1980; Hethcote & Yorke, 1984),
proportionate mixing, and like-with-like mixing (see Busenberg & Castillo-
Chavez, 1989). Furthermore. BCC have used this family of solutions to illustrate
the combined effects on the shape of the mixing function of the interactions
among individuals belonging to groups with specified preferences and levels of
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risk and the mixing constraints imposed naturally upon this population of
interacting groups through their own distribution of sexual activity. These
numerical simulations corroborated and extended the numerical results of Hyman
& Stanley (1988, 1989). In addition. special representatives of these mixing
functions have been incorporated into dynamic models for the sexual spread of
HIV. The mathematical analyses and numerical simulations of these models have
shown the dramatic effects on disease dynamics of the choice of a mixing function
(see Hyman & Stanley, 1989; Anderson er al., 1989; Jacquez er al., 1988:
Castillo-Chavez er al., 1989¢c, d; Huang, 1989; Cooke ef al., 1991; Gupta et al.,
1989; Huang er af., 1991).

The main objectives of this paper include generalizing the mixing framework
(BCC) and deriving an explicit expression for the general solution to the mixing
problem for a population stratified by age and level of sexual activity, formulating
an age-structured epidemic model for a single homosexually active population
with arbitrary social/sexual age-dependent mixing, and computing the reproduc-
tive number for a proportionately (in age and risk) mixing population.

This paper is organized as follows. Section 2 axiomatically characterizes the
mixing function and describes its role in disease dynamics by deriving an
expression for the incidence (which determines the number of new cases per unit
time). Section 3 discusses several mixing functions that arise from different
constitutive relationships. Section 4 derives an explicit expression for the general
solution of the mixing problem in terms of a preference function. Section 5
formulates a general dynamic model for the spread of HIV/AIDS for a
homosexually active age- and risk-structured population and computes its basic
reproductive number in the case of proportionate mixing. Section 6 discusses the
relevance of the results presented in this article, briefly outlines our results on
two-sex mixing frameworks, and suggests future directions of research.

2. Mixing framework

The formuiation described in this section can be used in the modelling of social
or sexual mixing interactions. For example, while the mixing function can
describe the proportion of ‘dates’ between individuals in distinct groups, or can
represent the proportion of sexual partnerships or sexual contacts between these
individuals, other interpretations are possible. In addition, the mixing function
can be generalized to include the geographical distribution or the geographical
movement of individuals through the use of ‘localized” mixing functions, i.e.
functions that represent the proportion of partnerships formed between in-
dividuals from clearly defined groups ({socially, demographicaily, etc.) at a
particular geographical location. The local geographical heterogeneities can then
be linked through the specification of migration or movement matrices (see
Sattenspiel, 1987a,b; Sattenspiel & Simon, 1988). Therefore, our approach
allows for the specification of a spatial mixing framework. In this paper, however,
we concentrate on the study of localized mixing functions. We begin by
considering the interactions of a single sociallv homogeneous group of individuals
who are structured according to the following variables: @ = age; r=tme (or
age) since infection; r = activity or risk level. We let N(r, a, t. t) denote the total
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population density per unit age, activity, and time since infection, at time ¢. This
population is divided into the following epidemiological classes: § = susceptible;
I = asymptomatic or slightly symptomatic infective; A =highly symptomatic
infective. This classification is fairly general and includes implicitly the traditional
infected, but not infective class £ (see Busenberg & Castillo-Chavez, 1989). We
assume that t is a hidden internal variable that does not distinguish individuals
other than through their level of infectivity, and perhaps mortality. When
modelling the sexual transmission of AIDS, we assume that A-individuals (i.e.
individuals with severe symptoms or full-blown AIDS) are sexually inactive and
hence that

T(r,a,t)y=38(r.a, 1) +f I(r,a. r,1)dr
4]

represents the total age and activity-level density of a population active in disease
transmission contracts. Sexual mixing is defined through the mixing function p.
Specifically, p(r, a, r', a’) is the proportion of partners of an (r, a) individual (i.e.
a person of activity level r at age a), with (r’,a’) individuals;
C(r, a, W(T(-, -, r))) is the expected or average number of partners per unit
time of an (r, a) individual given that the effective population size is W(T(s, «, 1))
at time ¢ (we assume C =0).
The follows natural conditions characterize the mixing function:

(1} p=0;
(ii) f f p(r,a. r',a’, tydr' da’ =1.1f C(r, a, W(T(-, -, r)))T(r, a, ty#0;
Q4

(i) plr.a. r'. a’, t)C(r, a, W(T(-, -, r)))T(r, a, ty=
pr a', roa, 0C(r, a’, W(T(, -, D))T(r' a', t);

(iv) C(r a, W(T(,«, 0))T(r,a, )C(r',a’, W(T(+, -, )T a’, 1) =0 >
plroa, r',a’, t)=0.

Condition (ii) simply says that p is a proportion. Condition (iii) states that the
total number of contacts of (r, a) individuals with (r', @’) individuals equais the
total number of contacts of (r’, @’} individuals with (r, a) individuals (all this is
per unit time, age, and time since infection). Condition (iv) says that there is no
mixing in the age and activity levels where there are no active individuals. i.e. on
the set

zZ= {(?’. ar’,a'): C(r. a, W(T(.' . I)))T(r, a. t)
X C(r’. a’, W(T(-, -, I)))T(r', a', 1) =0}‘

where there is no mixing. Condition (iv) arises naturally as will be seen in Section
4, so we proceed to state our results without this assumption until it is required.
In some sttuations. it is necessary to consider mixing functions p, which are
Dirac delta-functions (see BCC) or. more generally. distributions or generalized
functions. Hence. we are forced to consider solutions to this axiomatic framework
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tn the space of distributions or generalized functions (see Schwartz, 1960. or
Gel'fand & Shilov, 1964). This is easily accomplished by choosing appropnate
spaces of test functions whose generic elements we denote by f, and using the
following modification to the interpretation of axioms (i) and (iv):

(') p=01n the sense of distributions, 1.¢.

J‘ j p{r,a, r',a")f(r',a)dr da" =0 forall f=0:
4] 4]
(iv')) p=0o0n aset £, which means

ff plr,a, r',a)f(r',a’ r.a)dr, da’,drda=0 forallf

In writing the conditions characterizing p we have exhibited their functional
dependence on (r,a, r’, a’) and. for notational convenience. have suppressed
their dependence on 7 and T.

Pair formations can involve selectivity by individuals according to age or
activity level, they can be random pairings without regard to these variables. or
they can be any combination or mixture of the two extremes. A detailed
discussion of these possibilities and of the restrictions they place on the mixing
function p is found in Section 3. The effects of mixing on disease transmission can
be modelled through the incidence rate (new infected cases per unit time) or the
‘force’ of the infection. We begin by letting B(r,a. 7, r'.a’) denote the
probability that a pairing between an (r', @', ) infective individual and an (r, a)
susceptible will lead to the passing of the infection to the susceptible (other
interpretations are possible: see Castillo-Chavez er al. (1989¢, d) and Cooke et al.
(1991)), and by observing that //T denotes the proportion of contacts of a
susceptible with an infective individual. The force of infection term B is therefore
given by

B(r.a.0)=C(r,a. W(T(-. -, t)))J:L J;x J:: Bir.a, . r', a’

[ f‘ .“ ‘[
xplr.a.r,a', t)ﬁ%%dr’da' dr, (1)

and the incidence rate is given by S(r, a. 1)B(r, a, t). In order to simplify the
notation, we shall write C(r.a, W) for C(r. a. W(T(-, -, t))) in the argument
that follows. The interpretation of the term 1is as follows: there are
S(r. a, t) Ar Aa susceptibles in the class interval Aa x Ar, and those individuals
have S(r.a, 1)C(r, a, W) Ar Aa contacts per umt time. Of these contacts,
S(r.a. NC(r, a, W)p{(r.a. r'. a’) Ar Aa are with active individuals in the (+', a’)
class. and a proportion {{r".a'. 7.1}/ T(r'. a'. 1} are with infective individuals.
Thus the number of contacts per unit time of (r, ¢} individuals with infectives n
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Tasie Ib

Pair symmetry condition
Type & name (it} p(roa. ' a’ . DC(r.a)T(r.a. t)=p{r'. a’. r.a. O0C(r', aYT(r' . a’, t)

(1) plr.a, r', n _ plr.a’. r t}
Proportionate o, . , = .
agg mixing fu C{r'.aYT(r',a’, t)da f“ Clr,a)T(r.q,t)da
(ID plr.a, a, ) _ pir'.a', a,t)
Proportionate P Lo,
activity mixing J; Cir',a))T(r',a’, t)dr ) Cir.a)T{(r, a,t)dr
(IT) = (I) + (II)
Proportionate Clr,a)T{(r,a, t)=C(r',aYT(r',a', 1)
mixing
(IV)
Uniform age plr.r' . a YClr,a)T(r, a, t)=p(r', r,a)C(r', a’YT(r', a’, 1)
selectivity
(V)
Uniform activity pla. r'. aYClr,a)T(r,a, t)y=p(a'.r,a)C(r', a)T(r',a', 1)
selectivity

(VD = V) + (V)
(;‘f‘:c't‘i’:,ii‘fe p(r', a)Clr, a)T(r, @, 1) = pir. a)C(r', a')T(r', a’, 1)

selectivity

(I + (V) These two conditions
(I) + (IV) place severe restrictions on the
possible functions g which we study in Section 4.

the (r’, a’, t) class is
[ P, f, s t
S0, 0C(, 0. Wp(r 0. ' ) ST

and therefore the expected rate of disease transmission due to such contacts with
infectives in the At X Aa’ x Ar’' interval is

Aa Ar,

IHr, a' 11
S(r,a, 1)C(r,a, W)p(r,a, t',r',a")p(r.a, r,a') —% Aa’ Ar' At Aa Ar.
r,a,

To find all the disease transmission contacts between susceptibles in the Aa X Ar
interval with all possible infectives, we sum over At x Aa’ x Ar’ to get B(r, a, t).
Note that the dynamics implied for the susceptible class are given by

a?f(r. a, t)+ g—j(r, a, t)+ulria, 0)S(r,a. ty=A(r,a.t. T{a.r, r)) —B(r,a, t),
(2)
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where A denotes the ‘recruitment’ rate into the susceptible class, and ¢ denotes
the natural per capita removable rate from sexual activity (due to all causes
except severe symptoms or full-blown AIDS). We observe that there are several
constitutive forms of the tnteraction term p; examples without age structure can
be found in BCC. Tables ia and 1b illustrate several possibilities, for age- and
activity-dependent mixing. These nine general cases include proportionate mixing
in the age variable only, proportionate mixing in the activity variable only. and
proportionate mixing in both age and activity variabies. One of the simplest forms
of mixing is that of proportionate or random mixing, which in our present
framework includes both variables of age and activity level. It is given by a
generalization of the model used for situations without age structure by May &
Anderson (1989);

C(r’, a’, W(T(, -, t)))T(r‘, a', )
fx jw C(r', a’, W(T(-, -, r)))T(r', a',t)yda’, dr’
) {

)

p(roa, r',a' t)=

if (r,a,r',aY¢eZ (3)

and p{r,a,r',a’,t)=01f (r,a, r', a’)eS. This solution plays an important role
in the determination of all possible solutions to the mixing framework (i)—(iv). It
will be shown in the next section, all mixing functions are multiplicative
perturbations of proportional mixing. Note that proportionate mixing vacuously
satisfies condition (iv). This condition prevents us from arbitrarily defining a
mixing function for subpopulations that either are not sexually active or that have
been depleted of individuals by disease dynamics.

3. Mixing-dependent incidence rates

From equation (1), it is evident that the incidence rate is affected by two
parameters: the infectivity and the mixing function. In this section, we begin to
analyse the role of mixing in disease dynamics by discussing some specific
constitutive forms for the mixing function p (for a preliminary mathematical
analysis of the effects of vanable infectivity, see Thieme & Castillo-Chavez
(1989, 1991)). The objective of this section is to illustrate nine general cases that
may be useful for modelling purposes. We hope that our brief classification may
be of use by making clear the assumptions behind the choice of each mixing
function. In the next section, we present a representation theorem that includes
all possible solutions to axioms (i)—(iv), and that therefore contains the soiutions
in this section, although not always in a transparent way. In giving these
expressions, we assume, for simplicity, that C does not depend on W, and do not
repeat the condition that p vanish on the set Z.

(I) Proportionate mixing in the age variable only. Individuals in the (r, a) class,
when choosing partners, do not show preference for any age group.
Consequently, as far as age is concerned. pair formation is a stratified
random process. Thus the proportion of contacts ot an (r. «) individual (per
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capita of active population) with (r’, a") individuals is of the form

C(r',a)YT(r', a’)

plr.a, r',a’YC(r,a)=p(r,a, r'YClr, a) — _
Clr'.a)YT(r', a’Yda’

that is. contact with age a’ individuais is directly related to the proportion
of the activity level of such individuals in the total active population across
all age groups. This proportion at time ¢ is. of course.

C(r',a )T(r',a', t)

f C(r',a)T(r',a’, t)da’
4]
The force of infection term becomes

B(r, a. !)=C(r,a)f f j Blr,a, T, r', a’)p(r,a, r, 1)
0 4 0
. C(r',aY(r', a’, 1, t)dr' da’' dr

f C(r',a"YT{r', a’, ) da’

1]

Remark. Note that, because of the presence of the activity-level variable. the
integral in the denominator cannot be taken out of the triple integrat.

Using the same type of reasoning as in (I) we obtain the following acceptable
forms for the mixing function p.

(I} Proportionate mixing in the activity variable only:

Cir,a)T(r', a’)

plr,a, r',aY=p(r,a,a’) — )
C(r',a)T(r',a")dr’

4]

(III) Proportionate mixing in both the age and partner variables:

C(r',a")T(r', a’)

plrra, r',a'y=p(r,a}—— .
f f C{r',aYTir', a’Yda' dr’
0o (¢

([)=(II1) assume that the persons selecting partners have criteria of selection
which depend on the class to which they belong. We now turn to situations where
that is not the case.

(IVY Uniform age selectivity:
plr.a, r'.a'y=p(r.r',a').

Here we assume that individuals in the (7. 2} class have the same selection
criteria as individuals tn any other (r.a”) class. «* e [0, =) That is.
selection is independent of the age of the individual who is selecting:
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however. it does depend on the age of those who are being selected as
partners.

(V) Uniform activity selectivity:
p(r,a. r'.a’y=pla. r'. a’).

Here the activity level of the individual does not affect his/her selectivity
criteria.

(V1) Uniform age and activiry selectivity:
p(roa, r',a’y=p(r’, a’).

We can combine (1)-(II) with (IV)-(VI) in various ways and obtain nine
different forms for the mixing function p, which we exhibit in Tables la and
1b together with the resulting form of the force of infection which is obtained
from (1). We also list the restrictions placed on p and C by (it) and (iii). Even
though we are singling out these nine possible versions at this stage, the general
form of p needs only to satisfy conditions (i)-(ii)—(iii), and each of the special
cases involves a constitutive assumption concerning the mode of mixing and
partner selection. We also note that both p and C may be density-dependent. and
we are beginning to look at such extensions (see Castillo-Chavez er al., 1989d;
Thieme & Castillo-Chavez, 1989, 1991). Finally, we observe that convex linear
combinations of mixing functions are mixing functions. Specifically, if ..., oy
are positive constants such that YN ,a;=1 and p,,.., px are mixing functions,
then ¥, a;p; is a mixing function. This last observation provides a recipe for the
construction of a variety of mixing functions; furthermore, it clearly shows that
preferred mixing (a convex combination of two mixing functions), contrary to the
suggestions of some researchers, does not contain all reasonable possibilities.
Specifically, (omitting age) preferred mixing is given by

CnT(r)
Jm C{u)T{(u) du

p(s,r)=(1-a) +ad(s—r), (4)

where & denotes the Dirac deita-function (see BCC), i.e. it is the convex linear
combination of the Dirac delta-function (a mixing function) and proportionate
mixing. The two extreme points of this particular convex linear combination
(when a =0 or 1) do not obviously represent sociological or mathematical mixing
extremes — this was pointed out to us by S. Gupta and R. Anderson —as some
researchers have suggested.

We now show how to recover the case of no age-dependence, which yields the
original formalism of BCC. To circumvent the fact that we cannot eliminate the
variables (a, a') in p because (i) and (ii) are then incomparable, we need to
assume that the population is not age-structured, so that T(r, a) = T(r) does not
depend on a. We further assume that there is a maximum age A, and that
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plrra.r',aY=0ifa>A ora > A, and set

0 fa>Aora >A,

plrra. r',a’'y=< 1 . “ .
Zp(r, r'), with J p(r,r')ydr' =1, p(r.r'Y=0 otherwise.

Conditions (i) and (ii} are then automatically satisfied, (iii) becomes
plr, r)C(r}T(r) = p(r, r}C(r')T(r")

and we recapture the conditions of BCC. The force of infection term now
becomes

B(r, 1) = S(r, t)C(r)Jﬂ r B(r. 7. ryp(r, ', 0y g g

T(r', 1
If B is independent of 7, we can integrate f(r’, T, ) Oover T to get

I(r', o
T(r', 1)

where we write I(r',t) for [jI(r’, T, t)dr. This is the form of the force of
infection term used by BCC,

In combining the special cases (I}-(II)—(III} with (IV)—(V)-(VI}, we need to
avoid conflicting situations. In particular, we cannot have both (I) and (IV) or
(VI) holding, and we cannot have (II) and (V) or (VI) holding. However, we can
have (I) and (V), and (II) and (IV), holding. There are strong conditions placed
on p in (I) or (II) by the additional hypotheses (V) or (IV). For (I) and (V). we
get p= p{a, r'), and using condition (iii) we must have o= p(r’) only. One
solution for p is then

B(r.0) = S(r. 000 Btr, rYptr. r) ar,

C(r aYT(r',a’, t)da’
- f }

p(r')

ffCr ayT(r', ',I)dr’da'-

Conditions (i1) and (i) are then automatically satisfied. The force of infection
term becomes

S(r,a, YC(r, a)

() +(V): Bir,a.i)=

x

jJ' C(r',a )T(r',a’, t)ydr', da
V)

Pt JJJ Blroa, T, r, aYC(r',aM(r, a', t,1Ydr’, da'dr.
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Similarly, from (I1) + (IV) we get p = p(a’) only. and one solution for p then is

f C(r',aYT(r',a’, t)dr
1]

pla’)=— |
JJ Clr', a)YT(r',a',t)dr’, da’

with force of infection term

S(r. a, t)C(r, a)

(ID+(V): B{r,a t)=—
Jj C(r',aT(r' a', r}ydr' da’

0

x ”’f Blr,a, t,r',aYC(r',aM{(r',a’, v, t)dr' da’ drz,
0
which is identical to that obtained for (1) + (V).

4. General form of the interaction term

In the previous section, several special forms of the interaction term p were
derived on the basis of constitutive assumptions concerning the pair formation
mechanism. Here we pursue another path and examine the mathematicai
implications of the conditions (i)—(iv) on p. We will derive the general form of p
and, in the process, also show that the particular forms of p that we discussed in
the previous section enjoy certain special mathematical properties. The relations
that we derive for p will allow us to construct a variety of different mixing/pairing
functions without having to return to the basic axioms (i)—(iv).

Recall that one solution of (i)—(iv) is given by the total proportionate-mixing
pairing function p = p, where. for (r,a.r',a) ¢ =,

plroa, r',a'. t)=— Clr’, a7, @ 1) (5)
Jj Clu, \)T(u, v, t)ydu dv

n

Since the expression C(r, a)T(r, a, t) will appear often in our computations. and
since it can be treated as a parameter only. we use the simpiified notation

fir,ay=C(r,a)T(r.a. 1), (6)

where the variable ¢ is suppressed in f for notational convenience. Thus. from (5),
_ ., r',a’)

plr.a, r',a')y=— /1 (7)

[ff(u. v)dudv'
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A useful reiation, which is obtained by integrating (ii1) over the variables r' and
a' and using condition (i), is

Clr,a)T(r,a,t)= ff p(r',a’,r.a)C(r',ayT(r', a’', 1)dr' da’, (8)

which we can also write as

x

fra)=[[ ot arayr @y o, da (©)

A mixing function p is called separable if it can be written in the form
p(r,a.r'.a’)=pdr a}psr', a’). (10)

The total proportionate mixing function p is separable, and our first result shows
that there are no other separable mixing/pairing functions. Although the proof of
this resuit has appeared in Busenberg & Castillo-Chavez (1989) it is repeated
here, as proportionate mixing plays a fundamental role in our analysis.

THEOREM 4.1  The only separable mixing function p satisfying conditions (i)—(iv)
is the total proportionate mixing function p given by (5).

Proof. Suppose that p is given by (10). Then, from (ii). outside the set Z, we
have

1
p(r, a) =— =k (a constant),

Jf p-(r'. a’Ydr', da’
)

and therefore p(r, a, r', a’) = kp,(r', a’). Substituting this in (9), we obtain

flr, a) = kpar, a)erf(r', a')dr' da’,

Hence.

that is. p =p. Since we have already shown that p satisfies (i)—(ii)~(iii) (and,

incidentally, it vacuously satisfies (iv)), the proof is complete. O
The next lemma will help in the construction of general mixing function p.
LEMMA 4.2 The general solution p of (i)-(ii)—{iii) has the form

plroa. r'.aY=p(r'. a’yY+ ywlr.a. r', a'), {11)
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where 1y satisfies
Y= —p, J'f y(r.a, r',a’)ydr da’ =0, IJ w(r',a' r.a)f(r', a’)ydr' da’ =0,
{} i}
wir.a, r',a')f(r,a)=w(r'. a’ . r.a)(r. a).
(12)

Proof. These properties of y follow easily by substituting the form (11) into (i),
(i), (iii), and (7), and using the fact that both p and /5 must satisty these
relations. O

The next result gives us a general representation formula for the mixing
function p.

THEOREM 4.3 Ler ¢(r,a, r',a’)=0 be symmetric in the (r, @) and (r',a’)
variables, ¢(r,a, r',a’)=¢(r'.a’ r.a), and le jxf pir'.a’yp(r,a . r'.a’)
dr'da’ = 1. Then '

plroa, r',a’)y=p(r', a)plr,a, r'. a’) (13

is @ mixing function. Conversely, every mixing function p is given by the form
(13), where ¢ is symmetric and satisfies the hypotheses of the theorem.

Proof. Suppose that ¢ satisfies the hypotheses and p is given by (13). Then it is
clear that p =0, so (i) holds. Also (ii) holds automaticaily. Finally.

plr,a, r',a )f(r.,a)=p(r', a’)p(r,a, r', a}f(r a)

= B(r' a)(r a. r', a)plr, a)”f(r. a) dr da

=p(r,a)p{r',a’,r a)p(r, a')fjf(r, a)drda

=p(r',a’,r,a)ff(r.a},
so (1i1) helds.

Conversely, let p be an arbitrary mixing function and let
0O fp(r,a)=20,
¢(r,a,r’.a'):{ l P(”‘ a)_ | '
plroa. r',a'}/p(r'.a’)y otherwise.
Note that p(r, a.r’,a’) vanishes outside the support of f(r, a)f(r'.a’) by
property (IV); hence, it vanishes where p(r’, a’) = (. Then, by (iii),

p(r.a, r',a'){r,a)y=p(r',aYplr.a r' a ) (r.a)=p(r,a.r. a)f(r',a’)
=plr.ayplr . a’ . roalf(r.a.



16 STAVROS BUSENBERG AND CARLOS CASTILLO-CHAVEZ

Hence, ¢(r.a, r',a')=o(r' a', r a) since p(r', a’Mf(r, a)= p(r, a)f(r'.a’).
Thus ¢ must be symmetric. Clearly, ¢ =0 by (i}, and, outside =,

f[ @¢(roa. r',aYp(r' a’)dr'. da' =jj plr.a. r. a’Ydr' da' = 1.
[H [

This completes the proof. [

Thus, in the construction of mixing functions, we seek to find non-negative
symmetric functions which satisfy the integral condition in the hypotheses of the
theorem. These symmetric functions are arbitrary except for this integrai
condition. Since we already have found several special forms for the mixing
function p, we might seek an explicit formula allowing us to construct arbitrary
mixing functions as perturbations of particularly convenient special forms. We
will proceed to give such a representation. We start by noting that condition (iii)
on p can be written as

plroa, r',a)p(r,a)=p(r', a', r, a)p(r', a’).
Letting suppp = {(r,a)eR%: p(r,a) >0}, we note that, for all (r',a"),
p(ri,a', r,a)p(r',a’)=0 if (r,a)¢suppp and p(r, a, r', a')p(r, a)=0 for all
(r,a) when (r’, a’) ¢ supp p. Thus, supp p = {(r, a, r’, aYeRL:p(r.a,r,a)>
0} and the set
U={(r,a, t',aY:(r a)e supp p and (r', a') ¢ supp p;

or(r, a)¢supp p and (r', a') ¢ supp p)

satisfy
suppp Nl =

However, in the context of our model, p can be assigned arbitrary non-negative
values on the set I = {(r, q, r’, a’):(r,a)¢supppand (r',a’) ¢ supp g}, since
the activity level f = cT is zero on S. Thus, we can normalize p. without loss of
generality, by requiring the following condition in addition to (1), (ii}, and (iii):
(1v) supppc{(r,a,r',a’}y:(r,a)esupp p and (r', a’) € supp g} = 4.

Clearly, from (iv), p(r,a,r',a’)=0 if either p(r,a)=0 or p(r,a’)=0.
Henceforth, our mixing functions will satisfy (i)-(iv). These observations,
together with the additional condition (iv), gives a useful representation formula
for any mixing function p.

THEOREM 4.4 Let ¢ :RL—R be measurable and jointly symmerric, i.e.
@(r.a,r',a'y=@(r',a’, r, a), and suppose that

J‘f p(r',ayp(r.a, r',a)dr' da’' <1,
0

and

”p(r, a)(”p(r'. aVir.a.r' a')dr' da’' ) drda < 1.
[} ‘ o]
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Let

ac

p(r,a)=1- ff p(r',aYp(r,a, r',a’)dr' da’. (14)

Then
pi(r,a)p,(r', a’)

f f p(r',a p(r’',a')dr da’
0 70

plr,a, r',a’)y=p(r', a’) +@lr,a, r',a’)} (15)

is @ mixing function. Conversely, for every mixing function p, there exists a ¢ that
satisfies the hypotheses of the theorem such that p is given by (15) with p, defined
by (14).

Proof. Let ¢ satisfy the hypotheses of the theorem and define p, via (14). From
(14), we get

fj p(r',a Yp\(r,a)drda=1- fj p(r, a)fJ' p(r',aYo(r,a, r,a)dr da’ >0,

0 0 0
and p as given by (15} is well defined. The assumptions on ¢ and equation (13)
imply that p,(r, @) >0 and thus that the mixing function p as given by (15) is
greater than or equal to 0. Further, p(r, a, 7', a') =0 whenever p(r',a’)=0, so
p(r,a, r',a’)/p(r',a’) is well defined on the support of p and is jointly
symmetric. Thus p satisfies conditions (iii} and (iv}. Finally, from (14) and (15), p
satisfies condition (ii), and hence it is a mixing function.

In order to prove the converse, we first note that condition (iv) implies that
p(r,a, r',a’)/p(r',a’') is well defined and non-negative. Hence, conditions (i)
and (ii) guarantee the existence of an £(r, a) > 0 and a subset @ of R of positive
measure such that p/p > g(r, a) on Q. Further, since p(r, a, r', a’)/p(r',a’) =
p(r',a’, r,a)/p(r,a) in & by (ii)-(iv), then p(r', a’, r, a)/p(r,a) > e(r, a) in
subset Q. Hence the set O is symmetric in (r, a) and (7', 2’'). We now let

Q = {(I’, a) . (r,,a, r’, a’) € Q for some (?"l, ar)e Ri},

and let x5 denote the characteristic function of this set. Define

oa(r, a) = exa(r, a)ff xolu, v)plu, v) du dv,

pilr', a’)y=¢exs(r, a’)”' xolu, v)plu. v) du du,

where ¢, based on the above discussion, can be chosen independently of (r, a)
and (r', a’). Then p, =0 is measurable and

pi(r, a)pa(r’, a’)

=gxplr. a)xo(r'. a'),

fj plr, a)p,{r, a)dr da
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which is symmetric in (r, @) and (r’, a’). If we now let
p(f‘, a, r',a') p](rva)pl(r'aa’) p(r' a, r,’a,)

p{(r,a) [ plr,a’)
ff plr.a)o,(r, a)dr da
3

¢(r,a r',a’)=

pilr.a)p(r',a’)

»

f] p(r,a)p(r, a)dr da

then ¢ is symmetric in (r, a} and (r', @'}, thatis, ¢(r, a, r',a’)=@(r', a', r, a),
and (14) hoids. Finaily, from (14), we get

J:)f plr, a}(jnf p(r', ae(r, a, r', a')dr’ da’) dr di
=1 ‘ff p(r.a)p,(r, a)drda <1,

and the proof is complete. O

One especially interesting class of mixing functions comes from the choice
¢(r,a,r',a'y=a¢p(r—a,r —a’), where ¢ is even in both variables jointly,
a >0, and

If plr',aYp(r—r',a—a’)dr da’ <.
[}
Then (15) yields a mixing function, provided that

0<[l~-ap*¢(r,a)l{l —ap+o(r', a)ap(r—r,a—a’)

X (1 —affff plr,a)p(r', aYp(r—r',a—a’)drda dr'da’), (16)

where

x

f’*(l’(?‘vﬂ)=jjﬁ(f’,a')¢(r—r',a—a')dr’da'. (17)
1)
This condition is satisfied whenever
l—ap*¢(r,a)>0, (18)

since a¢ =0 and (17) implies that the last term in (16) is positive. These
observations yield the following coroilary which is the age-structured version of
the neighbourhood mixing funcuon of BCC.
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CorOLLARY 4.5 Let ¢=0, ¢:R*—=R. be jointly even, ie ¢(r.a)=
¢(—r, ~a), and suppose that, for some « >0,

aff pir'yaYo(r—r',a—a'ydrda' <1 forrue|0,=). (19)
4]

Then

p(rar,a)=p(r, a)| =L DO @) e a-ay) 0)

- ff 2(r,a)p(r, a)dr da

0

is a mixing function, where
pir,ay=1—a JI plr',a’ Yp(r—r’',a—a’)dr da'.
0

Theorems 4.3 and 4.4 and Corollary 4.5 can be used to construct mixing
functions of varying degrees of compiexity. We shail give examples of such
functions in the next section.

Theorem 4.1 gave a mathematical characterization of the total proportionate
mixing function appearing in case (III) of Table 1. There are similar characteriza-
tions of the other cases in that table. For example, the mixing function in case
(11}, proportionate activity mixing has the form

plr.a,r',a')=p(r a a)p(r, a’), (21)
and p is independent of the variable r’. Conversely, if we assume that

p(r, a, r"a'):p!(rl ava')Pz("'ra')’ (22)

then from (9) we obtain

fr. @) =patr,a) [ [ i @', @)f (), @) dr' da” = patr, a)g(@).
[¢]
Using this in {(22), we get

pilr. a, a’)

p(r.a, r',a’)= 2 (@)

f(r, a),

which implies that p is of the form given by (21}, where

=

fff(u, v) du dv.

V]

pur.a, a’)

pr.a, a’)= 2(@)

Thus the proportionate activity mixing term (21) is the unique mixing term with
the separability property given in (22). Here uniqueness is modulo regrouping of
terms in the product in (22) and the cancellation of common factors. Similar
characterizations hold for the other cases given in Tables la and 1b.
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The results in this section can be specialized to the case where there is no age
structure in the population. In this simpler setting, they yield new results
concerning the mixing function p(r, r’) studied by BCC. We give here two of
these results that allow for the easier construction of mixing functions in this

simpler setting that follows from assuming no age dependence in Theorems 4.3
and 4.4.

CoroLLarY 4.6 p(r, r') is a mixing function if and only if there exists a symmetric
functon ¢(r, r')y =<0 such that

f plrg(r, rydr =1,
]
and
pr.r'y=p(r)e(r, r'). (23)

CoroLLaRY 4.7 Let ¢ :R3— R, be measurable and symmetric, and suppose
that

f plir)gl(r, r'Ydr =1 and f [)(r')J' plryel(r, r'Ydr dr=1.

t) 1} i

Letting

=

pn=1-[ petr ryar, (24)

{}

we find that

p(r, r') = p(r) a(r)pr’) + @(r, r) (25)

| ptrpstr) ar

is a mixing function. Conversely, for every mixing function p, there exists ¢
satisfying the above hypothesis such that p is given by (25), with p, defined by
(24).

5. Age- and risk-based model with variable infectivity: disease transmission in a single
population

We now use some of the above observations to formulate the simplest single
population model of the § — / type where there is no recovery from the disease.
Since one of our main goals is to model the transmission of HIV, we begin with
the more general model as dictated by the transfer diagram §--»/7-- A4, with A
denoting those individuals with severe symptoms or with full-blown AIDS. In this
section, we deal with a dynamic model of the transmission of HIV/AIDS in a
single sexually-active homosexual male population. More general models. espe-
cially two-sex models, will be treated in the near future (see Section 6). We base
our model on the following assumptions.

» There is a possibly varying recruitment rate A into the population.

* The population does not reproduce itself via birth.

» The population internal variables are a = chronological age. t = infection age
(for the [ and A groups). and r = activity level,
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With these assumptions. we obtain the following set of equations for S(r.a. 1),
I(r,a, 1,t), and A(r, a, 1. t) describing the disease dynamics:

§§ + 3_3 + u{a)S = A(r, a.t, T(a, r, ) — B(r,a, 1), (26)
3t  OJa
gl a3l 3l
e — E =), 27
= 3ttt [u(a) + 5(a, 1) + y(a, D (27)
A JA JA

e el = I,
5 + I + P + [u(a) + n(a, 1)]A = y(a, 1) (28)

where
$(r,0,0)=1(r,0, 7, )=A(r,0, 7, 1)=0, I(r,a,0,0)=B(r.a ). (29)

Here & and n denote the disease-induced mortalities, and y is the rate of entry
into the AIDS class. The other parameters are as previously defined. and
(t,a, t)e R

For this model, we have obtained a general expression which characterizes the
basic reproductive number R, of the disease. The basic reproductive number is
defined as the number of secondary infections generated by a ‘typical’ infectious
individual in a population of susceptibles (for a recent discussion, see Diekmann
et al., 1990). The basic reproductive number determines whether or not a disease
can invade, and is therefore of utmost epidemiological importance. For arbitrary
mixing functions, we cannot determine an explicit expression for R, and,
therefore we provide only an implicit expression as described in the following
discussion.

If I=A =10, then we obtain the disease-free state (S5, 0, 0), where § satisfies

as as
— +—+ua)s = Alr, a, t). (30)
gt Ga
If A is time independent, then A(r, a, t) = A(r, a), and we obtain the steady-state
disease-free solution § which satisfies

Z—f+ u(a)S = A(r, a), (31

and consequently,

o

S(r. a) =f

0

exp (- j uly) dy) A, x) d (32)

We want to investigate the stability of § and how it is affected by the choice of
mixing function p. For simplicity, we assume that C is not dependent on the
population size; however, much of the analysis that follows extends directly to the
case where C does depend on the population size. We note that equation (28) is
decoupled from the first two, so we need only to study the system for S and /
(equations {26)-(27)). At an endemic equilibrium (S*(r, a), I*(r. a. T)). the
incidence rate is given by B*(r.ajy=k*(r.a, p*)C(r,a)S*(r.a). where p*
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denotes the mixing at equilibrium (i.e. evaluated at (§*, /*)} and
k*(r, a,p*)=fj( B(r,a. T, a’YFk*, r, a,r’,a')dr) dr'da’, (33)
4]
v]

where F = F(k*, r,a,r’, a') denotes a nonlinear functional which depends on
the particular mixing function p*. Specifically. we have

p*(r.a. r',a)M*(r',a’, 1)

‘_(‘)T"—(k*, r, a, r,‘ar)= = ' (34)
S*(r', a’) +f *(r',a', t)dr
y]
The equations for $*(r, a) and [*(r, a, ) are
S’t
” +u(a)s* = A(r, a)y—k*(r, a, p*)C(r, a)S*, (35)
oI+ ar .
i + 5T +{u(a) + ela, 1) + yla, O)|I* =0, (36)
I*(r,a, 0)y=k*(r,a. p*)C(r, a)S*(r, a). (37)
Equation (35) has the sotution
s, @)= [ exp (= [ 1) + K2y, 000CE M O] A D) b, G8)
0 x

which can now be substituted in equation (36) to yvield a simple linear first-order
partial differential equation for /* which can be integrated along characteristics to

yield
0, ifa<rt,
k*(r.a—1, p*)Clr.a—1)8%(r.a — 1)

I*(r,a 1)= Xexp(—[r[#(a+a_r)+£(a+o_T' o)y+yla+o~-r, o]da)
- Jo

if a>r,

(39)
where $*(r, a) is given by (38). We now substitute the expressions for $* and /*
in (33), and note that the form of the nonlinear functional ¥ depends on the
particular mixing function p* used in (33), but that it aiways has the property that

FO,roa, r,a)=0 (40)

Equation (33) determines the threshold for the existence of an endemic
equilibrium solution. First, k(r, a, p*)}=0 is always a solution of (33) and this
corresponds to the disease-free state. Any other non-negative soiution of (33)
corresponds to an endemic equilibrium. To gain further understanding of the role
of the mixing function in the determination of endemic equilibria, it may be of
value to study equation (33) for very specific mixing functions. This is particularly
relevant as the recent results of Huang (1989), Huang er a/. (1991), and
Castillo-Chavez er al. (1989c. d) have shown that the existence of multiple endemic
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equilibria may be due to the combined effects of variable population size and
nonsymmetric mixing functions. In the following subsection we compute the
threshold for the total proportionate mixing case.

3.1 Threshold for the Total Proportionate Mixing Case
In the total proportionate mixing case, we have

(: I’ ] T ',a"[
plr.a, r',a’, 0y=p(r', a’', )=~ (. a)Tlr )

”C(u, ) T(u, v, 1) du dv

}]

which, when substituted in (33) and upon using (38), yields
k*(r, a, p*)
=HIJ' (J ﬁ(r, a, T, r" a’)C(r” a’)l*(rl' ﬂ’, T) dT) dr’ daa
g 4]
= ij C(r" a'){f [B(r‘ a, T, r', az)k*(rr’ ar -1, p*)C(r", a; _ r)
0 0

xexp(——f fua’+o-t)+ela+o—1,0)+yla"+o—r1, o)]do)
0

x fntexP (._f_r (6(3) + k(" y. pICE ) dy ) AGY, %) dx] dr} o da”

)
(41)
where

. -
ﬁ_ JC(r,a)

X {fﬂ exp (—J;a' (u(y) +k*(r', y, p*)C(r', y)] dy) A(r', x)dx

0

+f [k*("':a"‘f,,O*)C(r',a’wr)
()
x 4[, exp (—f [u(y) + k*(r', y, p*)C(r', )] dy) Alr', x)dx

X exp(—fr[,u(a' +o—t)+ela’ +o—1,0)+y(@ +o-1, 0)] do)] dr} dr’ da’.
(42)

The expression on the right-hand side of (41) is fairly complicated: however. it is
still possible to derive explicit conclusions from it. Clearly, k =0 is a solution of
(41)-(42), and yields the disease-free equilibrium. One case that can be
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completely analysed is when

Blra, t,r’, a’)=B(t,r', a").

that is, the probability of acquiring the disease, given that contact has occurred.
does not depend on the age or activity level of the susceptible. In this case. &* is
independent of r and a and can be factored out of the integrals to reduce (41) to

1=H fj C(r',a")
1]

X {fﬂ “:a _rexp (—k*Jj_tC(r’, y)dy — Jmﬂt,u(y)dy) A(r’, x)dx

1) ) X

X B(t, r',a"YC(r',a’ — 1) exp (wfr[u(a' +0-71)

+el@a+o-1,0)+y(a +0-1 0) do)] dr] dr' da’

=R(k*). (43)
From (43), it follows that, if R(0) = R,> 1, where

£

Ry = {” c(r, a')[fexp (—fa'p(y)d.v\) A(r"x)dx]df' da’}—l

x
0

X ff c(r, a’)“:' U:’_rexp (—f‘ ,u(y) d_v) Alr', x)dx B(r, r', a’YC(r', a’ — 1)

X exp (—fr[y(a’ to-T)+el@ +o0—1,0)+y(a +o-1, 0)] da)] dr} dr’ da’,
0
(44)

then there exists a & >0 satisfying (43) provided that C(r, a) is not identically
zero. Equation (44) provides an explicit expression for the endemic threshold or
basic reproductive number R,,.

The basic reproductive number allows us to study the effects of demographic
and epidemiological parameters in disease transmission. For example, since R,
is given by three types of risk- and age-dependent expressions — those involving
death-adjusted ‘recruitment’, those involving time spent in the infectious state
(appropriately weighted by infectivity), and those involving average sexual
activity — it follows that any uniform increase in these expressions (i.e. any
increase in the incubation period, in the mean number of sexual partners, or in
the recruitment of susceptibles) will generate an increase in the reproductive
number. However, a change in any of these parameters, which represents an
average increase over old age and activity classes, need not lead to an increase in
R,, and in fact may cause R, to decrease owing to the close coupling between
these epidemiological parameters and the age- and activitv-dependent de-
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mographic parameters. The results concerning uniform increases agree in
principle with those found for reproductive numbers for age-independent
homogeneously mixing models in which the reproductive number is given as the
product of three factors: the mean infectious period, the mean number of sexual
partners per unit time, and the average infectivity (see Anderson & May, 1987;
Busenberg & Castillo-Chavez, 1989). Also note that the reproductive number, in
models in which the mean number of sexual partners depends on the ‘recruit-
ment’ rate, is a nondecreasing function of this rate (see Busenberg et al., 1989;
Castillo-Chavez er al., 1989a, b, c; Thieme & Castillo-Chavez, 1989, 1991), but
the lack of an age and activity-level structure makes it impossible to use these
simpler age and activity-independent models in the fine tuning and testing of
specific control measures. The expression for Ry, given by equation (44), lets us
look at the effects of potential control measures that are targeted to individuals of
specific age and activity levels.

6. Conclusion

In this paper, we have extended the mixing framework of BCC through the
incorportation of age structure, and have found the general solution to the mixing
problem for a sexually active homosexual population. This general solution, as
well as a number of other results, are new even in the simpler context where
there is no age dependence. We have clarified the role of proportionate mixing by
showing that it is the only separable solution, and have formulated a general
epidemic model for a single age-dependent sexually active homosexual population
with distributed activity levels. An explicit expression for the reproductive
number for the special case of proportionate mixing has been determined.

Our results show that the reproductive number is a complex nonlinear function
of the mixing. Future clarification of the role of the mixing function on the
reproductive number may be accomplished by analysing models with specific
simple mixing functions (such as those specified in Section 3 or in BCC) and
convex linear combinations of them. Some preliminary work in this direction has
already begun (see Noild, 1980; Jacquez et al., 1988; BCC; Busenberg &
Castillo-Chavez 1989; Castillo-Chavez er al., 1989c; Gupta er al., 1989; Huang,
1989; Huang et al., 1991).

Andrea Pugliese remarks that our mixing framework can be easily generalized
to include geographical variability by assuming that each neighbourhood has its
own mixing function p/(r, a,r’,a’}), which now denotes the proportion of
contacts between ‘typical’ (r, a) individuals at neighbourhood j with ‘typical’
{(r’, a') individuals. Each of these ‘localized’ mixing functions satisfies the mixing
axioms and hence can be expressed through our representation theorem. In
addition, the spatial movement of individuals has to be specified with a migration
or movement matrix such as those found in the work of Sattenspiel (1987a, b) and
Sattenspiel & Simon (1988). This general framework may be very useful in
theoretical considerations; however, its applicability to specific situations is
probably extremely limited because of the tremendous number of parameters
involved.
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The extension of the above framework to two-sex populations is straightfor-
ward. We have already determined the general solution to the corresponding
two-sex framework (see Castillo-Chavez & Busenberg, 1991; Castillo-Chavez et
al., 1991). Our formulation of this two-sex framework (along the lines of the
one-sex framework described in this paper) provides an alternative formulation to
the problem of pairing (see Dietz & Hadeler, 1988). Models that consider pairs
and follow the dynamics of pairs have been studied by Kendall (1949),
Fredrickson (1971), Dietz & Hadeler (1988), Dietz (1988), Hadeler (1989a, b),
a.:d Waldstitter (1989). We have formulated analogous models that utilize
solutions of our two-sex framework. Our approach (one- and two-sex formula-
tions) has perhaps the added advantage that it allows direct comparison of the
dynamics of disease in models that follow pairs and those that do not (i.e. the
duration of each partnership is zero) through the use of equivalent pairing
(mixing) functions.

Several special solutions to the mixing/pair-formation problem have been
proposed (for a review of some of the literature, see Schwager et al., 1989;
Sattenspiel & Castillo-Chavez, 1990). In Blythe & Castillo-Chavez (1990a), a
table that shows the relationship between these particular solutions and the
general solution is provided; specifically formulae for the corresponding ¢'s are
provided. In Blythe & Castillo-Chavez (1990b), and Castillo-Chavez & Blythe
(1990), specific implementations of the general mixing solution in the context of

SIS models are provided.
In the framework presented in this article, we have assumed that all

subpopulations interact with each other, that is, that all groups are connected. In
Castillo-Chavez & Busenberg (1991), a generalization is provided for discon-
nected subpopulations (for the case of purely heterosexual populations). A
general formulation involving any connectance structure has been provided by
Blythe (1990).

Some recent work (Blythe & Castillo-Chavez, 1990; Castillo-Chavez &
Busenberg, 1991; Blythe er al., 1991a) has implemented the framework of this
paper in population genetics; investigated the connections between our mixing
framework and that of Kendall (1949), Fredrickson (1971), McFarland (1972},
and Dietz & Hadeler (1988); and has compared the results of stochastic
simulations with deterministic mixing functions. Finally, some work has begun on
the estimation of these mixing/pair-formation functions (see Blythe er al., 1991b).
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