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HOW MAY INFECTION-AGE-DEPENDENT INFECTIVITY
AFFECT THE DYNAMICS OF HIV/AIDS?*

HORST R. THIEME' anp CARLOS CASTILLO-CHAVEZ!

Abstract. Epidemiological and behavioral factors crucial to the dynamics of HIV/AIDS include
long and variable periods of infectiousness, variable infectivity, and the processes of pair formation
and dissolution. Most of the recent mathematical work on AIDS models has concentrated on the
effects of long periods of incubation and heterogeneous mixing in the transmission dynamics of HIV.
This paper explores the role of variable infectivity in combination with a variable incubation period
in the dynamics of HIV transmission in a homogeneously mixing population. The authors keep
track of an individual’s infection-age, that is, the time that has passed since infection, and assume
a nonlinear functional relationship between mean sexual activity and the size of the sexually active
population that saturates at high population sizes. The authors identify a basic reproductive number
Ho and show that the disease dies out if Rg < 1, whereas if Rg > 1 the disease persists in the
population, and the incidence rate converges to or oscillates around a uniquely determined nontrivial
equilibrium. Though conditions are found for the endemic equilibrium to be locally asymptotically
stable, undamped oscillations cannot be excluded in general and may occur in particular if the variable
infectivity is highly concentrated at certain parts of the incubation period. Whether undamped
oscillations can also occur for the reported one early peak and one late plateau of infectivity observed
in HIV-infected individuals must be a subject of future numerical investigations.

Key words. HIV, AIDS, variable infectivity, infection-age, class-age, population-size-depen-
dent contact rate, basic reproductive number, endemic equilibrium, disease-free equilibrium, dis-
ease persistence, stability change, undamped oscillations, characteristic equation, abstract differential
equation, Volterra integral equation

AMS subject classifications. 34G20, 35B40, 45D05, 92A15 -

Introduction. Most epidemiological models for the transmission of infectious
diseases have assumed that all infectious individuals are equally infectious during their
period of infectivity. This assumption has proved to be reasonable in the study of the

*dynamics of communicable diseases such as influenza (see [24], [25}, and references
therein), as well as in the study of sexually transmitted diseases such as gonorrhea
, (see [48], and references therein).

In their classical work. Kermack and McKendrick present and analyze both epi-
demic [60], [72] and endemic models {61}, [62] where the infectivity is allowed to depend
on infection-age (that is. the time that has passed since the moment of infection). The
Kermack and McKendrick model in this general form was largely neglected until the
1970s [52], (53], [79], (88].

The interest in the role played by variable infectivity in disease transmission
dynamics has been considerably increased by the HIV/AIDS epidemic. The early
infectivity experiments reported in Francis et al. [34] and the measurements of HIV
antigen and antibody titers [63}, [77], [80] have supported the possibility of an early
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1448 HORST R. THIEME AND CARLOS CASTILLO-CHAVEZ

infectivity peak (a few weeks after exposure) and a late infectivity plateau (one year
or so before the onset of “full-blown” AIDS) for HIV-infected individuals. Presently,
we cannot necessarily identify virus titers and infectivity levels, and we must be aware
that alternative patterns of HIV infection have been found [58], [43]. Nevertheless,
these findings are reason enough to study the possible effects of variable infectivity on
the transmission dynamics of HIV/AIDS. '

In this paper, we pursue the question of whether variable infectivity can cause
undamped oscillations in AIDS incidence. This possibility is important for the in-
terpretation of incidence data, namely, whether a decline in disease incidence can be
attributed to effective behavioral changes and preventive measures, or may be partially
due to an oscillatory behavior inherent in the disease dynamics.

Early analyses of models without variable infectivity (see [20]-[23]) have shown
that long and variable incubation periods (time from infection to appearance of symp-
toms) of HIV-infection cannot excite oscillations on their own (at least not by a Hopf
bifurcation). Numerical simulations of models that incorporate variable infectivity (see,
(1], (8], [38], [56], [57], [69]) demonstrate that the initial (transient) dynamics are very
sensitive to the shape and timing of the first infectivity peak, but that the long-time
dynamics show the same qualitative behavior (even in the presence of heterogeneity
in sexual behavior): a steady approach to an endemic equilibrium.

The model in this paper extends the model of Castillo-Chavez et al. [21] by incor-
porating infection-age-dependent infectivity to study analytically whether convergence
to the endemic equilibrium is a general feature or whether undamped oscillations can
occur under specific circumstances. Qur approach to variable infectivity is different
from the one by Simon and Jacquez [83], who assume that an infected individual
passes through several discrete stages of the disease with different infectivity. Among
other things, they give sufficient conditions for the endemic equilibrium to be globally
asymptotically stable. As we point out at the end of §3, these conditions do not apply
to our model.

Various mechanisms have been found to cause undamped oscillations in time-
autonomous endemic models (see [45] and [46], for surveys). One of the most com-
monly found reasons is return of infectives into the susceptible class with or without
having spent a period of temporary immunity. Anderson et al. [2] have found sus-
tained oscillations in a fox rabies model that were generated by the combined effects
of a rapid turnover of the fox population and the relatively long latency period and
the high fatality of fox rabies. Models showing similar phenomena have been con-
sidered by Brauer [10j-[12] and Pugliese [78]. Liu et al. [65], [66] have shown in
their work on influenza that generalized nonlinear incidence rates can also generate
sustained oscillations. The work by Chastillo-Chavez et al. [25], [26] and Andreasen
(5], [6] on influenza strongly suggests that the interaction between related multiple
viral strains of influenza type A, the host immune system (cross-immunity), and age-
dependent host mortality are needed to generate sustained oscillations. Diekmann
and Kretzschmar [27] find periodic oscillations for the spread of an infectious disease
in a population that would grow in the absence of the disease. Their model combines
reduced fertility of infective individuals with pair formation. Endemic models that
explicitly incorporate infection-age have so far exhibited sustained oscillations only
when infective individuals are allowed to return to the susceptible class; it depends on
the form of the infection-age-dependent infectivity curve and the distribution of the
length of the immunity period whether or not undamped oscillations actually occur
(see [28], [29], 135], [36], and [47]).

All these mechanisms that are found to generate sustained oscillations do not
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operate in the case of HIV dynamics. Most of the models described above (the rabies
model and the models considered by Brauer, Pugliese, and Diekmann and Kretzschmar
are the exceptions) assume that the disease is essentially nonfatal and does not reduce
fertility and that the population size is constant; assumptions that are not realistic
in HIV modeling. Even if we assume a constant recruitment rate into the sexually
active population (as we do), the population size will vary with time due to the disease
fatalities. This makes it necessary to model the functional relationship between the
per capita number of sexual contacts C = C(T) and the number of sexually active
individuals T'. For sexually transmitted diseases, it seems reasonable to assume a sat-
uration effect for partner acquisition, namely, that C(T) becomes largely independent
of T if the population size T is large.

In our model, the possible occurrence of undamped oscillations will depend mainly
on the interaction of the following epidemiological entities: the saturation of the func-
tional relationship C, the length distribution of the sexual activity period of exposed
individuals, and the distribution of infectivity over that period. Undamped oscilla-
tions (caused by an unstable endemic equilibrium) can be ruled out if the probability
that an infected individual is still sexually active is a convex function of infection-age
or if the infectivity is sufficiently evenly distributed over the activity period (as it is
already suggested by the findings of Castillo-Chavez et al. [20]-[23] or if C(T)/T is
close to a constant, i.e., there is not saturation in partner acquisition. Undamped
oscillations may occur if all the following conditions are satisfied simultaneously:

(i) The probability that an infected individual is still sexually active is suffi-
ciently far away from being a convex function of infection-age;

(i) There is sufficient saturation in partner acquisition, i.e., the number c(T)
of actual partners per capita is largely independent of slight changes in the number of
available partners T,

(i) The period of sexual activity is not too short for infected individuals in
relation to uninfected ones;

(iv) The fraction of infected individuals in the sexually active population is
neither too low nor too high;

(v) The infection-age-distributed infectivity is highly concentrated at specific
parts of the incubation period.

Conditions (1)-(iii) appear to be realistic for AIDS. Condition (v) is rather ex-
treme though several infectivity peaks are allowed (the timing of which must be inter-
related in a certain way that presumably is not consistent with reality). We emphasize
that this paper completely relies on analytical methods. Future numerical work must
show whether undamped oscillations also occur for infection-age distributions with an
early peak and a late plateau.

In other respects, we can show the sarhe phenomena as for the model by Castillo-
Chavez et al. [21] with constant infectivity. We can identify a basic reproductive
number Ry in terms of the model parameters such that, for Ro < 1, the disease dies
out and, for Ro > 1, persists in the population. (Similar results have been shown by
Simon and Jacquez [83] and by Lin, Hethcote, and van den Driessche [64] for their
models with several infectious stages.) If the basic reproductive number exceeds 1,
there is a unique endemic equilibrium that is locally asymptotically stable for Ry
slightly larger than 1, but that may lose stability if Ry increases.

The work of Castillo-Chavez et al. [22], [23], Huang [54], and Huang, Cooke, and
Castillo-Chavez {55] has shown that multiple endemic equilibria may exist in epidemic
models (of the type illustrated in this article) for heterogeneously mixing populations,
even if the infectivity does not depend on infection-age.
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The paper is organized as follows: §1 introduces our model with infection-age-
dependent infectivity; §2 discusses the existence of endemic stationary states (in re-
lation to the basic reproductive number); §3 relates the basic reproductive number
to disease extinction or persistence; §4 presents the epidemiological content of our
stability results; §5 discusses the significance of our results and projects future work.
Longer proofs appear in an appendix. The proofs of §3 can be found in Appendix
A.1, whereas the proofs of the stability results in §4 are contained in Appendices A.2
and A.3. The examples in §4 are discussed in their mathematical aspects in Appendix
A.4. Most of the results of this paper were stated, without proofs and not completely
correct, in [87].

1. A model with infection-age-dependent infectivity. The transmission
dynamics of HIV in a homogeneously mixing, male homosexual population is modeled
through the incorporation of the following ingredients:

e A nonlinear functional relationship between mean sexual per capita activity and
the size of the sexually active population T. We assume that it increases linearly

for small population sizes while saturating for large values of T'.

e A stratification of the infected part of the sexually active population according
to infection-age, i.e., time since the moment of being infected.

e An infection-age-dependent rate of leaving the sexually active part of the popu-
lation by force of the disease.

e An infection-age-dependent infectivity. .

The model considered in this paper shares the first three features with the models
considered by Castillo-Chavez et al. [20]-[23], though the stratification according to
infection-age is not explicit there. The key modification, infection-age-dependent in-
fectivity, has been added to study its effect in combination with the other mechanisms.
The model does not include heterogeneities other than infection-age-dependent infec-
tivity. By restricting itself to the homosexual part of a population that is replenished
by constant recruitment, it does not reflect the joint effects of HIV dynamics and the
demographic dynamics of the population (see [69]-(71], [15}).

We divide the homosexually active population under consideration into three
groups: S (uninfected, but susceptible); I (HIV infected with hardly any symptoms};
and A (fully developed AIDS symptoms). A-individuals are assumed to have been
sexually inactivated by the disease. Individuals that are still sexually active (S and
I) are supposed to choose their partners at random (although the rate of partnership
change depends on the size of the active population T = S + I).

Furthermore, ¢t denotes time, whereas r denotes time since the moment of being
infected, i.e., infection-age. As a time unit, we choose the average length of the
period of sexual activity for healthy individuals. We assume that individuals are
recruited into the sexually active population at a constant rate A and that the length
of the sexually active period is exponentially distributed such that healthy individuals
become sexually inactive at a constant rate p. As we have chosen the average length
1/u of the activity period to be 1. u = 1. Infected individuals with infection-age 7
hecome sexually inactive by force of the disease (and enter the A class) at a rate a(T);
consequently, the proportion of those individuals that are still sexually active, given
that they were infected T time units ago, is given by

Pasi(7) = exp (—r - /0 a(p)dp) .
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We stratify the infected part of the population I according to age of infection
o
I(t) = / i(t, 7)dr,
0

where i(t, ) denotes the infection-age density at time ¢.

The proportion of sexually active infected individuals with infection-age T in the
age-interval (7, 7+ A7| is (i(¢, 7)/T(t))A7 with T = S+ being the size of the sexually
active population. We assume that a typical susceptible individual (under homoge-
neous mixing everybody is typical) contracts the disease from an infected partner with
age of infection 7 at a mean transmission rate A(r). Consequently, the per capita rate
at which susceptible individuals are infected at time ¢ (given that they have a sexual
contact at that time) is provided by W (¢)/T'(¢), where

Wit) = /000 A{T)i(t, 7)dr.

We assume that C' = C(T'), the mean number of sexual contacts that a typical
individual has per unit of time, is a function of the size of the sexually active population
T=5+1

Combining these considerations, we arrive at the following expression for the
incidence rate of infections (number of new cases of infection per unit of time) B:

B(t) = C(T(t))S(t)u?f(%%).

The complete dynamical model with infection-age-dependent infectivity can now
be formulated as

(1) —dES(t)=A—B(t)—S(t),

(2) (% + 58;) i(t,7) = ~(1 + a(r)i(t, 7).
3) i(6,0) = Bif) = SOOT(0) 3,
where

(4) T=1I+S5,

(5) I(t) = O°° i(t,7)dr,

6) W () =/0 A(PYilt, 7Y,

2 A =/O a(7)ilt.7)dr — vA(t),

where v denotes the rate at which an individua} with fully developed AIDS symptoms
dies from the disease.

In spite of the fact that the A equation—for the number of individuals with fully
developed AIDS symptoms (that are supposed to play no further role in the dynamics
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of the disease)—is not needed to make the model well-posed, we include it here because
it provides an entity that can be directly compared to data.

Note that, in contrast to earlier models by Anderson and May (3], Blythe and
Anderson [7], and Castillo-Chavez et al. (21], (221, this model does not assume that, at
the moment of infection, an individual is determined to follow either a severe or a mild
course of the disease. By assuming that [;° a(7)dr < oo, however, this model, albeit
by a different mechanism, can take into account the possibility that not all individuals
will develop “full-blown” AIDS.

Throughout this paper, we make the following mathematical assumptions: a(7) is
a nonnegative measurable function, A(7) is a nonnegative bounded measurable func-
tion of infection-age, and C(T) is a nondecreasing function of T. Furthermore, we
assume that C(T) is continuously differentiable and that C(T) > 0 whenever T > 0.

Later, we will also assume that

C(T)
M(T) = =
is a nonincreasing function of T'; i.e., C increases in a sublinear way that reflects a
saturation effect.

There are various ways of handling problems (1)-(6), each of which has its def-
inite advantages. We may deal with this system as an abstract ordinary differential
equation (see (85, §7]). This approach provides a dynamical system in terms of S
and i and is useful to prove instability of equilibria and persistence of solutions. The
same dynamical system can be obtained by integrating (2) along characteristic lines
(89]. Otherwise, we use integration along characteristic lines to reduce (1)~(6) to the
following system of integral equations:

(7} S=A-B=*=P + fi,
(8) I = B Pyi1 + fa,
(9) W =BxQ+fa
(10) B=SM{(S+I)W.
Here we have used the notation
(11) P,(r) =exp (—fo a(s)ds) .
(12) Q(7) = A(r)Pa+1(7),
(13) (B=P)t) = [ B(t=s)P(s)ds,
o
(14) fu(t) = (S(0) — Aye+,
_ [T _Pari(r)
(15) fa(t) = /t (0,7 - t)Pa-}-l(T — t)dT’
= Ooz' T - T m——————Pa+1(T) T
(16) fa(t) = /; (0, Y A( )PQH(T — t)d ,
: _om
(17) M(T) = =

Py and P,4 are defined in analogy to P.,. We easily observe that

(18) £t —0. t—oc. j=12.3
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Some of the expressions defined above have an intuitive biological interpretation.
For example, Pi(s) = e—* gives the proportion of healthy individuals that remain
sexually active s time units after having entered the active population. Fay1(7) can
be identified with the proportion of those infected individuals of infection-age 7 that
are still sexually active. Q(7) = A(7)Pa+1(7) in (12) can be interpreted as the effective
infectivity of an individual with infection-age 7. We assume that ¢ is of bounded
variation on [0, c0).

By substituting (10) into (7)-(9), we obtain a system of convolutional-type Volterra
integral equations for which a well-developed theory is available (see [74] or [37]). Al-
ternatively, we can substitute (7)-(9) into (10) and obtain a single integral equation,
which is not of the common Volterra type.

From (1) we realize that S(t) remains positive (nonnegative) if S(0) has the
corresponding property. It is then easily checked from the various equations that non-
negativity is preserved under the solution flow. Integrating (2) over 7 and combining
it with (1) and (4) yields the differential inequality

d
—_— < —_
(19) ZT <A T,

which provides us with the a priori estimate
(20) S),I(t) <T(t)=S5(t)+1I(t) <A+ (T(0)—A)et.
Note that, in the absence of the disease, we have

S(t) = T(t) — A, t — oo.

Using the theory in [89] or [85]. or applying standard fixed-point arguments to (7)-
(10), we easily show that the model is well-posed; i.e., there is a unique nonnegative
solution for nonnegative initial conditions. Furthermore, the mathematical theory
shows that the solutions depend continuously on the initial conditions and that the
functions S, I, W, B are continuous and satisfy the estimate given by inequality (20).

2. Stationary states and the basic reproductive number. In this section,
we concentrate on the study of the existence of stationary states, that is, equilibria or
time-independent solutions. These special solutions are important because they are
candidates for the asymptotic behavior of the disease dynamics. It will turn out that
there are only two equilibria: the infection-free state and the endemic state.

Until recently, it was common belief that most epidemic models had at most these
two equilibria. Earlier studies (see {48}, [25], [24], and references therein) supported
this conjecture even for heterogeneously mixing populations. Recent studies (see {22],
(23}, [54], and Huang, Cooke, and Castillo-Chavez [55]) have shown, however, that
multiple endemic equilibria exist.

The existence of endemic equilibria is usually intimately connected to the basic
reproductive number Rg, which can be determined in terms of the model parameters.
We show in this section that the disease-free state is the only equilibrium if Ry < 1.
In the next section, we show that, in this case, the disease becomes extinct. When
Ro > 1, there exists a unique endemic equilibrium (as we see in this section) that
is locally asymptotically stable, provided that Rg is slightly larger than 1, but that
may lose stability if Ry increases (see §4). Even if unstable, the endemic equilibrium
provides some information about the severity of the disease, as we illustrate in §3.

et Toe W T e
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1454 HORST R. THIEME AND CARLOS CASTILLO-CHAVEZ

So, it can serve as a starting point for the development and evaluation of control
measures—an approach that has been useful in the management of other diseases,
specifically of gonorrhea (see [48], and references therein).

Clearly, system (1)—(6) always has the disease-free equilibrium

(21) So=A, Ig=0, Woy=0, By=0, ip=0.

To determine the existence of an endemic equilibrium of (1)-(6), we must look for
solutions of the following nonlinear system of algebraic equations:

(22) S = A - B*,

(23) I* = BxP,1(0),

(24) W= = B~Q(0),

(25) B* = %C(T*)W*, T* = S§* + [*,

Equations (23) and (24) are obtained by integrating (2) for time-independent i and
substituting the result into (5) and (6), respectively. Alternatively, we can consider
time-independent solutions of the limiting equations (for ¢ — oc) associated with
(7)-(10). (Note (18).) In (23), (24), we have used the Laplace transform notation

(26) Qe = | ~ e~ Q(a)da,

(@) Pasile) = | ” e-2aPy .1 (a)da.

We substitute (24) into (25) and divide by B* (which is supposed to be positive, as
otherwise the equilibrium is not endemic) as follows:
S+ R

(28) L= ZC(T)Q),  Tr=5"+I-

It will be convenient to formulate the endemic equilibrium equation in terms of the
fraction of infected individuals

I*
(29) §= 77
Obviously,
S,
T« ‘

Furthermore, by (22), (23}, and (29),

1 1
Te=Svt[*=A-B 4+l =A-| —— 1| =A~ | ——— —1]&T~
(Pa+1(0) ) (Pa+1(0) )

We solve this equation for T as follows:
A
1 e
1+<pa-l(0) 1)5

e . .
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We substitute S*/7* = 1 — £ and (30) into {28). This results in the following refor-
mulation of (28) in terms of £:

A -

(31) 1 =(1-8§C Q(0).
1+ (ptig —1)¢€
Pa+l(0)
Alternatively, we can also consider
A - B - .

(32) C(A = B*(1 = Fot1(0)))Q(0),

L B B0

which we obtain from (28) by substituting T* = 5* + [* and (22), (23).

We realize from (31) that the existence of a unique endemic equilibrium is inti-
mately connected to the properties of C(T'). Since C(T') is a monotone nondecreasing
function of T and 1 > PQH(O), the right-hand side of (31) is strictly decreasing in
£ > 0 such that there is at most one solution £ > 0. For the same reason, we can
conclude that there is no solution £ > 0 if the right-hand side of (31} is smaller than
or equal to 1 for £ = 0. We note that the right-hand side of (31) is 0 if £ = 1. The
intermediate value theorem implies that there is a solution £,0 < £ < 1 of (31) if
the right-hand side of (31) is strictly larger than 1 for £ = 0. We conclude that the
right-hand side of (31}, evaluated for £ = 0, plays a crucial role for the existence of an
endemic equilibrium. Hence we define

(33) Ro = C (4)Q(0).

As we see from (33), Rp can epidemiologically be interpreted as the total average -

number of secondary cases an infective individual can produce if it is introduced into
the disease-free population (at its equilibrium size A). (Q(0) = fooo Q(7)d7 is the
total infectivity of an average infective individual.) Ry is called the basic reproductive
number of the disease.

Consequently, we have proved the following threshold result for the existence of
an endemic equilibrium.

THEOREM 1. If Ry < 1, there exists only the disease-free equilibrium. If Ry > 1,
there is a unique endemic equiltbrium.

3. Disease extinction or persistence? The basic reproductive number
once more. Theorem 1 is a static result that does not provide us with a relation
between basic reproductive number and the actual disease dynamics. It only gives us
information about the existence of a very special state in which the disease persists. In
this section, we relate the basic reproductive number to the extinction and persistence
of the disease.

Mathematically, we use both the model formulation as an abstract differential
equation and as a system of Volterra integral equations of convolution type. For
exploiting the second formulation, Fatou’s lemma will be an important tool. The
following notation will be useful. For a bounded real-valued function f defined on
[0, 20}, we set

foo = liminf f(¢), f> = limsup f{t).
t—oc t—oc
The following theorem connects the basic reproductive number to the extinction of
the disease.

— Lo A B e R - I A S Y
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THEOREM 2. Let Ry < 1. Then the disease-free equilibrium is globally attractive.
In particular, we have

B(t),V(t),W(t) =0, S(t)—A  for t— oo,

Proof. We use the model formulation (7)-(10). First, we apply Fatou’s lemma to
(10) and use estimate (20) and the assumption that C is nondecreasing, below:

B < C(A)Wee.
Next, we apply Fatou’s lemma to (9) as follows:
W < BeQ(0).

We substitute the second inequality into the first and use the definition of Rg in (33)
as follows:

Boe < RyBee.

As Rg < 1, B> must be 0; i.e., B(t) — 0,t — o0. The remaining parts of our assertion
now follow by applying Lebesgue’s theorem of dominated convergence to (7)}-(9).
For our model, it is not possible generally to obtain a global convergence result if
Rg > 1. The condition for global stability of the endemic equilibrium found by Simon
and Jacquez [83] does not apply to our model. Their model can mathematically be
considered a discretization of ours with respect to infection-age, and our model, in
turn, can be regarded as the limit of their model if the number of infectious stages m
goes to infinity and their rate k of transition from one to the next stage equals k = m«
with some strictly positive constant k. If k = m«, the global stability condition (50)
in [83] does not hold for m tending to infinity.
We can obtain some global information, however, provided that we make the
“following assumption:
c(T)

. M(T) = is a monotone nonincreasing function of 7T'.

This assumption is supposed to hold throughout the remainder of this paper.
THEOREM 3. Let Rg > 1. Then the folloutng holds:
(i) Boo € B, [0 < I;
(i1) Let Ala) be strictly positive on a nonempty open interval. Let ay < oo be
the smallest @ such that A(a) = 0 for almost all a > @ and assume that

/ I(0,a)da > 0.
0

Then
B> > B*, I > I~
In particular, there exist sequences s,,t; — 20,7 — 20 such that

Bis,) — B+, I{t,) — I, j — .

Although Theorem 3 does not state the global stability of the endemic equilibrium,
it at least guarantees that, infinitely often as time tends to infinity, the number of
infected individuals {t) gets arbitrarily close to its endemic equilibrium value. The

/o
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proof of Theorem 3 uses integral equation and comparison techniques and can be
found in Appendix A.1.

In particular, Theorem 3(ii) implies that, if the basic reproductive number strictly
exceeds 1, the disease does not die out, but persists in the population in a weak, but
uniform, sense insofar as lim SUpP; o [(t) > I* and the lower asymptotic bound I*
does not depend on the initial condition (with the exception of the requirement that
there are secondary cases). It does not settle the questions, however, whether I, the
total number of infected individuals, will be bounded away from zero (strong disease
persistence) if Ry > 1 and whether this bound is independent of the initial conditions
(uniform disease persistence). To address these questions, we switch from the Voliterra
integral formulation (7)-(10) to the abstract differential equation formulation (1)-(6),
the solutions of which induce a dynamical system (as follows from the theory developed
by Webb [89] and the theory developed by Thieme [85]). Using the persistence theory
that Hale and Waltman {42] elaborated for infinite-dimensional dynamical systems or
the persistence theory developed by Thieme [86], we can show (see Appendix Al)
that the disease persists in the population in the following strong (and even uniform)
sense.

THEOREM 4. Let Ma) be positive on a nonempty open interval. Furthermore, let
a+ be the smallest @ such that AMa) = 0 for almost all a 2 a and assume that

ay
f 1(0,a)da > 0.
0

Then, if Ry > 1,
litminff(t) >€>0

with € not depending on the initial conditions.
'The dynamical systems persistence theory does not give us information, however,
as to whether B and W are bounded away from zero, too.

4. Stability of the endemic equilibrium. The stability of the endemic equi-
librium is of epidemiological interest for at least two reasons: In the case of locally
asymptotic stability, in many instances, it is the ultimate state of the epidemic, though
only a global stability analysis would provide the definite answer to this question. In
our model, this is a definite possibility, as there is only one endemic equilibrium and
the disease-free equilibrium becomes a repeller as soon as the endemic equilibrium
comes into existence. On the other hand, if an endemic equilibrium is unique and
unstable, undamped oscillations of the disease dynamics around this equilibrium are
very likely (compare Theorem 3). )

Intuitively, local asymptotic stability means that once the course of the disease
comes close to the endemic equilibrium it remains close and finally approaches it.
The precise definition can be given most nicely in reference to the model formulation
(1)-(6).

DEFINITION. (a) The endemic equilibrium S*, I*, W=, B* i* of (1)-(6) with

(T} = B*Pst1(T)

is locally asymptotically stable if and only if the following two properties hold:
(i) For any € > 0, there is some ¢ > 0 such that

[S{0) — S| + /000 [2{0,a) —i*(a)lda < &

/"
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implies that

cC
|S(t) — S+| +/ li(t,a) —i*(a)lda < e forall ¢>0;
]
(ii) There exists 6 > 0 with the following property: If

1S(0) — 5+| + /:O I4(0, a) — i*(a)|da < &,

then o
|S(t) — S+ +/ li(t,a) —i*(a)[da — 0 fort — oo.
0

(b) The endemic equilibrium is called unstable if the following holds: There exists

a sequence of solutions $,, i, to (1)-(6) and a sequence of times t,, — oo and a positive
number ¢y > 0 such that

ISn(G)—S*|+f lin(0,a) —i*(a)jda — 0 for n — og,
0

but
[Sn(tn) — S*| +f lin(ta,a) —i*(a)lda >ep foralln e N.
a

The discussion of the stability and instability of the endemic equilibrium is fa-
cilitated by switching from the original parameters of the model to the following
nondimensional ones:

I~ I*

(34) E:'_“"T"': S*'f‘[*,

_TM/(T~)

(35) Y= M

I

36 = a—_—
( ) 7 Pa+1(0)

Note that £ gives the fraction of infected individuals in the sexually active population
and therefore is a dimensionless parameter satisfying 0 < £ < 1. Even though all
values of £ in the interval (0 < § < 1 are feasible (as we can see from (31) and
(33) by choosing Ry > 1 accordingly), not all of them may be realistic. Note that
/o =P,y (0) can be interpreted as the average length of the effective sexually active
period of infected individuals (relative to the average length of the sexually active
period of healthy individuals. our time unit). Hence it is intuitively clear, and follows
from the definition of P,., in (11), that ¢ > 1. The average duration of infection
has been estimated to be about ten years {see {69], [91], and references therein). If we
assume that the mean length of the sexually active period of healthy individuals lies
between 15 and 30 years. we obtain values of o in the interval [1.5, 3].
We observe that . i
T*A[(T) TC(T)

—_— ———————— T — *—-\-——

MT C(T+)

iz,
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is a dimensionless parameter, also. As M(T) = C(T)/T is nonincreasing and C is
nondecreasing. we have that 0 < v < 1. The following choices for C(T) may give us
a feeling for a reasonable range for ~.

4.1. Mass action type contact law. The classical epidemiological contact law
is C(T') = BT. This implies that M = const; hence v = 0.

This contact law is more appropriate for communicable diseases such as influenza,
(see [24] and [25]), but not for sexually transmitted diseases.

4.2. C = const. This may be a good approximation if the number of available
partners is large enough and everybody could make more contacts than is practically
feasible. In this case, v = 1.

4.3. Michaelis—Menten type contact law. The Michaelis—Menten type con-
tact law (or Holling functional response type 2) combines the two previous approaches
by assuming that, if the number of available partners T is low, the number of actual
per capita partners C(7') is proportional to T, whereas, if the number of available
partners is large, there is a saturation effect that makes the number of actual partners
constant. Specifically, it has the form

8T

¢(T) = 1+ «T

This law was first formulated by Michaelis and Menten (73] for enzyme-catalyzed
reactions. It was used by Monod [76] to describe the nutrient uptake by bacteria.
Later, Holling [51, p. 11] derived it to model the functional response of an invertebrate

predator to the available amount to prey. A similar derivation can be made relating

the number of sexual contacts to the number of available partners (compare [30] and
127)).

For the Michaelis-Menten contact law, we obtain from definition (35) that
KT
= 1+ T~

Consequently, v covers the whole range from 0 to 1 when T covers the range from 0
to co. From (30), we have that

S S
14+ (o —1)¢

such that any value of 7 between 0 and o<, lLe., any value of v between 0 and 1, is
possible (though not necessarily realistic) by choosing A accordingly.

4.4. Contact by formation of short-term pairs. The Michaelis-Menten
contact law neglects competition in partner acquisition. This is taken into account by
Heesterbeek and Metz [44], who model the formation of short-term pairs to derive a
contact function € of the form

20T

C(T) = .
) 1+ 20T + /1 + 46T

Definition (35) provides that

1+ (1+46T+)-1/2

= 267~ .
v 1+ 207 + (1 + 48T*)172

— - -
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As for the Michaelis~Menten contact law, we find that ~ covers the whole range from
0 to 1, as T* covers the range from 0 to oo,

In view of this discussion, we call 7 the saturetion indexr of the number of partners
at the endemic equilibrium. If Y = 0, there is no saturation at all because the number
of actual partners is proportional to the number of available partners. If v = 1, there
is complete saturation because the number of actual partners hardly changes if the
number of available partners does.

After introducing this terminology, we can formulate the following stability result.

THEOREM 5. The endemic equilibrium is locally asymptotically stable if one of
the follouning holds: )

(a) § is sufficiently close to O or to 1;

(b) & is sufficiently large;

(¢) v i3 sufficiently close to 0;

(d) A = const;

(€) Paty is conver.

Assumptions (d) and (e) are special cases of the considerably more general, but
very technical, condition (d) in Proposition 2 (Appendix A.3).

Apparently, the endemic equilibrium is locally asymptotically stable if the fraction
of infected individuals is either low or high, if the mean length of the sexually active
period of infected individuals is short compared with the length of the sexually active
period of susceptible individuals, or if the saturation index is low. Furthermore, we
have local stability if the infectivity is evenly distributed over the period of sexual
activity. Fo+1 may be convex, for example, if the length of the sexually active period
of infected individuals is exponentially distributed (particularly if the inactivation rate
@ is constant), but this is presumably not the case for AIDS.

The fact that constant infectivity implies the stability of the endemic equilibrium
has already been proved in [21]. In the model with variable infectivity, we can specify
how much the infectivity may deviate from its mean value without destroying the
stability of the endemic equilibrium. To this end, we first must introduce an appro-
priate mean infectivity. We recall that A(7) is actually the potential infectivity at
infection-age 7 because it does not come into effect if an individual has already retired
from sexual activity. Remember that Poi1(T) gives the proportion of individuals that
are still sexually active at time 7 after infection. We make it a probability density by

setting

_ Pa+1(T)
p(r) B Pa+l(0) .

Hence

:\:/0 A(T)p(T)dT

can be interpreted as the effective mean infectivity. Note that A = X if A is constant.
As a measure for the deviation from the effective mean infectivity, we introduce

/0 —-—-'/\(Tl_‘_ A’p(r}dr.

Note that this expression does not change if A is replaced by a constant multiple of

itself.
THEOREM 6. The endemic equilibrium s locally asymptotically stable if

/OO Mp(_r)dr < 1.
0 A

/.
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Theorems 5 and 6 list so many different sufficient conditions for the endemic
equilibrium to be locally asymptotically stable that we question whether the endemic
equilibrium can ever lose its local stability. Theorem 6, in particular, tells us that
stability loss may only occur if the infectivity distribution is sufficiently spiky. This
can indeed happen if the spikes are properly located.

THEOREM 7. Let 0 < ¥<1 and

1—~)+ / cos(sy) Pat1{s)ds < 0
@M+ [ cos(oy)Pann(s)

for some y > 0. Then there exists an infectivity distribution A with arbitrarily many
peaks such that the endemic equilibrium is unstable.

Remark. 1t is actually only the multiplicative combination Q@ of A and P,y in
(12) that is required to have a peaked distribution. The peaks are concentrated at
points of the form 0., Tm, Where 0 < 7y < 7 /2y must be chosen appropriately and
73 = To + 2k; /y with arbitrary numbers k; € N.

The condition in Theorem 7 concerning P, is easier to satisfy the closer yisto 1.
So, apparently, the saturation index has a destabilizing effect. The requirement that A
Is concentrated at certain parts of the incubation period, i.e., that the infectivity occurs
in peaks, emphasizes the Importance of an infection-age-dependent infectivity. The
remark shows that the endemic equilibrium can be unstable for infectivity distributions
with an early peak if the condition in Theorem 7 can be satisfied for large y. This

is the case for the following example of an inactivation rate o (see Appendix A.4 for
mathematical details):

(37) a(r) = {Pl, OSTSTm

with 0 < p; < P2, 7o > 0. p; can be interpreted as the rate at which infected
individuals stop sexual activity because they have tested HIV-positive, whereas the
larger rate po also IMcorporates inactivation by AIDS symptoms. 7, is the infection-
age at which symptoms start appearing. By (11}, the proportion P, (7) of infected
individuals that are still sexually active at infection age 7 is given by

_(1+p])‘r 0 < <
_ e ; >T 5 To,
(38) PQ+1(T) = {e_(l_’_pl)Toe—(1+;02)(1‘-70)1 T 2 To.

Hence, in view of Theorem 5(e), Paiy consists of tWo convex parts, but is not convex
itself. .

Ezample 1. Let the inactivation rate a be given by (37). If p, — /1 is sufficiently
large and 7,0 < v < 1, is sufficiently close to 1, then there exists an infectivity distri-

bution A with arbitrarily many peaks, including early peaks, such that the endemic
equilibrium is unstable.

The peaks of A(T) are concentrated at points of the form Ty .., Tm With
Te
O<m <« —2 I <s<2,
0 25 + 4n
2k,
T, = T + To. k, € N.
/ 0 s+2n'° /

where 7 € N must be chosen sufficiently large.

- ww



1462 HORST R. THIEME AND CARLOS CASTILLO-CHAVEZ

In this example, the time moments at which the infectivity is concentrated satisfy
some kind of resonance relation among each other and also to the time 7, after infection
at which symptoms start to appear. It is doubtful whether this mathematical relation
1s compatible with the biological relation between the time at which AIDS symptoms
occur for the first time and the time at which the second infectivity rise occurs.
Moreover, the empirical data suggest that the second infectivity rise has the form
of a plateau rather than of a peak. Though the multiplicative combination Q in
(12) of the infectivity distribution ) with the probability P, of being still sexually
active brings the plateau-like shape of A finally down again, the “effective infectivity”
@ is presumably too spread out to be of the form described in Theorem 7 and the
subsequent remark. .

To illustrate the possible effect of a physiologically sensible coupling between the
infectivity distribution and the inactivation rate, we consider the following example of
variable infectivity without a first peak, but with a late plateau. We assume that the

infectivity is zero until the moment where symptoms oceur and a positive constant
thereafter: see the example below:

| _fo, 0<r<m,
(39) /\(T) - {/\o, T > To.

It is suggestive that the moments where the Symptoms start to appear and the in-
fectivity rises are related in time because both effects are caused by the breakdown
of the immune system. The above choice, which identifies these two moments, is the
easiest way to mimic this relation. It is certainly an extreme idealization, but not
totally artificial. Note that the “effective infectivity” Q, the product of A and Paia,
has a rather sharp peak at =, if p2 is large. Nevertheless, the endemic equilibrium is
stable.

Ezample 2. Let o and X be given by (37) and (39). Then the endemic equilibrium
is locally asymptotically stable.

In a next step, we would like to combine a late infectivity plateau as described in
Example 2 with an early peak as in Example 1. If the early peak alone would destroy
the local stability, the combined distribution will have an unstable endemic equilibrium
as well, provided that the early peak dominates the late plateau. Conversely, if the
late plateau dominates the early peak, the endemic equilibrium will be stable. Further
(presumably numerical) investigations would clarify how much the early peak must
dominate the late piateau for instability to be possible.

5. Conclusions. Several mathematical studies of epidemic models have identi-
fied mechanisms that are both capable and incapable of generating sustained oscilla-
tions (see [46] and [45] for surveys), and as discussed in the Introduction of this paper,
most of these mechanisms are inadequate in the case of HIV.

In our model, the saturation of mean per capita sexual activity interacts with
an infection-age-dependent removal rate (from sexual activity by the disease) and an
infection-age-dependent infectivity. We have shown in this paper that the unique
endemic equilibrium can lose its stability (thus presumably generating sustained os-
cillations) by a rather unique combination of conditions (see the Introduction and
§4). The endemic equilibrium is locally asymptotically stable if any of the reasonable
conditions {i)-(iv) in the Introduction are not satisfied. Condition (v)—the infection-
age-distributed infectivity is highly concentrated at certain parts of the incubation
period—emphasizes the possible relevance of variable infectivity on the dynamics of
an HIV epidemic. Whereas the endemic equilibrium is locally asymptotically stable

/6.
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as long as the infectivity is sufficiently evenly distributed over the activity period
(Theorem 6), we have shown the possibility of sustained oscillations if the infectivity
distribution has sufficiently sharp peaks that are suitably situated. Example 1, in
84, suggests that the first peak can be early. Example 2 shows, however, that, if we
restrict to infectivity distributions with one late peak or one late plateau, the endemic
equilibrium may be stable if the peak (or plateau) is related to the inactivation rate
in an epidemiologically sensibie way. This leaves the stability question open for distri-
bution with one early peak and one late plateau when the late plateau is realistically
linked with the inactivation rate. Undamped oscillations may occur if the early peak
sufficiently dominates the late plateau, whereas the endemic equilibrium is stable if
the plateau is the dominating part.

Though these results show that the stability of the endemic state definitely cannot
be taken for granted, they allow the cautious conjecture that the endemic equilibrium
is locally asymptotically stable for realistic inactivation rates and infectivity distri-
butions. This conjecture is supported by the numerical simulations of models that
incorporate variable infectivity by Anderson and May [3}, Hyman and Stanley [56],
[57]. Blythe and Anderson (8], Anderson et al. [1lj, and Gupta and Anderson {38].
Our model ignores the fact that not only the infectivity, but also the timing of the
first infectivity peak and of the late infectivity plateau, may be highly variable. This
variability has the effect that, on the average, the early peak and the late plateau are
spread out; this presumably increases the odds that the endemic equilibrium is locally
stable.

Whereas the results in this paper completely rely on analytical techniques, we
plan to numerically clarify how much the early peak must dominate the late plateau
for undamped oscillations to occur. Qur stability criterion can be used to determine
numerically in which parameter range the endemic equilibrium is unstable. Although
simulations of the full model will be indispensable for showing whether the amplitudes
of the oscillations are large enough to be epidemiologically significant, we feel that they
need to be guided by the previous exploration of the critical parameter range.

The uncertainty of whether the endemic equilibrium is stable raises the question
of whether it should be discarded as some kind of measure of the severity of the
disease when unstable. It provides some information, however, because we show that
the number of infected individuals, for example, gets infinitely often arbitrarily close
to its endemic equilibrium value as time tends to infinity. Of course, it would be more
useful to know whether the time averages converge (as time tends to infinity) toward
the endemic equilibrium.

We remark that variable infectivity is just one of the important factors involved
in HIV dynamics. Other important factors are the following:

o Heterogeneity in sexual behavior and resistance to HIV infection (see [9], [13],
(14}, (18], (19], {26], [49], [50], [59], [75], [81], [84], [90], and references therein);

e Pair formation (particularly in heterosexual populations) (see [31], [32], {39],
and [41]).

The analytical study of a model that incorporates variable infectivity and hetero-
geneous mixing and/or pair formation looks like a formidable task (see [40]). However,
mathematical studies of submodels of this general model are central to the execution
of extensive numerical simulations of more detailed models.

We conclude with a not very optimistic view of the predictive value of mathe-
matical models for HIV transmission. The recent literature in HIV modeling reveals
a potentially very complex picture: multiple endemic equilibria and the possibility of
oscillations. This dvnamic behavior is not observed in less-detailed versions of these

[ 7
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models (see {20} and {21}), indicating that very aggregated versions of these models
may not be adequate. Unfortunately, detailed models require more data (most of
-which are available but not of sufficient quality). As (67], [68], have shown, these
demands put very severe limits on our ability to generate accurate predictions. The
theoretical value of these models is nevertheless very important.

Appendix A.l. Disease extinction or persistence. Proof of the results
in §3. In the proof of Theorem 3, we use the following inequality several times.
LEMMA. For0< 81 < 82,11 > I > 0,

SlM(S1 +Il) < SzM(Sz +I2).

Proof. As C is nondecreasing, we have

5:1C(51 + I) S52C(S2 + Ih) _
S + 1 < (A —SzM(Sz—i—Il).

S1M(S1 + Il) =

As M(T) = C(T)/T is nonincreasing, the assertion follows.
Proof of Theorem 3. (i) From (10) it holds that

S(t)C(S(t) + I(t))
B < limsup

e S+ T

By the lemma,
o < SFC(S% + L)

Wee,
- 5% + I

B
We apply Fatou'’s lemma to (9) as follows:
W < BQ(0).

We substitute this inequality into the previous one and divide by B>. Note that we
can assume 8°° to be strictly positive (otherwise, By, < B> = 0, and the proof would
be finished). It follows that

S C(S% + o) 4
(V) LS Q0.

We apply Fatou’s lemma to (7) and (8) and use (18) as follows:
§° SA=Bw, I 2 BooPat+1(0).

We now suppose that B > B* and derive a contradiction. First, by (22) and (23),
S < §* I > I*. By the lemma, we can substitute these inequalities into (V) as

follows: S*C(S* + I*) S*C(T*)
ey A i)

By (28), however. the right-hand side of this inequality is 1, a contradiction.
{ii) From the lemma, we have

(O) Uminf S()M(T(£)) 2 Soo M (Soe + I°).
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We apply Fatou's lemma to (7) and (8) and use (18) as follows:
Sw 2 A—B®,  [® < BoP,,(0)

We suppose that B> < B* and derive a contradiction. First, we obtain from the last
inequality and (22), (23) that

Sec > 8™, Joo <« I*,
By the lemma, we can substitute these inequalities into () and obtain
Iifﬂiﬂf SOM(T(t)) > S*M(S* + I*).
Hence we find 5§ > 0 and @ > S*M(S* + I*} such that
S(t+s)M(T(t+ s)) > 3, s> 5,t>0.

BJ; (28), A
BR(0) > 1.
From (10} and (9),

B(t+s)>p3 (-/:B(t + 5~ a)Q(a)da + /05 B(s - a)Q(a+t)da)

fort > 0,5 > 5. It follows from the assumption in Theorem 3(ii) that the initial
infectives produce secondary cases. Actually, we can show that there is some f such
that B(t) > 0 for ¢ > . Hence by choosing s large enough we can achieve that

g(t) = 5/8 B(s—a)Q{a+t)da >0 forsomet > 0.
0

We fix s and set u(t}) = B(t+s). This way we obtain the following renewal inequality
for u:

u(t) > 3 fo u(t — a)Q(a)da + g(¢)

with

BQRUOY>1, ¢g=0, g#0.

We now apply a standard comparison argument for Volterra integral equations. See
[37, p. 344] and the celebrated renewal theorem formulated by Sharpe and Lotka {82],
first rigorously proved by Feller {31]. (See [89, Thm. 4.10] for a proof and further
references.) This yields that u(t) and hence B(t) tend to infinity as t — oo, in
contradiction to our assumption that B> < B*.

Analogous statements for B can now be derived for S,I,W by using Fatou’s
iemma and the equilibrium equations.

Proof of Theorem 4. 1t follows from Webb [89) and Thieme (85] that the solutions
to system (1)~(6) induce a dynamical system to which we can apply Theorem 4.2 of
Hale and Waltman [42]. In checking the assumptions of this theorem, we use the ter-
minology by Hale and Waltman. Our state space X is given by elements (S, i), where
S is a nonnegative number and i a nonnegative integrable function on [0, a4 ), where
a+ is the number specified in our Theorem 3(ii). We choose the “boundary” X of

/9 .
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our state space to be formed by the elements of the form (S.0). In our case. the flow
on OX is extremely simple: All solutions in X converge to the state (A,0). This is
a much stronger property than assumption (iv) in Theorem 4.2. It follows from our
Theorem 3(ii} that I> > [*. This means in particular that the distance from 80X to
any solution starting outside X does not converge to 2ero. Thus assumption (4.2)
by Hale and Waltman is satisfed. From our estimate (20), we see that the dynam-
ical system induced by {1)-(6) has a bounded attractor: i.e.. it is point dissipative
(assumption (ii) in Theorem 4.2). From (20) we realize as well that the orbit of any
bounded set is bounded (assumption (iii) in Theorem 4.2). Assumption (i), where
the dvnamical system is asvmptotically smooth {i.e.. the trajectory of every forward
invariant bounded set is attracted by a compact set). can be proved in the same way
as Proposition 3.16 by Webb [89]. )

Appendix A.2. Stability of the endemic equilibrium via a characteris-
tic equation. Using results from the theory of evolution equations (abstract differ-
ential equations). specifically, Corollarv 1.3 and §7 in Thieme {85] or Theorem 4.13 in
Webb [89]. it is possible to approach the stability of the endemic equilibrium for the
infinite-dimensional svstem (1}-{6) In the same way as for a finite system of ordinary
differential equations. Hence we set )

§=8~—s. 1=1"+u ==y, W=W"+uw

and consider the variational equations for s.u.v.w related to (1)~(6). In other words.
we linearize {1)-(6) around the endemic equilibrium as follows:

d
{40) E?'S(t) = —u(t.0) — s(t},
(41 0 +i (t.a) = —(al 1 ‘
(41) pra wit.a) = —(ala) + Ljult. a).
(42) wit. 0y = s()AM(T=) W~ + (s + ISYM(T= )W~ + wS*M(T~),
where
(43) vit) :/ ul(t. alda.
n
(44) it = / Malult.a)da.
4]

To studv the stability of this linear svstem we look for solutions to (40)-{44) of the
exponential torm

(45} s(t) = ets. uit,a) = etula)

with a complex number z and 5 = U or u =
The endemic equilibrium will be locally asvinptotically stable. provided that. for
Al selutions of rhis form, the real part of = is strictlv negative. It will be unstable if
there 1s ot least one =siuch =olution with the veal parr of = being strictly positive.
Substirnring 450 inro 1400 CH vields

i 4t S0 = —at — o~

20
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17 zula) + %&(a) = —{afa) + 1)ula)l,
13) G(0) = 3V -M(T*) + (§ + O)S*AMH{T)W+ + wS*M(T).
19) 7 =/ i(a)da,
0
50) w = / Aa)u(a)da.
0

from (46) we obtain

_ﬁ(U)
1+2

*H

(51)
We solve (47) for @ and fit the result into (49) and (50) as follows:

52) = (0)Pas1(2).

(53) B = a(0)Q().

Note that @(0) must be different from zero because otherwise both § = 0.2 = 0.
Ficting (51)-{53) into (48) and dividing by u(0) # 0 vields the characteristic equation

W=

T (M(T) + S°M(T*) + ST AT )W* Pasr(2) + S*M(T*)Q(2).

54) 1= -

We note that the same characteristic equation is obtained by linearizing the limiting
equations associated with {7)-(10) around the endemic equilibrium and looking for
solutions of exponential form.

Finally, we arrive at the following relation between the stability of the endemic
equilibrium and the roots of the characteristic equation (54).

PROPOSITION 1. {a) The endemic equilibrium is locally asymptotically stable if
all the Toots = of the characteristic equation (54) have strictly negative real parts.

(b) The endemic equilibrium s unstable if the characteristic equation (54) has at
least one root z with strictly positive real part.

Appendix A.3. Analysis of the characteristic equation. Proofs of The-
orems 5—7. The difficulty in analyzing (54) along the lines proposed by Proposition 1
consists in the fact that 1+, S+. T are related by the steady state equations (22)-(25).
We incorporate these relations into (54) and reformulate (54} with epidemiologically
meaningful parameters that can be modified independently of each other.

From (25}, (17). (23), and (29), we obtain

B~ * 1
11"_\1(T~>:T:I : N S
> St P10y 18P0
From (24). (251 (173 1235, and (29). we obtain

A . - " [
S = S B0 = B = ! = r >
MiT MIT P, it M{T-) P ()

21!,
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and from (238)

HORST R. THIEME AND CARLOS CASTILLO-CHAVEZ

1

S*i"f!(T') = =

Q(0)

We substitute these relations into the characteristic equation (54) as follows:

~

(55) 1=——1—A—‘E—_(l +
L+:P,1(0) \1—&

T*M’(T*)) T M/ (T*} Pas1(z)
J\I(T")

L Qe

M(T*) Par1(0)  Q(0)

To simplify the characteristic equation further. we define the probability densities

(56) pis) =
and

(57)

and reintroduce the parameter

(58) ~ =

T M(TY)

As Par1(0) =1 by (11). we see from (561 that

1

{0)€
(60) o R ( !
-z V1 =&
Recall from 34 that
<<l U

To studyv the position of the roots

p«:(—l(o]

1. o =pifh > L

- = C of (601, we let = = r + 1y and separate

(60} into real and imaginary parts as follows:

(61) l—f e—Ls cos(sy)gls)ds
o

s “’illf.-f}.fjl‘"_\‘-{f.-. =

;ﬁflﬁ-r‘}p(())ﬁ( (S
TR AV ET

o
- & / e poslsyiptsids
0

TN B! A )
Po— i =yt ( 1 - ¢

L

-~ £~ / '"""SlIlL.ﬁF;)p(.*firi:i.
A

22
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We can solve for & by multiplying (61) bv y and (62} by 1 + r and adding the two
equations together as follows:

y(l - fojo g—ST cos(sy)q(s)ds) + (14 x) fooo pupe Sin(sy)q(s)ds.

(63) £ = — - —
"/((_1 + ) fo e~stsin(sy)p(s)ds — yfo e=sI cos(.sy)p(s)ds)

As q is a probability density, we see that the left-hand side of (61) is strictly positive.
Furthermore, by the Riemann and Lebesgue Lemma,
(64)

o0 oo
f e~ 3% sin(sy)p(s)ds — 0. / e~st sin{sy)q(s)ds — 0. Jy|+x — cc.z 2 0.
0 0

as p. q are of bounded variation. Of course. the same holds if sine is replaced by
cosine. Note further that

(65) / e~ sin(sy)p(s)ds >0. z>0. y=>0
0

because p is nonincreasing,.

As we show later, there exist no roots with x > 0.y = 0. Furthermore, there are
no roots with r > 0,y € R if £ > 0 is small enough.

Taking this for granted for a moment. suppose that there exists some 0 < § < 1
such that (61) and (62) can be solved by x,y > 0. Since the roots of the characteristic
equation depend continuously on £ by Rouché’s theorem and do not lie in the right
haif-plane for small £ > 0. they must cross the imaginary axis (without passing through
0) as € decreases. Note that y — o is excluded by (64). Hence. for some 0 < § <1
(different from the one we started with), (61) and (62) are solved with z =0,y > 0.
i.e..

0 (12 =) — 67 [ costsyipte)is

(66) 1—/ cos(sy)g(s)ds =
0 £

_1+y2

and

(67) / sin(sy)qis)ds = Iy 5p(0)€ (M - 7) + 5"«/ sin{sy)p{s)ds.
0 L+y Jo

In this case (see {63)).

y(l - jox cos(sy)q(.s)ds) -+ f(;c sin(sy)g(s)ds

{68 ¢ =
/ ; 'y(fnm sin{sy)p(s)ds — y f;o cos(sy)p(s)ds)
Taking into account that 0 < & < 1.0 < ~v < 1. and that p(0) > 1. we have the
tollowing resuit. which. together with Proposition 1. impiies Theorem 5.

PROPOSITION 2. There are no roots of (61). (62) with £ > 0 if one of the following
holds:

(a) & s suffictently close fo ) or to 1

(hi ptO) s sufficrently large:

tey s sutlerently close to 1)

28
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(d) There is no y > 0 satisfying the followmg stmultaneously:

[ cos{sy)q(s)ds > 0.

U

/ sin(sy)qg(s)ds > 0.
o

/ cos(sy)p(s)ds < 0.
0

0<y (l —/ costsy)q(_s)ds) +/ sin(syiq(s)ds
5 0

< (f sin{syplsids — y/ cos(sy)p(s)ds) ;
0 0

(e) A = consi:

(Iy p conver.

Proof. We first note that 1/(1 —§) =~ > 0 because 0 < £ < land 0 <~ < 1.
Equation (61) implies that there are no roots with r > 0. 3 = 0. because the right-
hand side of {61) is nonnegative. whereas the left-hand side is strictly negative.

{a) If (a) does not hold. we have sequences §;, T, y; satisfying (61) and (62) with
D<g <z yyz0andf, —0Oorg; — 1 for j — . As we have argued above. we
actually have y, > 0.

We first consider the case where £, — 0.j — oc. As the left-hand side of {61) is
strictlv positive for y > 0 and bhounded away from 0 for y — > by (64), this can only
occur if z,,y; — 0. We now divide (62) {with y = ;) by y; > 0. Taking the limit for
j — c. we obtain [ sq{s)ds > 0 on the left-hand side. whereas. on the right-hand
<ide. we obtain zero. This contradicts (62).

In the case where £, — 1. j — >c. the left-hand side remains nonnegative. whereas
the right-hand side of (61 converges toward —x (at icast for a subsequence). unless
y, — 2. In the case where y; — x.j — . we have from (64) that the left-hand
side of (61) converges to 1 for j — . whereas the right-hand side is nonpositive in
the limit. Hence {61) cannot hold for large j. a contradiction.

The statements (bi and (¢) follow from (61}, (62). and (64) in a similar way as
&,

(d} We recail that. at the start of this proof. we have shown that there are no
roots with r = 0.y = 0. After having proved (a). we can now argue as we did between
formulas (63) and (66). Hence the existence of a root with r > O forsome £.0 < § < 1
implies the existence of a root with » = 0. y > 0 for some (presumably different)
€0 < &< 1. For such a root. it follows from (67) and (65) that Jo sin(sy)q(s)ds > 0.
As the left-hand side of (66) is strictly positive, it follows that fgo cos(sy)p(s)ds < 0.
If ]Hx cos(syiglsids < 0. the left-hand side of (66) is larger than 1. whereas the
right-hand side is strictly smaller than 1. Recall that p is a probability density and
() < ~ < 1. The last inequality in () now follows from (63} and 0 < £ < 1. )

Srarements (o1 and (f5 are consequences of (di. If A = const. then qls) = Ap(s).
o the refative integrais cannot have different sign=. If p is convex. then —p’ is nonneg-
Ltive aud noninereasing frecatl thar pois noninereasing Hence j”% cos(syiplsids =
_;M\t Loysintay il —p'os . s 200

The followine result implies Theoret 6 vine Proposition L

2¢.
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PROPOSITION 3. All roots z of the characteristic equation (60) have strictly neg-
atwe real parts, provided that

/m PO =N yar < 1.
0 X

Proof. Let us suppose that there is a root z with nonnegative real part. As we
have argued before, we then have a purely imaginary root for some £,0 < § <1 In
particular, (66) holds. By (57), (12), (56), and the definition of A, we have
QT) _  AD)Pani(r)  _ Ar)p(r)

T == ( =
)= 50 = Ao P (s)ds — A

From (66), we now obtain

0>1 —/ cos(sy)@p(s)ds + {;"y/ cos(sy)p(s)ds.
0 0

By the proof of Proposition 2{d), we can assume that

/ cos(ys)p(s}ds < 0.
0

As £y < 1. we can continue the above inequality by

oo oo
0>1 —/ cos(sy)mp(s)ds >1 —f Mp(s)ds.
0 A 0
This inequality contradicts our assumption.

Propositions 2 and 3 list so many constraints for a root of the characteristic
equation to have nonnegative or even positive real parts that we might conjecture
that there are none with this property. It is indeed difficult to show that, for given
probability densities p. ¢, the characteristic equation has roots with positive real part.
This task is facilitated by considering a family of probability densities ge rather than
a specific density g. We will give conditions for a fixed probability density p and a
family of probability densities g, that guarantee that the characteristic equation has a
root with positive real part for at least one member of the family. Actually, to apply
these conditions. it is convenient to formulate them for probability measures.

Assumptions. {a) Let p be a nonincreasing probability densitv. Assume that
there is some y > 0 such that

= yzp(())(l — v+ *x/o cos(sy)p(s)ds < 0.

Further assume that g..c1 < ¢ < ¢z is a family of probability measures with the
following properties:

(b) gc(2) is continuous in c.c; < ¢ < ¢g, for every 2 € C with nonnegative real
part:

(€} gc(=) is continuous in : € C. Rz > 0 uniformly in ¢.c; < ¢ < ¢3;

{d) The integral fmx) s sy)qc(ds) is strictlv positive for ¢ > ;. ¢ close to C1.
and is 0 for ¢ = ¢y '

L— [y o, costsyiqetds)
te) —

- — 1} o O
Jo o SISy geds |

2S .

- - = TE fera
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(f) If & is defined by (68) with ¢ = ge. then 0 < é < lfores <c<cpand § =1
for e = ¢3.

PROPOSITION 1. Let the assumptions be satisfied. Then the characteristic equa-
tion (60) has reots z = r £ Vv —1y with r > 0 for at least one & € (0,1) and one
probability measure ¢ = qe, €1 < ¢ < €2

Proof. The strategy of the proof follows. We consider (61) with & being given by
(63), where g is replaced by gc. We show that, for some ¢ close to c1, the left-hand
side of (61} is smaller than the right-hand side. whereas. for some ¢z close to cz, the
left-hand side of (61} is larger than the right-hand side. Furthermore, for all values of
¢ between &, and é2. the number £ given by (63) is strictly between 0 and 1. Then we
apply the intermediate value theorem. This provides some ¢, ¢ < ¢ < C2. such that
0 < £. < 1 for & given by (63) and that (61) holds with £ = £.. Equivalently. (61),
(62) are satisfied with § = &. and so is (60).

In a first step. we consider (66) and (68) rather than (61) and (63). This amounts
to looking for purely imaginary roots z. It follows from assumptions (d) and (e} that
¢ 0. ¢ — ¢ and that the following limit exists:

S

J‘Ef)-xf' sin(sylge(ds)

(69) lim " e (0.}
C=—C1 [
We divide (66) by & as follows:
L= Jig 5, cos(sy)gelds) 1 1 o ‘
= 0.2 — 1 50 R s s,
(70) 3 T2 (l—fc f) rfo cos(sy)p(s)ds

By assumption (e} and (69). the left-hand side of (70) tends to 0 for ¢ — c1. while the
right-hand side converges toward

1
1L~y

=p(O} (L — v — "/ cos(sy)p(s)ds.
- 0

This expression 1s positive because of assumption (a). Therefore. we find some &, close
to ¢; such that the right-hand side of (701, or equivalently of (66), is strictly larger
thanu the left-hand side. If ¢ — ¢2. & — 1. hence the right-hand side of (66) goes
to - . whereas. by assumption (bj. the left-hand side of (66) tends to some finite
limit. Hence we find some ¢z between ¢1 and ca such that the right-hand side of (66)
is strictly smaller than the left-hand side.

In summary. let £ be given by (68). We have found ¢é1.¢2, €1 < &1 < ¢2 < cg such
that 0 < £ < 1 forall &1 < ¢ < ca. and the right-hand side of (66) is strictly larger
than the left-hand side if ¢ = & and § = §;,. whereas the right-hand side of (66) is
strictly simaller than the left-hand side if ¢ = ¢2 and § = &&,.

By assumption (¢ we have the same situation if (66) is repiaced by (61) with § =
¢ i being given by (631, provided that .o > 1) s sufficiently close to 0. Assumption (b)
ud the imerneediate value theorem imply thar. for anv .o > 0 which is sufficiently close
(o 1), there is some ¢ between ¢ and c2 such that (6517 is satisfied with £ = &.(x) being
siven by 165 0« £ o0 L Equivalentlv. t60) with £ = £.r) has a root & = I + VvV —=1y.

We can e Proposition 4 ro show thar the characteristic eguation can have roots
with positive real part indeed. The lollowing result implies Theorem 7 (recall (56)
and 15917 viee Proposition 1.

26
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PROPOSITION 5. Let p be a decreasing probability density. Assume there is some
y > 0 such that

=p(O) (1 — ~) + 'y/ cos(sy)p(s)ds < 0.

14y 0

Then there erists a probability density q with arbitrarily many peaks such that the
characteristic equation {60) has a root z with strictly positive real part.

Remark. The peaks of g are concentrated at points of the form ¢, ¢s81,...,¢5m, 0 <
¢ < /2y, such that

with k; e N k; >0,5=1..... m.

Proof. Let qc,c > 0, be a probability measure that is concentrated at the points
¢s;, as indicated in the remark. sop = 1. In other words,

m
Jc = E ffjécs_,
1=0

with x, > 0, Z;’;O x; = 1 and 4, denoting the Dirac measure concentrated at the
point 5. The choice of the points cs; implies that

f cos(sy)gc{ds) = cos(cy), / sin(sy)qc.(ds) = sin(cy).
[0.00) 0,00}

By (68)
y(l - COS(cy)) + sin{cy)
'Y(fom sin(sy)p(s)ds —y f;° COS(Sy)p(s)ds).

fe =

For ¢ = 7/2y. we have

y+1
“f(ff sin(sy)pis)ds ~ y [~ cos(sy)p(s)ds)

56: > > 1.

2|

as 0 < [~ sin(sy)p(s)al.-s.~f0°G cos(sylp(s)ds < 1. So we find some ¢c2,0 < cp <
7/2y, such that. with ¢; = 0, assumption () is satisfied. The other parts are now
checked easily. Hence. by Proposition 3, there exists some ¢ € (c1,c2) such that the
characteristic equation (60)—with ¢ = g.—has a root z with strictly positive real part.
Bv Rouché’s theorem. there exists a probability density ¢ with peaks at c.cs:. .. .. CSm
such that {60) has a root with > with strictly positive real part.

Appendix A.4. Examples 1 and 2 in §4. Let o be given by (37). By (38),
the Laplace transform of P, is given hy

- 1
Piolz)= —————— 11 — R e B Ry SRS
L—-m == Vo + 2

.+

- ww weras - " .
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To check the assumption of Proposition 5. we set z = +/—1y and take the real part as
follows:

(71}
> 1+ pr :
0S5 P, Nds =————2 - — (1 —eg—{l+P)70 S YTs
A cos(sy) Pav1{s)ds (1+p1)3+y~’( € cos(yTs})
1+ o2
L TR e—(l+pre cog(yT
T (14 p2)?+ R cos(ym]

1 1
+ - —(14+p1)70 gi
y((1+p1)2+y2 (1+pz)2+y2)e Ve sinfyo).

If we pick 1 < s < 3/2. set

YTo = (8 + 2n)m,

and choose p2 — p1 and n sufficiently large. we can arrange that

/ cos(sy) Pat1(s)ds < 0.
0

Bv (59) the condition in Proposition 5 takes the form

o
vlw_:—yz(l -+ w/o cos(sy ) Pat1(s)ds < 0

and thus is satisfied if we choose s, y, p1. p2, and n as before and v,0 < v < 1 close
enough to 1. Hence Proposition 5 has the following corollary. which, together with
Proposition 1, provides Example 1 in §4.

COROLLARY. Let the inactivation rate a(7) be qrven by (37) with ps — p1 being
sufficiently large. If v.0 < v < 1, 15 sufficiently close to 1, then there exists a proba-
bility density g with arburarily many peaks such that the characteristic equation (60)
has roots z with strictly positive real part.

The position of the peaks in Example 1 follows from ym, = (s + 2n)7 and the
remark after Proposition 5.

Proof of Ezample 2. Let a. A be given by (37) and (39). By (57) and (12),

e 0. 0<7 <7,
qiT) = {1 . pgjt’*(l*p'ﬁ'{‘_—ﬁ‘l. o
Hence L
- i
PR ' B,
L+ p2+ 2

We set z = /-1y and separate into real and imaginary parts as follows:

- . L+ oo .
cos(syigisids = e ({1 + p2)cos(yms) — ysin(yre)),
Ju Lo ogr)T YT
. 1+ p2 J .
singsyigtsids = —————— (yoosiyr,) — (1 + pa)sin(y7s)) .
0 (1~ pa)=—y-

Let us suppose that the charactenstic equation (60) has a root with nonnegative real
part. From Proposition 2(d;. we can conclude that

Th i1 = porcostyr,t — ysiniym, ) > 1)

28
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yeos{ym.) + (1 + p2)sin(yre) > 0

for some y > 0. Equations (72) and (73) imply that

cos(yTs) > 0.

From (73),

sin{yre} > — cos(yTo ).

1+ p2

We substitute this inequality into (71), recalling p2 > p1,

/ cos(5Yy) Pas1(s)ds
0

1+ p;m 1+ p2

(1+p1)%+y?

(1+p)2+y?°

(1 — e‘(l‘f'pl)'-"o COS(yTo)) + e"‘(l'f'pl)ro COS(yTo)

(1+p2)% +vy°

1 1 y
- — e_(l+P1)To cos{yT
y((1+91)2+y2 (1+p2)2+y2> 1+ pg (y7o)

I+ ‘ . .
P (1 —e=ii+pim cos(yTo))

1 y2 )
1— ——2 e t+n)Te cos(yTo).
1+92( (1+p1)2+y? )

As cos(y7o) > 0, this implies that

/ cos(sy) Pa+i(s)ds > 0,
0

in contradiction to Proposition 2(d) and (56).
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