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1. INTRODUCTION

The epidemiological intcractions among co-circulating strains of related viruses
have received little attention in the theoretical literature (but see Dictz, 1979; Levin and
Pimentel, 1981; Levin, 1983; Castillo-Chavez et al., ms.). Indeed, until recently, little
information was available with regard to the level and duration of Cross-immunity; but
recent studies show a considerable degree of long lasting cross-immunity between
related strains (i.¢., variants of the same subtype) in human influenza (sce the excellent
review paper of Couch anu Kasel, 1983). Through Cross-immunity, the presence of
one strain of the virus can reduce the pool of susceptible individuals for co-circulating
strains and thereby inﬂut;nce the potential for survival of those strains; this is, in effect,
exploitation competition among closely related species. In this paper, we formulate
models that incorporate such cross-immunity, and discuss threshold conditions for
cocxistence.

The co-circulation of viral strains plays a significant role in the dynamics of
influenza in humans and myxomatosis in European rabbits in Australia. In both

instances, the interactions among different viral strains have produced very complicated
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dynamics, whose analysis poses challenging scientific puzzles (see Fenner and
Ratcliffe, 1965; Fox and Kilbourne, 1973; Dowdie et ak., 1974; Stuart-Harris and
Schild, 1976; Selby, 1976; Beveridge, 1977; Levin and Pimentel, [981; Fine, 1982;
Palese and Young, 1982; Levin, 1983: Dwyer, Levin, and Buttel, ms.). In this paper,
our attention is focused upon the dynamics of influenza. For a discussion of
myxomatosis, the reader is referred to Dwyer, Levin, and Buttel (ms.). For inflzenza,
we extend the classical epidemiological approaches to allow for immunological
interactions between strains (cross-immunity), and find that periodic recurrence cannot
be sustained without loss of amplitude. In section 3, we introduce consideration of the
age-structure of the population, and discuss how this may contribute to the maintenance
of temporally varying incidence rates. The mathematical details will appear elsewhere
{Castillo-Chavez et al., 1988.).

2, INFLUENZA

In this section, we discuss briefly the role of Ccross-immunity in the dynamics of
influenza. Three major types of influenza have been identified: A (the most severe),
B, and C (see Smith et al., 1933; Francis, 1940; Francis et al.,, 1950); each type has
various subtypes (see Table 1, modified from Couch and Kasel, 1983). In the case of
type A, three subtypes have been isolated: HIN1, H2N2, and H3N2; moreover,
several strains—comparatively minor variants—are associated with each subtype (for

details sec Fox and Kilbourne, 1973; Dowdle et al., 1974 Stuart-Harris and Schild,

1976; Selby, 1976; Beveridge, 1977; Palase and Young, 1982; Webster ct al., 1982). 4

The maintenance of so many subtypes and strains of the influenza virus is due 1o its

ability to change its antigenic structure (see Webster et al 1982) rapidly, and to produce i

vaniants that have led to recurrent epidemjcs. -
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The influenza virus is a microorganism that consists essentially of a
conglomerate of seven proteins, five internal and two external. Immunity is believed o
be induced by the presence of the surface (i.c., external) glycosylated proteins, the
hemagglutinin (HA), and the neum;txinidase (NA). The HA molecule has four
nonintersecting antigenic regions and the NA has at least three, Evidence suggests that
hew variants may be produced by the replacement of (at least) one amino acid in each of
the four disjoint antigenic regions of the HA molecule {see Couch and Kasel, 1983),

The co-circulation of several strains is a recently documented phenomenon (see
Figure 2 in Thacker, 1986); therefore not enough experimental data are available to
determine the duration of immunity and cross-immunity to variants. It appears,
however (see Section 5), that a high level of immunity to reinfection with HIN1
variants can persist for over twenty years. On the other hand, studies with different
subtypes (HIN1, H2N2, H3N2) support the hypothesis of an almost total lack of cross-
immunity among them (see Section 5).

The experimental results found in the literature (see Couch and Kasel, 1983)
show that cross-immunity:

(a) exhibits subtype specificity,

(b) exhibits cross-reactivity to variants within a subtype, but with reduced

cross-reactivity for variants that are antigenically distant from the initial
variant, and

(c) exhibits a duration of at least five 1o cight years.

In this paper, we incorporate such observations into mathematical models that allow

investigation of the role of Cross-immunity in disease dynamics.



3. CROSS-IMMUNITY IN A HOMOGENEOUS POPULATION

In this section, following Castillo-Chavez ct al. (1988.), we formulate a two-
strain epidemiological model for a homogencous population. This population is divided
into cight classes: X (fraction susceptible), Y; (fraction infected by strain i), Z; (fraction
recovered from the other strain), Vi (fraction infected by strain i after recovery from the
other strain), and W (recovered from both strains). The intcractions among classes arc

represented in the transfer diagram shown in Fig. 1.

| |
Y2 V2
| u

Zy, = Vi = w

Figure 1

We let B; denote the transmission coefficient of strain i, and define the
susceptibility factor o; (where j = 3-i) to be the relative susceptibility of types Z; and
X in terms of their acquisition of strain j. We assume that o is between 0 and 1.
Furthermore, ¥; denotes the recovery rate from strain i, and p denotes the constant
natural mortality rate. The use of the above transfer diagram in conjunction with the
“mass-action” law and homogeneous mixing leads to the following system of ordinary

differential equations (Castillo-Chavez et al., 1988.):

X (=B (Y1 +V)+Ba(Y2+ VD -u} X+p {(1.1)

Y= [‘}i(Yi+Vi)X-(Yi+u)Yi Jfori= 1,2, (1.2)
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Zi0 =7 Yi - [0 (Yj+ V) + W 7, Mori=1,2,  (13)

Vi = oifi (Yir VD Zj- 1+ ) Vi ori=1,2,  (1.4)

W=7V +1nVy-uw (1.5)

X(0) = Xg, Y;(0) = Yjg, Zi(0) = Zip, Vi{0) = Vg, W(0) = Wy

Jfori=12 (1.6)

Recallthatj=3-i; thatis,i=1,j=2,0ri=2,j=1.

This model extends the Dietz-Elveback model (see Dietz, 1979), which is
obtained as a special case of the above set of equations when O] =07 = 1. This
corresponds 1o no cross-immunity between strains, while 01 = 02 = 0 indicates total
cross-immunity. Thus, the model is flexible enough to cover the possibilities ranging
from closely related strains to distinct subtypes.

Stability analysis and numerical simulations of this model strongly suggest that
periodic solutions do not arise by Hopf bifurcation (Castillo-Chavez et al., 1988.). For
the symmetric case (31 = 02, Bt = B2, ¥1 = 12), a complete local stability analysis is
possible that corroborates the numerical results. For the general case, we have carried
out such analysis for boundary equilibria, and have supplemented it by simulations near
the enique interior equilibrium. All of these results suggest that the co-circulation of
strains is itself not sufficient to drive sustained oscillations. Since a locally stable
endemic equilibrium with both strains present is possible, oscillations conceivably could
be driven by stochastic fluctuations in the environment. An alternative hypothesis,

which we examine next, is that oscillations result from an interaction with the age

structure of the host population.




Building age-structure into the reproductive dynamics of a population certainly
can drive periodicities if fecundities depend on age in a way that births are pulsed, or
that noniinearity enters. Without these features, however, age-structured models have
seemed unable to support sustained oscillations, even if the contact rates are age-
specific. This conclusion has been advanced by ssveral authors (scc, for example, Dietz
and Schenzle, 1985; Anderson and May, 1984; Castillo-Chavez et al.,1988.).
However, such models can exhibit very weakly damped oscillatons (Anderson and
May, 1984). Hence the question naturally arises: can the presence of multiple strains as
they cocirculate in a heterogeneous population interact with age-specificity to drive
periodic behavior (i.e., be responsible for the observed recurrent epidemics)? We will
examine this in the next section. In practice, we also must be aware that weakly damped
oscillations will be difficult to distinguish from sustained ones under natural conditions,
and that what is called periodic behavior actually may be weakly damped.

4. CROSS-IMMUNITY IN AN AGE-STRUCTURED POPULATION
We let x(a,t), yi(a,1}, z;{a,t), vi(a,n), and w(a,t), denote the densities of the
individuals in each class defined in the previous section. Here a is an independent

variable that denotes the age of an individual. b(a) represents the age-specific contact

rate, ALt) denotes the instantaneous force of infection, fB; denotes the transmission
scaling factor, p(a) is the age-specific mortality rate, and ¥, denotes the (constant)
recovery rate. The susceptibility coefficients o) and 59 denote different degrees of
cross-immunity associated with the interaction of two strains or two subtypes.

In the development of our age-structured model, we make use of the

proportionate mixing assumption (see Barbour, 1978; Nold, 1980; Hethcote and Yorke,
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1984; Dietz and Schenzle, 1985). Hence the contact rate between susceptible persons of
age a and infected ones of age a' is assumed to be proportional to b(a)b(a). 1f we now
follow our previous transfer diagram while making use of the "mass-action” law, we

amrive at the following initial boundary value problem:

ox{at) 9

T | T 1040 b)+ D) ba) + ) 5620, @
(at) i@t

a—y{r + a%_ = A0 b@) @D - ( + M@ i@,  i=1,2 @.2)

d5(at) Iz _
A+ 5 =1y, - oA @ Z@) - p@ 5@, i=12 Q3)

dviat) oaviat) ,
5 + -ramie oidi(t) bla) ziat) ~ (v + W) vi(ay), i=1,2 (2.4)

dw(a,t) dwlat)

T + e (n + 1 — 1a)) wia,t), 2.5)

MO =B [ 5@ b0 + @) a, @6
0

x@0,0=p, yi(0,) =0, z(0,)=0, v{0,)=0, w(0,1)=0, 2.7

X2,0) = xg(a), ¥1(a,0) =yei(a), 2(a,0) =zgs(a), vi(a,0) = vs(@), w(0.0)=wgla), (2.8)
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p= “ e_Mmda where M(a) = Ju(a)da (2.9)
Lo

Despite the complexity of this model, some analysis is possible, The initial boundary
value problem is well posed. A partial local stability analysis is possible for the case of
total cross-immunity {0 = 03 = 0). In this situation, there are four types of equilibria:
both strains absent, type 1 absent, type 2 absent, or both present. Necessary conditions
have been found that guarantee the local stability of the steady-state age distributions
associated with the first three equilibria (Castillo-Chavez et al.,1988.). However, the
nature of the fourth (interior) equilibrium has not yielded to our mathematical anatysis
except in very particular circumstances. Therefore, even in this case, we cannot rule out
the possibility of periodic solutions arising by Hopf bifurcation. Development of
analytical techniques to deal with the transcendental equations involved in the stability
analysis of this type of model, and more generally the development of methods to deal
with asymptotic behavior, represent challenging mathematical problem of substantial
biological importance.

Unable to analyze the model compietely, we turned to simulation of a related
compartmental model based on our previous transfer diagram, the "mass-action” law,
and the proportionate mixing assumption. Simulations with this two-strain model
yielded a strong coupling between both strains, and sustained periodic behavior was
observed for a wide range of values of the cross-immunity cocfficient when realistic
parameters for influcn_ia were used. For example, for the symmetric case (0] =02 =G,
81=B2, Y| = Y7), cycles were observed for values of o between 0.3 and 0.6 when other
parameters were given values compatible with the transmission of influenza. Further
numerical experiments showed that the interaction between cross-immunity and age-

dependent mortality (without age-dependent contact rates) was responsible for the
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observed periodic behavior. Experiments with a constant death rate and age-dependent
contact rates did not produce sustained periodic behavior. Of course, this does not mean

that age-dependent contact rates cannot play a crucial role under other circumstances.

5. EMPIRICAL EVIDENCE FOR CROSS-IMMUNITY

From these simulation results, some questions of practical importance arise: can
we determine the relevant values of ¢ from the epidemiological literature? If so, do
these values lic roughly in the range capable of driving periodic behavior? If we cannot
estimate G, can experiments be designed for this purpose? A quick review of some
examples shows a promising path.

A 1979 study (see Couch and Kasel, 1983) revealed that less than 3% of those
with a prior A/Hong Kong/68 (H3N2) or a prior A/England/72 (H3N2) infection were
found to have experienced an infection with A/Port Chalmers/ 73 (H3N2), while 23%
with no previous infection not only were infected but had a higher incidence of severe
cases of this strain of influenza. That is, a relative frequency of & = 0.13 cases was
observed. A 1976 study, aiso mentioned in the above reference, was prompted by the
appearance of the strain A/Victoria/75 (H3N2). It showed that the relative frequency of
infection by this strain, for those previously infected by a H3N2 virus compared with
those who were not, was g = 0.407. Furthermore, individuals born before 1952, and
hence having a very high probability of a previcus infection with an HINI1 variant,
rarely have been infected with the (reappearing) HIN1 variants that have been co-
circulating since 1977. In addition, the frequency of detection of antibody-pesitive sera
between 1977 and 1978, the year of the reappearence of the HIN1 subtype, changed
from 0% to 38% for young people. In contrast, the frequency of detection for antibody-
positive sera for older people remained at 9%. Recent studies on the co-circulation of

the subtypes HINT and H3N2 in the Houston area (see Glezen et al., 1982) have
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shown that there i§ no cross-reactive immunity between these two subtypes. From this
type of experiment, the hypothesis has emerged that there is no cross-immunity when
both surface antigens are distinctive. Other documented cases of ¢ross-immunity or the
lack of it can be found in the papers of (Mulder et al.,1958; Schoenbaum et al., 1976;
Monto et al., 1973; Fazekas, 1975).

Can we use this information to estimate reliable values for o? We suggest the
use of the relative frequencies of infection, or the relative frequencies of the levels of
antibody-positive sera present in a population once a new subtype or strain has been
established, as crude estimates for the values of @ when strains or subtypes are already
established and act in a symmetric manner. This procedure may give us a rough
estimate for ¢. For non-symmetric strains, a more general procedure will probably be

needed.

6. DISCUSSION

In this paper we discuss the concept of cross-immunity as it pertains to the
dynamics of the infections produced by influenza viruses within a heterogeneous (age-
structured) population. Our conclusion is that cross-immunity, in the presence of age-
dependent survivorship, provides us with a sufficient mechanism to expiain the
observed recurrence of several strains. Moreover, it secms possible to estimate all the
parameters involved in these models, which would allow us to test them against real
data.

One of the messages of this paper is that simpler models will not suffice in the
study of the periodic recurrence of co-circulating strains. At present, very few models
incorporate factors such as viral heterogeneity and consider interference, cross-
immunity, and host heterogeneity. Moreover, those models that do include such factors

have been investigated primarily through simulations, thus providing a limited (but

313

uscful) picture of the dynamics (¢.g. Dietz, 1979; Levin and Pimentel, 1981; Levin,
1983; Castillo-Chavez et al.,1988.). The near absence of analytical results has left
untouched many important questions. One question of particular importance deals with
the determination of possible mechanisms responsible for the inter-epidemic persistence
of cocirculating virus types, as well as their possible role in fostering the recurrence of
such epidemics. This question has received theoretical attention only recently (see
Castillo-Chavez et al,1988.). Related to the last issues is the need to develop
mathematical techniques and numerical schemes that give us precise information about
the asymptotic behavior of the solutions of these initial boundary value problems.

In conclusion, such models generate a wealth of problems for the mathematician
interested in interdisciplinary research. Their study could produce new mathematical

results, new mathematical techniques, and most importantly, useful biological insights.
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TABLE 1*

Antigenic classification of hemagglutinin and neuraminidase subtypes of human influenza
viruses

Reference strain
variants

Type Subtype2 Period of prevalence (H subtype)

A HIN1 1918 - 1956 A/Puerto Rico/834
A/Weiss/1/43
AFMU1/4T
AfEngland/1/51
A/Denver/1/57
AfTapan/305/57
ATaiwan/1/64
AfHong Kong/3/68
A/England/42/72
A/Port Chalmers/1/73
A/Victoria/1/75
A/Texas/UTT
A/Bangkok/1/79
ASUSSROO/TT
A/Brzil/11/78
A/Great Lakes/1739/54
B/Maryland/1/59
B/Singapore/222/79
C/Taylor/1233/49

HIN2
H3N2

1957 - 1967
1968 -

1977-
- 1940 -

c — 1949 -

*modified from Couch and Kasel (1983).

2Subtypes refer to type A viruses with antigenically distinctive hemagglutinin and
neuraminidase virion surface antigens.

h\_/arizu;ts are designated by type, place of initial isolation, strain number, and year of
isolation.
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