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Abstract. In this study, we investigatc systematically the role played by the
reproductive number (the number of secopdary infections generated by an
ix‘xfect.ious individual in a population of susceptibles) on single group popula-
tions models of the spread of HIV/AIDS, Our results for a single group
5nodcl show that if R < 1, the disease will die out, and strongly suggest that
ifR>1 the disease will persist regardless of initial conditions. Our extensive
(bu.t incomplete) mathematical analysis and the pumerical simulations of
various research groups support the corclusion that the reproductive number
Ris nglobdbimmﬁonpaxgmcwr.mbifumﬁonthatukuphceanis
vmedisamsuiﬁcdbifumﬁon;inothuwordx.wmemlthmis
a g!oba! transfer of stability from the infection-free statc to the endemic
cqml‘l'bnum. and vice versa. These results do not depend on the distribution
of times spent in the infectious categorics (the survivorship functions).
Furthermore, by keepinxaﬂ the key statistics fixed, we can compare two
extremes: exponential survivorship versus piecewise constant survivorship
(mdpn_duals remain infectious for a fixed length of time). By choosing some.
realistic parameters we can see (at least in thess cascs) that the reproductive
numbu:oortupondingtothmtwomemdonotdiﬂ'u significantly
.whmevgr the two distributions have the same mean. At any rate & formula
upmudedth:tlﬂommwuﬁma::themlcphyedbythemiwnhip
function (and hence the incubation period) in the global dynamics of HIV.
These resuils support the conclusion that single population models of this
type are robust and heace are good building blocks for the construction of
multiple group models. Our uaderstanding of the dynamics of HIV in the
context of mathematical models for multiple groups is aritical to our under-
standing of the dynamics of HIV in a highly heterogeneous population.
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Introduction

AIDS, perhaps the most feared disease of this decade, has been estimated to kill
at least 30% of thosc infected. By the end of 1988 over §1000 cases of people
with AIDS {with over 44000 deaths) have been reported in the United States
alone; the numbers in Africa and elsewhere tell an even more frightening story.
However, despite these statistics, we do got have enough information to ptedict
the eventual magnitude of this :demic. Nevertheless, there has been increasing
recognition that the dynamics will depend fundamentally oo transmission within
and smong core subgroups, and that complex epidemiological models that
account for this heterogeneous mixing arc essential if one is to predict the
time-course if the disease. In this paper, we examine prototypes of such models,
extending those discussed by Anderson et al. (1986), Anderson and May (1987),
and Pickering et al. (1986), and obtain threshold conditions for the maintenance
of the disease. )

Since the isolation and identification of this virus by Bamé-Sinoussi et al.
{1983) and Gallo et al. (1984), Gallo (1986, 1987), and Wong-Staal and Gallo
(1985), there has been rapid progress in understanding the structure of the
human immunedeficiency virus (HIV), the ctiological ageat of AIDS, and of the
way it compromises the human immune system. Nonetheless, the epidemiology
ofthediseaseis:ﬁllnotweﬂundmod.Amodclgeamdmwudsdetemining
the dynamics of AIDS must take into account, among other factors, recruitment
of new susceptibles, high disease-related mortality, beterogencous mixing (¢ertain
transfers among individuals are more likely than others), vertical transmission, &
high number of asymptomatic carriers, variable infectivity for a single carrier
during the course of the infection, and long time scaics duc to the incubation and
infectious periods. This situation makes it dificult to formulate reliablc models.
In fact, tincc many important epidemiological parameters 21° not yet accur-
ately known, prediction becomes an extremely problematical and dangerous
enterprise. -

populations, with the purpose of identifying the role played by the long period
of incubation: other papers will do the same for heterogencous populations (see
Castillo-Chavez ct al (1989a,b); Huang et al (1989a,b); and for an alternative
approach see the work of Dictz and Hadeler (1988)). The models can be used
also as starting points for guided computer simulation of the dynamics of HIV,
and our analytical results may provide useful comparisons in these future studies.
The calculations arc confined to appendices. .
A detailed summary of the factors thought to be involved in the transmission
of HIV can be found in the preliminary study of Anderson et al. (1986) or in the
rocent work of Hyman and Stapley (1988) or Anderson (1988), and in the
extensive references cited in those papers. We will consider primarily
transmission of AIDS, and will emphasize the role of three epidemiological
parameters: the lengths of the latent period, the imfectious period, and the
incubation period. The fatent period is the time from the acquisition of infection
to the time when the host becomes infectious. The infectious period is the time
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i i indivi i able of transmitting the disease. The
t.iur'mg ‘_ﬂthh :: i;n:‘;mnid::gvili::ozn the point of acquisition of infection
mc:b&t:o : p;;mnec of symptoms. As Anderson et al. (1986), {\ndcfson‘(_g?&,
:?:d And;son and May (1987) show, knowledge of these pl;-.;'mdsa l:h‘::tulmﬁ
predicting the dynamics of the disease. AIPS appears 1o | hvlc ity of
period, long incubation and infectious penods, and a variable pfr by of
transmission. The duration of the I.atz:dpcnod is ;ho;;il;t ;;sl;c) aa::r g h)iflsc 02
foew weeks (Anderson ¢t al 1986; erson an y 198 \'aalslhat D
.on of the infectious period is not yet known, those individs A D
?uu!ll?t:z:r: AIDS have an average incub;tio(x;n petdiod :::::;mg ;;.)m:;séy a:t;;;i’:
Pickering et al. 1986), 66 months crson et al. ) 2 :
I;Gm;ﬁt(hs (Med%ey ¢t al. 1987). This estimate is continually being mu:i
information and expericnce accumulate. However, even the most co e
estimate suggests that it may be reasonable to approl te the mfggud-og ci]f;m
by the incubation period; that is, to assume a ncgh_gble latent peri P ua]i
et al. (1986) stress that the ability to transmit HIV is not constant, as s
are most infectious 3-16 months following exposure, and reu:t:t :xmtudws Tands
ctaL1934;Sal.nhuddincuLl984;I.angecuLi986)mpon c > of evo
peaks of infectiousness, one taking place & few weeks a‘m:t‘expc»su.n-.md c oad e
other before the onset of “full-blown” AIDS. 'I'hc models' in tlm :h ly hav beee
modified to take variable infectivity into eons:dctauon'. w“l.l e inl o
looking at how variable infectivity affects the conclusions in this paper
i 9 p . . . -
Thlinepmct e 31' critical importance in the dynamws. ‘ol' a dmscwd is its
reproductive mumber; that is, the aumber of secondary infections geaera ullzi:x;
infectious individual in a population of susceptibles. For our single dp;pm o
model, the reproductive number is givens by R = AC(T)D, where lb“ c:'
probability of transmission per pariner, C(T:) dznfnu the mean number o dmmty
partners an average individual has per unit time givea t'hat the Qopulauon sy
is T, and D denotes the death-adjusted mean mfecftwus period. For. m ; tl.)he
grox;p populations the reproductive number may be given by an exp;snon oi e
form R, = Y1..1 Wi, where &, denotes the r?producuve numbet of sro:p o
w, is an appropriate weight factor (sec Cunllo-(.’ham et al 1982&), ov;:'m;
rcoenuywehavedmuminedthatingmeﬂlthuun?t}hcqasc. It now cems
more likely that for multiple group mo@els the R, (if it enstsg' u;{ given etylL
nonlinear function of the R,'s (sec Castillo-Chavez et al. 1989b; Huang
1989&!:3)].35 study, we investigate the role played by the reproductive mu:nl:u:rl f:lr
single group populations; in Castillo-Chavez et al. (l98?a,b) and Hu;aﬂng ; : ;
(1989a,b) we study its role for mulﬁplc‘ group popula‘uons. v?illurdim s a.::d :
single group model strongly suggest that if R< 1, the dnscasc e out; o
R>1 thedisasewillp«sist:egardlﬂ!ofqucopdmogs. Ourextens:;c t
incomplete) mathematical analysis and numerical mmylauoqs support the O’?‘Ec
clusion that the reproductive number R is 8 global bl..ﬁ.:.mnn.on param eter The
bifurcation that takes place as R is varied is a transcritical blfuxcg?on,r in o bet
words, when R crosses | there is a ghobal transfer of stability {rom
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infection-free state to the endemic equilibrium, and vice versa. These results do
not depend on the distribution of times spent in the infectious categories (the
survivorship functions). Furthermore, by keeping all the key statistics fixed, we
can compare two extremes: exponential survivorship versus piecewise constant
survivorship (individuals remain infectious for a fixed length of time). By
choosing some realistic parameters we can see (at least in thess cases) that the
reproductive numbers corresponding to these two extreme cases do not differ by
more than 18% whenever the two distributions have the same mean. At any rate
a formuls is provided that aliows us to estimate the role played by the
survivorship function {and hence the incubation period) in the global dynamics
of HIV.

These results strongly support the conclusion that single population models
of this type are very robust and hence are good building blocks for the
copnstruction of multiple group models. Qur understanding of the dynamics of
HIV in the context of mathematical models for multiple groups is critical to our
understanding of the dynamics of HIV in the presence of & highly heterogencous
population (see Castillo-Chavez et al. 1989a,b; Huang et al. 1989a,b).

We must be aware, however, that the incorporation of a large number of
groups may reduce predictive capability because of problems of parameter
estimation and error propagation. We suggest the use of models with as few
groups as possible as a compromise, with three groups the minimum peeded to
study realistically the dynamics of HIV in heterogencous populations (see
Castillo-Chavez et al. 1989a).

This paper is organized as follows: Sect. 1 introduces an epidemiological
model that considers a single homogeneously-mixed population with constant
rates of movement out of the infectious classes into the AIDS class or into the
sexually-inactive category. This is a coarse first approximation uscful as a
starting point and as a refercnee model for comparison. This model is & variant

and a generalization of those found in Anderson et al. (1986) and Anderson and
May (1987). Section 1 assumes that the durstion of infectiousness obeys a
negative exponential distribution. In Sect. 2, we generalize this by assuming that
the duration of infectiousness obeys an arbitrary distribution. We establish a
threshold criterion for maintenance of the discase and analyze the stability
properties of the endemic and infection-free states. We also determine, when
possible, the necessary and sufficient conditions for persistence of HIV, In Sect.
3, we compare briefly the consequences of assuming different distribution func-
tions. Appendices A, B, C, and D collect some of the mathematical details.

1. Constant removal rates

Qur approach is to begin with the simplest model, and then to add refinements
as necessary in order to explore the effects of particular factors. Hence we start
with a simple epidemic model that will allow us to compare easily the effects of |
fong incubation periods. We consider a single homosexual population and
concentrate on studying the dynamics of AIDS within this population. We divide



Long incubation periods in the dynamics of AIDS n
this population into five classes. § denotes the number of susceptible individuals;
I, those infectious individuals that will go on to develop AIDS; Y, those
infectious individuals that will not develop full-blown AIDS; Z, those former Y
individuals that are no longer sexuaily active; and A, those former [ individuals
that have developed full-blown AIDS (see Fig. 1). Notc that once individuals
enter the A and Z classes, they no longer enter into the dynamics of the disease;
however, in order to be ablc to compute the number of AIDS cascs, we keep
these individuals on record. We do not include a latent class (i.c., those exposed
individuals that are not yet infectious), because the time spent in that class is so
short. Furthermore, we dssume that once an individual develops full-blown
AIDS, he is not infectious because he has no sexual contacts. We also assume
that all infected individuals become immediately infectious, and that they become
sexually inactive or acquire AIDS at the constant rates «y and &, {respectively)
per unit time; hence 1/(n +a,) denotes the average incubation period and
1/ + ¢y) denotes the average sexual-life expectancy.

Let A denote the recruitment ratio into the susceptible class {defined to be
tl}ose individuals who are sexually active); p, the aatural mortality rate; d, the
discaserinduced mortality due to AIDS; p, that fraction of the susceptibles that
become infectious and will go into the AIDS class; and therefore (1 —p) the
fraction of susceptible individuals that do not. Following Anderson et al. (1986)
and Anderson and May (1987), and usin

. Toon g Fig. 1, we arrive at the following
simple epidemiological model with exponential removal:

SO

ﬂ - A= AT ———

X o X952 - s, (L
dI(f ST
%-@C(m»—“}—(;)(—”—(a,w)r(o. (12)
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dA(s)
—5 =l - (d + WA, (14)
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24 oo, Y0) - nZ0) RE)

where

Wal+Y and T=W+S5. (1.6}

Here, the function C(T) denotes the mean number of sexual partners an average
individual has per unit time, given that the population density is 7, and 2 (&
constant) denotes the average sexual risk per infected partner. We may think of
1 as a product i (see Hyman and Stanley 1988), where ¢ is the average number
of contacts per sexual partner, { is the conditional probability of infection from
a sexual contact when the latter is infocted (Kingsley et al. (1987) have presented
evidence that the probability of seroconversion (infection) increases with the
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Fig. 1. Flow diagram for » single group
model with exponential removal, for
® details see the text

pumber of infectod sexual partners). With these observations, we then note that
AC(T) gives the transmission rate per unit time per infected partner.

The factor W/T is the probability that the contact of a susceptible with a
randomly selected individual will be with an infectious individual. Since individ-
uals in classes A and Z are not sexually active, AC(T)SW|T denotes the number
of newly-infected individuals per unit time. C(T) is usually assumed to be
approximately lincar for small T and to approach a saturation level for a large
T (sce Hethcote and von Ark 1987). In this paper we only assume that C(T) is
s differentiable and increasing function of T (except in Theorem 5). It is important
to note, as Anderson and May (1987) have shown, that in a homogeneous
(one-group) model, C(T) should not be the mean number of sexual partners per
upit time, but rather should be larger because of the important role played by
highly active individuals who are more likely to acquire infection and are also
more likely to transmit it. We note that some of our results overlap partially with
and generalize those obtained simultancously and independently by Blythe and
Anderson (1988). Three cases of the system (1.1)=(1.6) arc 1o be considered:

Case I: p=1I This, uofortunatcly, may be the most realistic as evidence
accumulates that AIDS is & progressive diseasc. It now seems highly probable
that most of the infected individuals will eventually develop “full-blown”™ AIDS
(unless they die first from other causes). In this case, the Y and Z classes do pot
exist, and we may work only with Eqgs. (LD, (1.2, (1.4 and with W=,
T=W+5.

Case 20<p<l a=ay. Inthisase.wcmnyintc:pret[uthedassoﬁnfoaed
individuals who develop ufull-blown” AIDS and Yas the clags of individuals who
develop ARC (AIDS-related complex). We assume that individuals with cither
AIDS or ARC are no longer sexually active, so that T=F +8 is the total
aumber of sexually active individuals.

Case3:0<p<la,#cy. We may now interpret / as the class of individuals who
spend a mean time 1/( + a) infected and then develop AIDS. The class ¥ consists
of individuals who remain infective for & time 1/(u + ) and thea withdraw from
the sexually active group into a group that does not develop AIDS symptoms. In
this siteation presumably «; > &y, 30 that the infection time in ¥ is longer than
that in J. An alternative interpretation of the Z class is obtained by assuming that
an individual moves into this group after testing seropositive, and then refrains
from sexusa! intercourse. It is appropriate again to take T =W + S to be the
number of sexually active individuals.
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i i i ill describe

The rest of this section, as well as some of the appe-l‘,ldlo'es' wi ?

mathematical results pertaining to these three cases. We begin th_h an annlysxls of

the system (1.1)—(1.6). Recall that we are making only the following assumptions
ing C(T):

coneeming € cm=0, C(M=0, (Hy)

where the prime depotes the derivative with respect to T. Observe that the
dynamics of S, Y, and J are governed indcpendently of 4 and Z; therefore, it will
suffice to analyze (1.1), (1.2), {1.3) with (1.6). It is not too difficult to show that
the system is well-posed, in the sense that if S(0) > 0, [(0) 0, ¥(0) >0, then a
unique solution exists and S(1) >0, I =0, ¥(0) 20 for 1220 (see Castillo-
Chavez et al. 1989a). o

The system (1.1)—(1.3) always bas the equilibrium

S.LY)= (%. 0, 0), (L7

and also, upder certain assumptions (discussed later) has a unique endemic
“luﬂibdum“ V -y £y v -
The stability of the discase-free equilibrium {1.7) is determined by the

parameter 4
Rsz(ﬂ +1—“E)c(—~), (1.8)
oy Oy ]
the basic reproductive number. Here o = o, + pt, dy =&z + and'R _d?notn- the
number of secondary infections generated by a single infectious individual in a
population of susceptibles. Note that R is given by the pl:oc.luct of three key
epidemiological parameters: i (the probability of transmission per pa'rt:net).
C(A/y) (the mean number of sexual partners an average susceptible individual
has per unit time given that everybody is susceptible), and

Gr Gy

(the overall death-adjusted mean infectious period). Funhe.rfnom,‘ D= p{), +
(1 — p)D,, where D, and Dy denote the death-adjusted mean infectious periods,
lJo, and /oy, corresponding to the I and Y classes. The key parameter,
R = 1C(A/p)D, allows us to establish our first result:

Theorem £ If R & 1, then the equilibrium (A/p, 0, 0) of the system (1.1)—{(1.5) is

globally asymprotically stable.

This theorem asserts that any solution of {1.1)—(1.3) (S(n, K(n, Y(1)) with
5(0) =0, I(0) >0, Y(0) >0 tends to (A/p,0,0) as ¢ + 0. Thus the condition
R <\ is ngficient to guarantee that the disease will eventually die out of the
population,

We have shown also that

Theorem L If R > |, there is a unique endemic equilibrium (S*, I*, Y*), which is
locally asymptoticaily stable, and the infection-free state (A[n, 0, 0) is unstable.
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In Appendix A, we collect the proofs of these results. In Appendix B, we show
that when @, =a, or p=1, and R>1, the endemic equilibrium is actually
globally stabie. Furthermore, preliminary simulations suggest that even in the
case 0 < p < I, the endemic state is globally asymptotically stable provided that
R > 1. In mathematica! terms, we have a transcritical bifurcation.

Combining the results of this section and Appendices A and B, we can
describe the situation as follows:

The infection-free state of system (1.1)-(1.3) is globally asymptotically siable
when R < 1 and unstable if R > |. When R >\, this system has a unique locally
asymptotically stable endemic equilibrium. In other words, there is a iransfer of
stability to the endemic state as R crosses unity. Furthermore, when 0, = a, (both
death-adjusted mean infectious periods agree) and R > |, then the endemic equi-
librann is globally asymptotically stable.

The reproductive number R provides us with important information; we note
that R increases proportionately to the transmission probability and to the
average number of scxual partners, and may increase in proportion to the rate of
recruitment of individuals to the susceptible class (through C(T7)). Furthermore,
R is an increasing function of the mean infectious period D, and may be a
decreasing function of the mortality rate (depending on the functional expression
for C(I).

2. Distribated delay modet

‘Exponentiaf survival in the 7 and Y classes corresponds to the requirement that
the removal rate from the I class (by the development of full-blown AIDS
symptoms) into the A class is independent of the length of time that an individual
has been infected. Although the distribution of times between infection and the
onset of clinical AIDS is only partially known, it appcars from available data
that the rate of conversion from the [ to the A class, or the ¥ 1o the Z class, has
a more general distribution (sec Anderson et al. 1986; Blythe and Anderson .
1988). Therefore, in order to improve the model of Sect. 1 (a first approxima-
tion), we need to change from constant to variable removal rates.

This section introduces a single population model that incorporates variable
periods of infectiousness. By assuming that individuals become immediately
infectious (that is, by neglecting the latent period), we can concentrate on
studying the effects of arbitrarily distributed infectious periods and arbitrarily
distributed periods of sexual activity (for infectious J class and the life-long
infectious ¥ class, respectively) in the dynamics of HIV. We establish a threshold
ctiterion for the maintenance of the disease and aralyze to some extent the
stability propertics of the endemic and infection-free states. In Sect. 3, we
compare bricfly the consequences of assuming different distribution functions.
Investigations of this type, but for specific distributions, have been carried out
numerically, independently and simultancously by Blythe and Anderson (1988).

Following our carlier approach we divide our population into the previously
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defined classes: S, 1, Y, Z, and A. The parameters 4 = i, A, i, d, and p have the
same meaning as Sect. 1. The model of Scct. | is now modified by introducing
two functions, in P,(s) and P{(s) (sce Fig. 2), which represeat the proportion of
those individuals that become I- or Y-infective at time ¢ and that, if alive, arc still
infectious at time £ +5; that is, they survive as infectious. Since P, and Py are
survivorship functions, they are nonnegative and nonincreasing, and F,(0) =
P ,(0) = 1. We assume further that

J” P,(s)ds < o, J-w Py(s) ds < w,
0 ! o

and thus, —B,(x) and —P,(x) are the rates of removal of individuals from
classes 7 and Y into classes 4 and Z, x time units afier infection.

Defining C(T), W, and T as in Sect. 1, we have that the number of new
infections occurring at time x is AC(T{x))S(x) W(x)lT(x)._and therefore the rate
of change of the susceptible class is given by the expression:

a5() W)
—— A -2AC S(f) —— — uSQ), 1)
2 A = AC(T)S(H T 1S) (
with

P L. AC(T(x)S(x) FIL'((E))- e~ RP(t - x)dx

representing the number of individuals who have been infected from times 0 to
; and are still in class [ (with a similar expression for class ¥). The factor
exp( —(¢ - x)) takes account of removals dus to deaths by natural causes (that
is, in this case, not HIV). If Jy(s) and Y,(f) denote those individuals that were in
cither class [ or Y at time ¢ = 0, and arc still infectious, then the total numbers
of I- and Y-infectives at time ¢ are given by

I =I() +p J.' AC(T(xNS(x) L;-((';—)) e ™M= AP (¢ — x) dx, (22)

Y@ = Yl + (1) [ ACTES FG 0P =) dn @)

where I{r) and Y,(f) arc assumed to have compact support (that is, they vanish
for large enough ¢).

The expression for A() is the sum of three terms. The first is P

where A, = A(0), and represents those who had full-blown AIDS at tme zero )

and sre still alive. The second is the term Ay(f), rcpresenting those initially in
class J who have moved into class A and are still alive at time . We assume that

P
1 '—e A — n+d
Y
A —+S < P Fig. 2 Flow disgram for a single group

Y model with distributed periods of
e Y z B infoctiousness, for details see the text
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A1) approaches zero as ¢ approaches infinity. Finally, the term representing
those [ infected after time ¢ =0 is given by

J" {‘[: AC(T(x))S(x) ';_,((:)) M= _ P fr — x) g~ M- N dx} dr,

where —P,(t —x), denotes the rate of removal from the class J at time t or
(t — x) units after infection and, therefore,

ARy =p L {L AC(TE)SE) ’;((:)) e—H = = Py(r — x) e ~U - gx) g

4 Age TN L AL, (2.4)

The corresponding expression for the Zclass is given by

Z() =(1-p) J U 2CTE)S0) B g2 _ B (e — x) 6= 9] dx} &
o Lo T{x)

+Zye ™ + Zy(1). (2.5

System (2.1)—(2.5) is a system of nonlinear integral equations, and hence the
standard results on well-posedness for these systems as found in Miller (1971)
guarantee the existence and uniqueness of solutions as well as their continuous
dependence on parameters. The proof of positivity is the same as that given in
Castillo-Chavez et al. (1989a) and thercfore is omitted.

Observe that the dynamics of the classes S, Y, and [ are governed au-
tonomously, and hence we can restrict our analysis to the system (2.1)-(2.3). The

basic reproductive number in this case is given by
R=1C (f) '[f [pP/(3) +(1 —PIPy(x)] e dx, @)
where
f [oP,(x) +(1 — )Py ()] e~ dx

denotes the death-adjusted mean infectious period D. In fact, if P,(x) =e~""
and Py(x) =¢~*r*, then (2.6) reduces to (1.8). Note that

De=pD+(1-p)0y,
where

D"’I P)e~*ds and D,-L Py(s) ™" ds
Q

denote the mean infectious periods of classes [ and Y, respectively.
The system (2.1)-(2.3) with Jo{t) = Yo(t) =0 always has the equilibrium

(5,5, N= (% o, 0). @2
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but otherwise does not have a constant solution. Since Jo(r) and Yo(r) are zero for
large 1, it could be expected that (A/p,0,0) is an attractor or “asymptotic
equilibrium”™ as ¢ — + o, under appropriate conditions. The following theorems

show that the reproductive number R determines whether (2.7) is an attractor or
not.

Theorem 3. If R < |, then the infection-free state (Afp, 0, 0) of the limiting system
(2.13(2.3) is a global attractor; that is, lim, . , o (5(2), 1(H), Y(1}) =(A/1, 0,0
for any positive solution of system (2.1)—(2.3).

Theorem 4. If R > 1, then the infection-free state of the system (2.1)-(2.3) is
unstable. Furthermore, there exists a constant W* >0, such that any positive
solution (S(0), K8), Y()), of (2.1)—(2.3) satisfies lim sup,_, . o, [I{) + Y(1)] = W*.

In other words, if R> 1, then the disease-free state (2.7) cannot be an
attractor for any positive solution. In fact, every solution has at least approxi-
mately W* infectives (this #/* is the same as that in the statement of Theorem
5 below) for a sequence of times ¢ tending to +o. (Note that we have not
proved the still stronger result that the lim inf{(X{e) + Y(2)] > 0 as ¢ approaches
+.) It is then natural to ask whether S(1), Kr), ¥(2), approach nonzero
constants as ¢ -+ 4 co, when R > 1. If so, then it is known (see Miller 1971) that
these constants must satisfy the limiting system associated with (2.1)-(2.3}),
which is given by the following set of equations:

as_,_ W

@ = A~ TS 70 - wS), (2:8)
! L C )
1) =p j ICTENSE) Fame =D ds,  (29)
! Wx) _ -

Yy=(1-p) J iC(T(x))S(x)?(—;;e we=ap r —xydx, (210

if the equations for [ and Y are added, we have
Wil = J" AC(T()S(x) %(%)-e“"‘“"}’(t — x) dx, (2.11)

where

P(x) = pP{x) + (1 — p)Py(x).

The limiting system (2.8)-(2.11) is an autonomous system for which we have
established the following result:

Theorem 5. If R > |, then the limiting system (2.8)—(2.11) has a unique positive

equilibrivm (S*, ™). If in addition (d/dTXC(T}{T) €0, then this endemic equi-
librium is locally asymptotically stable.

Theorem 5 indicates that there is a switch of stability {rom (A/u,0) to
(S*, W*) as R crosses 1. We also conjecture but have not proved that the
asymptotic dynamics of system (2.1)—(2.3) and the limiting system (2.8)-(2.11)
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agree. An alternative approach can be found in Hethcote et al. (1981). The
proofs of these results can be found in Appendices C and D.

3. Discussion

In this paper we have constructed a series of models with the purpose of
determining the role of long incubation periods of the HIV virus in a single
population. The lack of encugh information to determine the parameters needed
for these models makes prediction impossible. However, much useful informa-
tion can be obtained from these results. First of all, the long incubation periods
do not result in periodic outbreaks. The diseasc cither dies out or it remains
endemic. The computations of the reproductive numbers allow us to understand
the role of the different parameters in the maintenance or cradication of HIV.
Behavior modification naturally plays a very important role, and the reproduc-
tive numbers help us to quantify the effects of bebavier modification. Further-
more, the effects of different distributions for the incubation period can be
estimated. Here, for cxample, we compare two extremes, First we assume that
Pi(x) me—=", and P,(x) = e~*r=. The reproductive number, given by

R=1C (%) Lm [pP(x) + (1 — p)P y(x)] e ~* dx,

now reduces to
A 1 1
R=1C|— +{1-—-=p) }
I (!‘){pﬂ'l‘“: =r Htoy

If we take the other extreme and assume that P,(x) = H(x) — H(x — w),
P{x) = H(x) — H(x — 1), where H(x) denotes the Heaviside function (the fact
that P,(x) and P,(x) are not continuously differentiable is just a technical

nuisance), then
A [ —e= l—e™™
Ry=AC|— +{1 - .
2 ( ){P r {1-p) P }

T
Hence, we have that

i 1
+(1-
R, p(y+¢, a-» H+ay
= - “e = f(p).
Ry [—e™™ l—e
4 +{1-p)
M H

Thercfore if we take p =05, @ =10 years (=1fx), 1 =30 years (=l/ay),
(1/1) =30 years, then R,/R,20.82. If, for example, w =6 years, = 30 years
(= 1/a,), {1/1) = 30 years, then

1-p
4+ —
R, 2

R, pll—e+(1—pi-e"

ol
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Hence f(1/3), the ratio of the reproductive numbers, is approximately 0.81. A
value of p = 2/3 gives a ratio of about (.84, a value of p = 8/9 gives a ratio of
about 0.82, and a value of p = | gives a ratio of about 0.92. In general, note that

PP+ (1 —p)Dy.y

o) pD,+ (1 =p)Dyy
where the indices differentiate between the death-adjusted mean infectious peri-
ods for model 1 (exponential removal) and model 2 (fixed period of infectious-
ness). We further observe that f(p) is an increasing function of p provided that

1
'u+;)l—e“‘“'

17 fe
p+—

@

which holds whenever ¢ > . Hence whenever t > w, f{(p) satisfies
1 1

Dy _ ntay Dy e
SO =5 =L <) AN =G = s 0SSl
K #

Thus, even though the sssumption of simple exponential removal underesti-
mates the reproductive number, the above expression gives us & way to estimatc
the relative error because the above two distributions represent the two extremes.
Hence, under the assumptions of the model, the “truc” value of R lies somewhere
in between. In addition, for a value p near unity (which unfortunately is not out
of the reaim of possibility), the qualitative dynamics predicted by these models
are not very different. Furthermore, since the qualitative dynamics are soverned
largely by their reproductive numbers, and their values are not very differcot (at
least for the realistic parameters chosen in the above examples), the effect of
changing key parameters (once these are determined with higher accuracy) can
be assessed readily. Note, however, that the transient dynamics could be quite
different; this is partiaily due to the dimensionality of the system {finite versus
infinite). If the infinite-dimensional model (that is, the distributed delay model)
is more realistic, then it will be extremely difficult to predict the transient
dynamics; that is, short-term predictions become more difficult

Finally, we note that in the models introduced here we have not only assumed
homogeneous mixing (but see Castillo-Chavez et al. 1989a,b; Huang et al
1989a,b), but also that an individual once infected is always equally infectious.
Since there is some evidence that HIV carriers are not equally infectious (see
Francis et al. 1984; Salahuddin et al. 1984; Lange et aL 1986), then the relaxing
of this assumption becomes of importance in order to estimate the cffect of
variable infectiousness in the reproductive number and therefore in the dynamics
of HIV. Preliminary analysis suggests that variable infectiousness may have a
significant effect on the qualitative dypamics of the distributed delay model (sec
Thieme et al. 1989); and, it seems to have a significant effect on the transient
dynamics (see the numerical simulations of Hyman and Stanley (1988)).
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Appendix A: Stability resuits for the system (1.1)~(1.5)

In this appendix we collect the proofs of Theorems 1 and 2 of Sect. 1. We will
repeat some statements to increase the clarity of the exposition.

Theorem 1. If R <\, then the equilibriuvm (Afp, 0,0) of the system (1.1)-(1.5) is
globally asymptotically stable.

Proof of Theorem 1. Let Q =0, c0]® be the nonnegative orthant in R’. As we
remarked above, if (Sy, 7y, Yo) is in @ then (S(), /(), Y(9)) is in Q for 1 2 0 and
any p, 05 p < 1. From (1.1), it follows that

dT
o =A —pT"—u,I—-u,-}’,

which implies that §im sup,_, , T{f) €A/p. Hence for the discussion of the
aymptotic behavior of solutions as 1 —+ + e we can (without loss of genenality)
assume that T(7) € Afu when f 2 0. Furthermore, since C(T) is an increasing
function of T, then C(T) < C(A/u). If we now let

fin <22, 10
then v
P L1=p\, CTOSE
go=[(&+455) S| wo

‘[(£+_l_:£) C (ﬁ)_g (..E. +‘;P)w_ 1] W)
6, oy a a  ay ()

=(R- W -1 (GL + }:_P.) CAW sy

Or G
P 1-p\CTE)
< —Aq? (‘;; + O'_r) '—T(Tf'(f);

where ¢ = min{o,, r}. Therefore f(1} +0 as ¢ =+ +co, hence I{1) +0, ¥(1) ~+0,
and C(TSWIT =0 as t—+oo. From (1.1} it follows that S()—+A/u as
¢ — 40, completing the proof.

When R > 1, the disease free equilibrium is unstable (Theorem 1); and
furthermore, there exists a unique positive endemic equilibrium (S*, /*, Y*). To
establish this last result we begin with the following preliminary result:

Lemma A. Suppose that B,, B, and H are positive numbers, and that B, > f,,
C(Afu} > H. Then there is a unique number I* >0 suck that

A - 4 .| = /_1_ - ../_l_ *
c(;_go; )(;_5,1)_1?(# ﬁol). ~—Bl*>0.

Proof. Let g(I) = ClAfu — B I)(Afp — B Alu — Bol), and observe that
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g(0) = C{Afu) > H and g{A/(up)) =0. Since

g _ . (4 C'(w) ACw A
?I—“Bo(;“ﬁlf) ""(.BI—BD)# R “-.ﬂ Bol. (A1)

Note that for 7 € [0, Af(uf,)], we have

u>0, C'(u) =0, C(t) > 0. (A2)

Therefore (Al) implies that g(/) is a strictly decreasing function of [ on
the interval [0, A{(u8,)], and bence there is a unique I* in the open interval
(0, Af(18,)} such that g(I*) = H with Afu — §,I* > 0.

Corollary A. If R> 1, then there is a unique positive endemic equilibrium
(S, I, 7*).

Proof. In order to prove the cxistence of such equilibrium, we let
1 b 1

e = - * and H=,
B, 72D, Bo= B D, ip

Using the fact that 8, > B, and
a oD lfg 1—
g,,=_f__r__..,_[_r_,,l(£+___e)]
pu P PLAE Ty ay

2_1_[31_‘0_0;(1—P):|=1|:ﬁ£_p]ﬂﬂr>o!
pLu ) plu 2

and that R = AC{A/u)D, we have that C(A/n) = R{(D1) > H; hence by Lemma
A, there is a unique /* in (0, A/(u8,)) such that

ClAfn — BoI®¥Alu — B I (A lp ~ BoI*) = H. (A3)
Now let

A 1 D D,
St m—— I=, Y*m|(—~—1]|71*, Wr=I*+F*=e—[* (A4
# pupD, (FD: ) 124 (44
Since I* < AJuf, = ApD,, then S*® > 0; and since Df(pD,) > 1, then ¥* >0 (if
p =1, there is of course no equation for ¥). Therefore using (Ad) we find that

A
T* =St We ol

which in combination with (A3) implies that C(T™)S*/T* = H. Finally, it can be
checked casily that (§*, I*, ¥Y*) is a positive equilibrium of (1.1)-(1.3).

To show uniqueness we proceed by letting (S*, 7, ¥'*) denote a positive
¢quilibrium. It is convenieat to let M(T) = C(T)/T. From (1.2) and (1.3), we get

[(1—=p)/DM* =[p/D,]Y*, and ADM(T)S"W* =] + ¥* = W*.
Using

mea ol . _{D . ._ D
MTS —H=gp (i) wes

— 1", AS
D, oD, (AS)
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whete Wr=[*+ Y, T" =8+ W*, and (1.1}, we obtain

1
A 1 A D A ~ S [ H ——
=———1TI", T~=8§~+—1I*~,  and M(T") .
S u puD, PD; 1D
Hence, by Lemma 1, we have that [* = I*, and therefore ¥ = Y*and 5" = S*.
The nature of the stability of the endemic equilibrium is resolved in the
following theorem:

Theorem 2. If R > 1, then there is a unique endemic equilibrium (-S‘, I*, Y*) which
is locally asymptotically stable, and the equilibrium (A, 0,0) is unstable.

Proof of Theorem 2. The Jacobian matrix for the right side of {1.1)-(1.3) is

J _ (fl -f!-f;)
TS LT
AWM +SM)—p —AS(M + WM —AS(M + WM}
=] pAW(M +SM" PAS(M + WM™ — o, PAS(M + WM")

(1= AWM + SM?) (1 — pIAS(M + WM?) (1 —p)AS(M + WM) —ay

where M’ denotes dM(T)/dT. By cvaluating this Jacobian at the discase-frec
equilibrium, that is, when W = 0, S = Ay, and therefore Sh_f = (A[M{Ap) =
C(A/p), we arrive at the corresponding characteristic equation:

det{zf —~ )= (z + ¥z +az +b) =0,

where

4 AP 1PV e6e,0—k
aga,+dy—1C(;), b=a,ey[l—1C(#)(d!+ . )] o0y ( ).

Since & <0 whenever R > 1, the disease-free equilibrium is unstable. For "bfc
endemic equilibrium (S*, I*, ¥*), the charmacteristic equation is the cubic
det(zl —J) =2’ +a,2* + gz +a;. By letting W*=0"+ Yf, T‘=ST+ we,
M* = M(T*), and M"* = (dM|dTXT*), we obtain the following expressions for
a,, &z, &y, in which we have suppressed the asterisks in order to simplify the
typography:

1 4 o]l
a.=cr,+ay—5+p+lWM=[p::+(l—y)a—r]ﬁ+p+iWM
oy o ]1
—“+(1—-p)~— =+ u>0,
>[Pa’+( P)ar]D [

ay = ple, +ay) + (0, + o )AWM + SWM) + a0y
— (& + ol - p) +aplA(SM + SWM’)
=Na, + o HWM + SWMY + pla; + oy — LSM) — pdSWM'
—[o, (1 —p) + oy plASWM",
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where we have used the fact that

010y —lo,(1 — p) + 7, p)ASM = 0.
Since

MAT) (C(T)) S _am
and g, +0;~ ASM >0, we have

() s
ay= AW T [(cr, +¢r)(l -;.)th(l =p)+ayp) %]

o toy—p—a,(l-p)—oypjsw=ar! (T)

+ﬂ(0';+0'r—lSM)+,l#£’.%qC(_Iv).

> ‘IW‘(Q [(a't + 0r)(l —E)-«}- (@l ~p) +a,p) j,

+ logp + (1 —p)]SWC—(fQ >0

and
ay = a0 (WM + SWM) +dlaoy — (1 - po, + pa)ASM
~ H(1-p)a; + pa NSWM'
= mrl(WM +SWM) — pilo,(1 - p) + pa JSWM’

<w D {‘r"r(l——)+i'{6:(l—p)+pdr]}

+ASW{e0y ~ poy(1 —p)+pvy]}-c—§59
(T

0y
"or {“’“'(l‘}‘-)+ﬂﬁ:(i—.0)+wﬂ}

+ Uay + pap + (1 — p)u,])SWg’(T_n..

Using these relations and
or o bl
[P py +{l~p) ;:]B(d, +4d,) > a,0,,

[pg_r+(1 —p)g—’:l-l- Lo, + (1 —Playogay,

0Gc can show that aya, > a,, Therefore,

the Routh-—Hurwlu ta
are satisfied. This completes the proof o stability conditions

f Theorem 2.
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Appendix B: Global stability for system (1.1}-(13); case: p=1 or ;=2
When p=1 or ¢, =a,, then the system (1.1)-(1.3) reduces to

ds w
— =A—AC(NS = —uS, (B1}

dw

-;,-—).C(T)S——GW where W=I+Y, o=a+p (B2)

If R<t and S(0) = 5,2 0, (0} > W,y =0, then Theorem 1 shows
. A
_l_erm (S@, Wiy = (; 0)-

Next, suppose that R> 1. Then the system has a positive equilibrium
(S*, W*). With T = S + W, the system (B1)-(B2) is equivalent to

aT
_— W, B3
= A=-pT —a (B3)

dw W a
== w[cm on — —3]- (B4}

This systemn has the positive equilibrium (T%, #*) where T* = 5* + W'*.
Using the equations satisfied by T™ and W*, we may rewrite (B3)-(B4} in
the form

‘;_T= —uT = T*) — (W — W™), (B3)
o -aw| o) -0 o + e
T T
we\ W CTNT =T _ C(T) . }
-J.W{[C(T) C('I")I( . )+ = (W—w*)
= AWG(T) — AW-CLD(W we), (B6)

where
L ] T‘
G(T) = [C(T) — C(T‘)]( W) wecrs LT

Since C(T) is increasing (assumption H,), then G(T) is positive when T > T*
and negative when T < T™. We now let

l T
W(T, W) m; [ we
™

Then V(T*, W*) =0, V(T, #) >0 for other admissible T, W. Furthermore,
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the derivative of ¥ along solutions of (B3)-(B4) (indicated by a bar over V) is
given by

7, wy = -2 GEYT - T = MW = W,

which is <0 whenever (T, W) #(T"*, W*). Thercfore, we get the following
result:

Theorem B. If R > 1, then the equilibrium (T* W*) for (BS)-(B6) and, conse-
quently, the equilibrivm (S, W*) for {B1)—(B2), are globally asymptotically
stable.

Appendix C: Stability and instability for system (2.1)—(2.3)
In order to establish these results, we proceed to rewrite the system (2.1)~(2.3)
by introducing the following expressions:

wQ) -

B() = AC(T(HS() ?(r-)—' 0,(s) =P, e ™, J=Ilor Y. (C1)
Adding (2.2) and (2.3), and vsing (C1), we can rewrite the system (2.1)-(23)in
the following way:

ds

— = A= B~ 45, (C2)
Wi = Wo(1) + J: B(t — 9pQ,(s) + (1 — )2y ds, (C3)
Wolf) = L1} + Yol2) W) = I(7) + Y(0)- (C4)

Proof of Theorem 3. Because we are interested in the long-term behavior of
system (C2)-(C4), we can make use of the fact that W,(¢) has compact support
and replace (C3) by ’

W) = J' B(t — HpQ,(8) + (1 — PG r( 45 “for t > ¢, (large enough). (C35)

Using (2.1)-(2.3), for large ¢, we have
arw _ ' SEW) e x
o A~ T +J; AC(T(x) ) ¢ +
x [pP(t — <) + (1 —pB(r— X)) dx
<A —uT(0),

for nonpositive P, and £y. This implies that lim sup. - + o T(f) < A/u. Hence, we

92

can assume that T(6)} < Alu for 1 2 0. Then (C3)
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shows

Wi <AC (%) [ Wit - pi(e) + (1~ QN &5

_%*‘ j (pQ(5) + (1 — PYQ(NCTC — 5N Wt — 5) ds.

Supppose W = lim sup, . 4+

w(). If W >0, then
that f, -+ +0 asn— + o0, and such that km, . + =
&> 0, there exists an N such that W s W +efort 2 ty/2. Furthermore, since

Wi(i) and C*(T) are bounded, we have that (ii) there is a 5 > 0 such that

CTENWHs) 2 AN (),
By using (i) and (ii), for n > N, we have

teft.—o, f,+dl

W) < 1c(%) F (501 + (1 = PO, —5) ds

"
h %‘. L Qi) +(1—-P)Q (OIC(TT - ) Wt — 5)ds

+1C (%) I " (pQ) + (1= PRANW L~ &5

)

<iC (%)(w +0 j’; (0 x (1 — Q@] ds

3
_%%,1 W )WL) J; (pC:(s) + (1 —P)Cr(N ds

+ic(8) I_ (PO + (1~ P ONWE. = ) ds.

Note that W(#) is bounded, hence

I: [pQ!(S) +(1 "P)Qy(S}]W(l, ._.‘)d:_.o 25 1= + 0.

1

Letting # — co in the above inequality yields that
W < ROW + ) ~ [(A/QDICONH?.

Since ¢ > 0 is arbitrary, we have

W < RW — [ QDICIRW < W

whenever R <1. Since this is a contradiction, we must have

lim sup,_, 4+« WU} = 0.

For the case R > 1, consider the limiting system of (C2)-{C3):

das

dr

A — B(1) — uS,

there is a sequence {t,} such
W(t) = W. Then (1) for each

that

(€C6)
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W) = j B(s) e P(t — ) e~ ds, (€N

-

where
Pty = p@i(f) + (1 — P)Qr0)-
Lemma C8. If R > 1, then (C8)—(CT) has a unique endemic equilibrium (S*, W'*).

The proof of this corollary is the same as that in Appendix A.

We now proceed with the proof of Theorem 4. Since R > 1, then Lemma C8
implies that there is a unique pair of positive numbers 5%, W* with
$* + W* = T* < A/, and satisfying the system

A= AM(T)SW — uS =0, (C9)

AM(TISD =1, (C10)

where D denotes the overall death-adjusted mean infectious period and M(T) =
C(T}/T. We will show that lim 3up, _, + S(0) = W*.

Proof of Theorem 4. Assumc that the conclusion of the theorem does not bold.
Then there cxista 1*> 0 and a 7 >0 (W' < #*) such that W{f) < W’ whenever
¢ %, Using the fact that T=5+ W, we note that
HM(S + P)S) =£. (S + W)S =C‘(S+ RS S+ W)W
as S| S+W S+ W (S+wy
a(M(S+W)S)___a_ CS+ W) =C'(S+W')W+C(S+W)S
35 w| S+W . S+ W S+wy 7
whenever §> 0, and W > 0. Hence, if we define the function

L(S) = A — AM(S + WO)SW° — S, for $ 30, and B" < W° < W,

then since dL/dS is negative, it follows that (S} is a strictly decreasing function
of S In addition, since L{0) >0, and L{(4/p) <0, then there exists an 57> 0
such that L(S®) = 0.

Using (C11) we conclude that if r > ¢° and S() < 5°, then

>0,
(C11)

ds{u :

D) _ 4 - 56WEIME) — p5) > A = IMTISH? - 450 = LIS =0,
where T® = 5% + W°, Hence, im inf, . , . 5(0) > 5° > ; consequently, thereis a
1* > 1% such that S(r) > S° ¢ > ¢*. In addition, since

(S —S*)= AM(T")W*8* — AM(THS W
> ).{M(T')S‘W“ — M(S%+ W%SW*), T*=5*+ W,
we must have that 59> S*. Therefore, for all :2r* we have that
MT()S() > M(S° + W(0)S® 2 M(T™)S*; hence there is a o >0 such that
M(THS? = o + M(T")S*.
Let W* =liminf,_ .. W(), and assume that W~ =0. Then there is a
sequence {1,} such that ¢, —+ + 00 as n— +@, and W) = W), /2S5,
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Hence, for large enough f,, W have

Wit 2 1 j MT()SEW(s) e~ = Iplt, — s} ds

2 1

[M1H

> AM(T*)S* + )WL) I e~ #pls) ds, wherte pis) =pP(s) + (1 = p)Py(s)

o
This implies that

12 AM(T")S* +3) j—’ e=Fpis) ds;

and therefore, by letting n = + a0, we get that 1 > AM(T*)S*D, which contra-
dicts (C10}.
If W~ >0, then for any € > 0, there exists a positive integer N such that

W) > (1 —OW(,) for all '—;s (<, nzN.
Using the same argument as above, we can then shorw that
W) > AM(TS® + o)1 — OW () E - #p(s) ds.
This implies
13 AM(T)S* + X1~ L” e—Hp(s) ds.

Since ¢ is arbitrary this again implies a contradiction.

Appendix D: Asymptotic stability of the endemic equilibrium

In Appendix C, it was provodinl_anmlCSthatifR> 1, the limiting system has
a unique positive equilibdum (S*, W) We will now complete the proof of
Theorem 5 by showing that this equilibrium is asymptotically stable for the
system (2.8)-(2.9), or equivalently (COHCT).

The proof of this result reduces to the study of the Jocal stability of the trivial
equilibrium (X =0} for a Vaolterma integral equation of the type

*) X = F) +L'A(: — G

where X € R*, G(0) =0, G e C'(R"—~R"), F € C({0, c0) = R"), and Aisann xn
matrix such that A(f) € L[0, A} for cach ¢ >0. R" denotes real n-space with a
norm |X), and || denotes the corresponding matrix norm.

Theorem (Miller 1968; Theorem 4). Assume that the following conditions hold:
(i) the Jacobian matrix DG(0) is nonsingular,

(i) det (1 - r e~ A(X)DG(0) dt) £0, for all z with Rez >0
s
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where I denotes the n x n identity matrix, and (iii) there is a sufficiently small
€ > 0 such that sup{|F(1)]; 0 & t < ©} K € and F(t) +0 as t —+ . Then X{) =0
as t — .

Proof of Theorem 5, First we rewrite (C6) as

S() -£+[S(°) _z_l]e-w_J'* B(x)e~H'=V dr, (D1)
B 13 o
and as
B(tyer=Ae" — éﬂ;—l—-ﬂ. (D2)

Using these two expressions, we can write H/(r) as follows:
A A
W) = S(0) e ~™P(1) ""; - [S(O) - ;‘] e #

*“r B(r)e ™'~ "p(r — 1) dt +J" B(x)e ™~k

—w o

dr. (D3)

+L’A¢-—m},&)dr‘_J" S(t)e-"('_')d?(’_r)
o dt

We let (1) = B() — A™ and S~(f) = S(r) — S* denote perturbations from
the endemic equilibrium. By substituting #* and S* into (D1) and (D2) (which
are satisfied by §* and W™), we arrive at the following system for §~ and W*:

S"‘(t)-S“(O)e"'“——J"[B"(t)—B‘]e"“""dr, (D4)
(1]
W) = SO0 — ] e + j (BA()— B*|e~<~9dr (D3
L}
-—J:S‘(t)e"““’ PED

+r (B~(x) — B*]e~*"~p(t — 1) dr,

where B* =AM[T*|S*W*, B~ =[S +S*[W" + WM[T* +T*, T* =
T—-T* T=5+W, and T* = S* + W*. Finally,

S Qe
F(n = l:S MONPY — 1] e~ + Jo [B*(1) — B*j e~ ~p(t — 1) drjl- (D6}

ase wny=| 07, (o)
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—e™ 0
Aty = - _e_“dP(t) . (D8)
dr

S ~
X =|:w~]' {D9)
Then the system (D4)—(D5) is in the form needed to apply Miller's theorem.
It remains to show that the conditions specified in Miller’s theorem arc
satisfied. We start by showing that DG(0) is non-singular. First note
DG(O) =|:).W‘(M(T“) + S‘M‘(T')) AS*H(M(T*) + W'M’(T‘))}
1 0

and since

C(T*)S*5* W+C(T*
(@St s weea o

M(T*)y = WM(T) == = ,

then det{DG(0)} 0.
Next we show that

det (I —J e~ T A(T)DG(0) dr) ¥0, forall z with Re z 0.
4]

First, we note
H(z) = det (I - J:’ e A(DDG(D) dr)

o >
l+m|-[l e 4 mzj g rar gy
o
=det

_MIL e-(#+=}=dr+-L e—(ﬁ+l)v%‘§dr l—m:L e—Wror g,

where m, = AR (M(T*) + S*M'(T*), my=2IS*(M(T*) + W*M(T*)). After
expanding and collecting terms, we have that

m o0
Hiz)=1 +;T+l_z —m,J; "W MPir) gr.
Observe that {C7) implies
1 =A8*M(T*} j. e~ P(ry e
L]

and the hypothesis that {(d/dTHC(T}/T) < 0. Using this equality we can show
that whenever Rez 20,

IH(2)| >

1 +il - |y J =" P(t) dt > 0.
H+z o
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Furthermore, clearly for any &>0, there is a §,>0 such that
sup{|F(1)|:0€ 1 <) <S¢ and F()—+0 as (—~co, for any |S*(z)j<dy,
[ (1) £ 8, —e0 €T 0.
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