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1. Introduction

Abstract. Infection by one strain of influenza type A provides some protection
(cross-immunity) against infection by a related strain. It is important to
determine how this influences the observed co-circulation of comparatively
minor variants of the HIN1 and H3N2 subtypes. To this end, we formulate
discrete and continuous time models with two viral strains, cross-immunity,
age structure, and infectious disease dynamics. Simulation and analysis of
models with cross-immunity indicate that sustained oscillations cannot be
maintained by age-specific infection activity level rates when the mortality
rate is constant; but are possible if mortalities are age-specific, even if activity
levels are independent of age. Sustained oscillations do not seem possible for
a single-strain model, even in the presence of age-specific mortalities; and
thus it is suggested that the interplay between cross-immunity and age-specific
mortalities may underlie observed oscillations.

Key words: Age structure — Proportionate mixing — Cross-immunity —
Influenza — Infectious diseases

-

Infectious diseases like measles and influenza have several features in commeon,
they cause recurrent epidemics and have strongly age-dependent contact rates.
However, there are important differences. Measles is generated by a singie
infectious viral agent and hence individuals acquire permanent immunity after
recovery. The situation with influenza is much more complex (see Kilbourne
1975; Palese and Young 1982; Beveridge 1977; Selby 1976; Stuart-Harmms and
Schild 1976; Dowdle et al. 1974; Fox and Kilbourne 1973). There are three major
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recoguized %&s of influenza: A (the most severe), B, and .C; and each has various

subtypes.y Forexample, three recognized subtypes of type"!\\-- HIN1, H2N2,
dnd H3NZ — have been isolated from man; and there are several reoogmzed .
strains’ (oompamuvely minor variants) within each subtype. The appearance of
several strains i5'due to the capacity of influenza viruses to change their antigenic
meaaa(mmu £t0121982); whith:éffectivelyballowsthéptbidirculyent
individuals’ immunie responses. Unfortunately, the dexelopuent plipcgines and
vaccination progra.ms ‘'which Have been successful for diseases such as smallpox,
measles and pohomgelms is greatly complicated by an ever-changing virus.

Ingeperal, influenza (A) gpidemics have severe effects onithe human popula-
tion and occasionally are responsible for pandemtq; such as the infamous -one
of 1918, which affected 30% to 60% of the populauon. These pandemics could
result from the geqgeration of novel subtypes or’they could ‘result froni ‘high
population susoepubllny to a reappearing old subtype. In thé' latter ’case, h_s for
the reappearance of the H1N1 subtype i in 1977-78, the mter-epldemlc time miust
depend on the time for a sufficient susceptible pool to develop.: . :. .-

Because of the complexity and severity of the disease, it is of utmost unpor:anoe
to detemunc the mechanisms responsible for the dynamics of influenza. The
q'l;ser:;veg pattems associated with influenza include: secondary waves stnlnng a
com'mﬂmty soon after a first attack, epidemics (occurring annually 'between
pandemns and involving successive drift variants of previous pandemic subtypes),
and’ worldw:de pandemics occurring at approximately lO-to-40-year intervals
(Fine 1982) Central isszes currently under exploration by various investigators
mclude study of the extent that these patterns reflect the influence of anugemc
vanants . Community structure, weather, and/or geography. ”

A specnﬁc question of interest to- us deals with the possible ‘mechanisms
underlylng the recurrence of epidemics and the pcrsnstence of co-circulating virus
types between pandemics. In related work, Liit (1989) extends these approaches
"o oonsader the interaction of the human population with other host populanons
which ‘may be a source of recombinants or mutants. T

In Sect. 2, we introduce a two-strain discrete-time model with cross-immunity.
This model incorporates age structure via a contact matrix-(under the assumption
of proportionate mixing) and age-specific mortality. This model has been used
primarily as an expioratory simulation tool in our attempts to understand the
dynamics generated by the highly heterogencous interactions of this host-
pathogen system. The results of extensive but not exhaustive simulations, also
recorded in this section, show extremely complicated dynamics, ranging from
damped oscillations and sustained periodic behavior to chaotic behavior, depend-
ing on the degree of cross-immunity between strains and on the age-step used.
Because of the difficuity in analyzing this model, we turn in the following sections
to continuous versions, and systematically incorporate some of the complexities
of the discrete-time model. Differences remain, however, some of which relate
to ‘inherent properties of discrete-time models; therefore, some issues remain
unresolved.

In Sect. 3, we extend the Dietz-Elveback continuous time model (see Dietz
1979) for homogeneous populations to include two strains with different degrees
of cross-immunity. Our mathematical analysis of this model indicates results
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Fig. 1. Transfer diagram for a singie viral strain on & single i} 9 A RIETe JHITE DU GUNT ; ) ;
host ulation. The variables S, I, and R denote the number;j. 3,.1iv |subiviboi: ns 104 ¢ L) i ]
pop er:i- mariy Lsubivit: e 1ot g |
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of susceptible, infected, and recovered. .. .. . .5 ga0isne | (MLKRSON-220T 06 ,
L G o 1:-» Arw bsn'ﬂm s?o:h --'n ’
coincident with the dynan:uc behawor obserg in our, symulatio ,\mm 3 "ttl i

age structure removed. Sections 4 and 5 °°'-’-s!dﬁf1f‘h-.3; ﬁg}'{‘.% tg:‘i” ] Jgnodel

with age structure. A threshold condl_t!onals' computed, al ;1}:'__ c@arag—
teristic equation is' obtained. We then procoed with a ‘pretimin ﬁy‘f‘ cal 'stab:ﬁ'ty
analysis of the steady-state age dxsﬁ'lb'ti"ti i ’:gnmdqqm}:}hs‘h":( Aimeticall y), 'the
impaossibility of bifurcating penodlc so]utlons for a tgvo-stgp age-spe{nﬁc oontact

rate. After a continuous two strmft i'g‘e-'de'pen t’ '"def thh .partial cross-
immunity is introduced in Sect. 6, we proceed to obtam. partml local stabxhty
results for a particular case of the Zontinuous i)wo stram age-dependent model.

We then comment on the relevance of these ‘results to epldemxologxcal studies.,
Finally, in a series of append:ces we collect the mathematical details and show

that the models introduced in Sects. 4 and 6 ‘are well-posed. - ,

i
!
!
:
:
i

2. The two-strain sunnlation model

The model presented in this section subch\ndes the pOpulanon mto discrete age
classes, and incorporate age-specific mortalities and, contact rates, discrete time
steps and age-dependent disease dynamics. To introduce the algorithm for the
model, we need some notation. In what follows, the sub-index i indicates that
the corresponding class has been infected by or recovered from strain i. In Fig.
1 the standard transfer diagram for an SIR model is depicted. If two related
strains of a virus such as influenza are co-circulating in a population, then
individuals who have been infected by one strain may have partial immunity (i.e.
decreased susceptibility) to the other strain- (see Castillo-Chavez et al. 1988;
Couch and Kasel 1983). Assume that individuals, while infected with one strain, :
temporarily are not susceptible to the other, cither because of temporary immunity i
or because of isolation from the rest of the popuiation. Assume further that an :
individual, once recovered from one strain of influenza, has permanent immunity
to that strain but is susceptible to the other strain with, perhaps, a reduced level PR A5 1T
of susceptibility due to partial immunity.
In the transfer diagram (Fig. 2), X is the susoepub!e class, Y, denotes those
infected by strain { but still susceptible to the other strain, and Z, denotes those

X —bY ——p2Z

1 1

Y : v
2

2

Fig. 2. Transfer diagram for two co-circulating viral strains or l . l
subtypes on a single host population. The variables X, Y, Z,, z Y w N
2 : ' ( /V‘J Ve

¥V, and W are defined in the text
0 w A
Y
.
1
\S‘V‘ W {r



236 C. Castillo-Chavez et ai.

recovered from strain L We introducs o; as the relative susceptibility to strain j
(j #J)_for an individual that has been infected by & Note that & =1 corresponds
to no cross-immunity, whereas o =0 corresponds to total cross-immunity. V;
denotes those infected with strain i but recovered from the other strain, and W
ge;ngt‘e'sf{hqrs'e;‘i%éovered‘from‘bdth';t'l"aihs.’: e '

_,‘-‘__.‘;Z"ljf.‘:' population is divided into 80 one-year (360 day) age classes or compart-
ments, wi.th”af}'fﬁ;gi_i'(sgcadyﬁtate) fraction F, of the population being in compart-

gflfﬁt{ch{otetﬁaﬂas is standard in such models, we balance births and deaths
}g:}gﬁgglgi,‘ggpgllgtjgp _size constant; since there is no disease induced mortality
assumed, ‘we also assume a stationary age distribution. In general, then, F, ., =
P.F,, where P, is the survival probability from year k to year k+1. Let X§, Yi,,
Y2, Ziks Zix, Vie, Vie and Wi be the fractions of the total population at time

_'s}? t i_n:a:ge compartment k and the indicated epidemiological class. Note that

Wl ope o . R

X'k+ Y;t'f' Yik+Z;k+Z§k+ V;k+ V;lk+ Wisz

for all ¢ and all & The daily activity level a, of age group k is a measure of the
relative amount of mixing done by age group k when compared to other age
groups. The proportionate mixing assumption specifies that the number of daily
contacts of an infective in group ! is proportional to activity level a,, and that
these contacts are spread among the age groups in proportion to their activity
levels a,. Thus the daily contact rate of an infective in group [ with individuals
in group k is proportional to a,ay. The incidence into Z, is similarly structured.
Motivated by the fact that the average infective period of influenza lies between
2 and 6 days, we have used a time step of 3 days. Our preliminary investigations
of the effects of the time step, however, indicate that the choice of time step may
be of crucial importance, especially as the time step is reduced to zero. It is clear
that this requires further examination, especially to the extent that it affects the
quantitative results. We introduce the infection at time step O by assuming that
a fraction n of the individuals in each compartment and class are infectious, and
the remainder are susceptible. At time step ¢, the total infectivity of strain i is
calculated as T, =32, a.(Yi+ V%), i=1, 2. Let 8, be the incidence proportionality
Jactor for a three-day period for strain i This means that the incidences into the
appropriate four age compartments k due to the infectives of each strain at time
step ¢ are as follows: the incidence into Y'%! is Ba X, T\, the incidence into
Y3 is 8.a.X . T,, the incidence into Vic'is 08,4, Z4 T, and the incidence into
2k 15 028,a,Z\T,. We make a simplification for computational purposes by
ignoring age structure within each 30-day month. All infectives recover after three
days and move into the removed classes. After every 10 three-day time steps (one
month)}, the fractions within each class in each subcompartment are adjusted to
correspond to natural aging and mortality. Thus (1 - P}/ 12 of individuals in the
susceptible, infectious and removed classes in age compartment k are removed
due to mortality, and the survivors are moved into the same epidemiological class
in age compartment k + 1. After all classes and compartments from age compart-
ment 80 down to age compartment 1 have been adjusted, susceptible newbomns
are introduced; to account for these, we add F,/12 10 X!.

g
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[n order to approximate the age distribution in a developed country, we have
chosen the fractions in the age compartments to be

N [1-0.2k/so, 1sk=<50 2.1)
*~10.8-0.8(k-50)/30, S0=<k=80 ’

so that 80% survive to age 50 and none survive past age 80. One should, of
course, explore other functional forms. The most important aspect of (2.1) is that
it differs qualitatively from an exponential model, which has age-independent
mortalities. The activity levels are chosen for five age categories: preschool (age
1 to 5), elementary school (age 6 to 12), s aj , adults
(age 19 to 60) and. sénior citizens (age 61

~

citizens. For these five groups, activity leve 4:8:4:2:1 are consistent with
the non-proportionate mixing contact matrices-used by Longini et al. (1978) and
Schenzie (1985). Other activity levels are also considered, as shown in Table 1.
The incidence proportionality factors 8, are chosen so that the calculated inci-
dences are consistent with observed incidences for influenza. The 640 susceptible,
infectious and removed class-compartments must be updated every time step;
therefore, our analysis has been facilitated by implementation en the Cornell
supercomputer (IBM 3090/4) with FPS (foating point system) array processors,
because of its parallel processing capability. We emphasize that the numerical
results for the two strain model to be discussed below are from the discrete time
simulation model, and depend critically on the choice of time step.

The simulations indicate that for the symmetric contact case (o =0, =03, 8=
B, = B, =0.2), if the two strains are strongly coupled, i.e. o is small, the system
goes through cycles with a period of 10-20 years, where each cycle may contain
several outbreaks followed by a period with very low disease levels (Fig. 3). For
intermediate coupling (0.33 < o < 0.8), we observe regular cycles with a period
of about 40 months (Fig. 4) and with amplitude that increases with o For large
o (o, =;; 0.8<0=<1.0), the amplitude decreases as the two strains become

Table 1. Dominant ecigenvalues for the non-trivial equilibrium in the
one-strain age-structure mod¢l with proportionate mixing for difterent
sets of activity leveis. The first column (A) shows the activity levels for
the different age categories; the second gives the incidence proportionality
factors (8); the third gives the equilibrium proportion of infected
individuals ([); and the fourth and fifth give the real and imaginary parts
of the dominant eigenvatues. For more details see the text

A A I a b

1:4:4:4:4 0.10 7.2%107* -31x10~* 0.11
ISR RS 2.95 1.3x107* -27x107* 0.19
1:8:1:1:1 0.23 1.2x 107 -2.8x107! 0.35
1:4:4:4:3 0.195 1.3x10™ -3.0x 107 0.21
4:8:4:2:1 0.10 7.4x107% -1.9x1073 0.15
4:8:4:2:1 0.13 1.Ix10™* -90x107* 0.22
4:8:2:4:1 0.15 1.2x107* —-90x 0™ 0.25

0__‘100). One would expect that the
activity levels would be highest for the schoo children and lowest forthe senior—
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—a.04
—10.04
-12.01
Fig. 3. Proportion of the population

=16.04 infected with strain 1, I, when o = 0.05;
i.e, very strong cross-immunity. The
incidences of the two strains are

= 5'0‘1 R strongly coupled and the system will go
, T ; , — through cycles with a period of 20 years,
o.o 20.0 0.0 80.0 80.0 8 =020 and the infectious period
t in ysars = time step) is 3 days

antigenically unrelated. In the transition between strong and intermediate coup-
ling (o = 0.32), the system exhibits complicated dynamics, indicating a complex
interaction between age-structure and cross-immunity (Fig. 5). When the two
strains have equal cross-immunity coefficients and different transmission rates
B, # B;, we observe that the amplitude of the regular oscillation decreases for
increasing | 8; — B, (Fig. 6a, b). This indicates that as two strains become different,
the diseases decouple and effectively act as two independent strains. In contrast,
for equai transmission coefficients but different coefficients of cross-immunity
o, # o,, the changes in the cycles are less pronounced (Fig. 7). The introduction
of transmission rates that oscillate with small amplitudes due to natural seasonal
fluctuations does not change qualitatively the observed periodic behavior for the
appropriate parameter range (Fig. 8). The use of slightly fluctuating transmission

—-8.04
-"—10.04
I |
Fig. 4. Proportion [, of the population
infected with strain 1, when o =0.34
—tz.04 (smaller amplitude), o =0.4

(intermediate amplitude), and o= 0.5
(larger amplitude). For these
: T " ™ — intermediate values of o. I, cycles with
0.0 5.0 10.0 18.0 200 4 period of 3 to 4 years (8 =0.20 and
t In yeara infectious period is 3 davs)
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[{t+T)

Fig. 5. For #=0.32 and B8 =0.20,
the model exhibits very
complicated dynamics, switching
between two unstable spirals. The
trajectories are shown here in the
coordinate system {/,(1),
L{e+T), I{t+Ty)), T, =300
days, T, =600 days. Note that T,
is about half the period of the
oscillation and T;=2T,.
Coordinate systems of this kind
were praposed by Ruelle and
Takens (1971) and first used in
ecological models by Schaffer
and Kat {1985). Technically and
practically, Ruelle-Takens’
coordinate systems may provide
more insightful dynamical
representations

1+

rates can also be scen as the formal superposition of a forcing term to check the
structural stability of the observed periodic solutions. For an extensive discussion
of this model see Andreasen (1988).

To understand better the mechanisms behind the observed sustained oscilla-
tions, we have performed further numerical experiments. When the age structure
for the mechanism for transmission of the viral diseases is changed by setting all

—0.4
~ / ] ;
:;—
= —9.8-
£ /—\

—9.8 1

—10.0 r T T r
0.0 5.0 10.C 15.0

a t In years b

Fig. 6. n Sensitivity of the regular cycles (o, = ¢, =0.50, 8, =0.15) to changes in 8,, 8, =0.15, 0.17,
0.18. The amplitude of the cycle decreases with increasing 8,. When the transmission coefficients,
and thereby the time scales of the two strains, become different, the disease dynamics decouples.
b Proportion of the population infected with strain t, /,, when 8, = .15 and 8, = .15 (larger amplitude),
8 =17 (intermediate amplitude}, and By =.18 (smaller ampiitude). The coordinate system {not

shown for clarty) is as in Fig. § /,?7
e

4

C
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1{t+T,)

1{t+T,)
1 2

Fig. 7. Sensitivity of the regular
cycles (o, = 0.50, 7, = 0.50,

B, =8;=0.20) to changes in the
cross-immunity of the strain o,
where oy = 0.50, 0.55, 0.60. The
coordinate system is as in Fig, 5.
The cycles change very little
when o, changes

the activity levels equal to one, sustained oscillations are still observed for o = 0.5,
If, however, instead of using the survivorship curve given by (2.1), we assume a
constant death rate for the first 80 age classes followed by no survival into the
81st age class, then the results change. This mortality structure resembles a
negative exponential survivorship curve (see Hethcote et al. 1981). In this situ-
ation, only a stable fixed point is observed. Finally, a set of numerical experiments
have been performed in which a strain is removed from circulation by setting its
corresponding transmission coefficient (8;) equal to zero. Using again the sur-
vivorship curve given by (2.1), we have performed extensive simulations (see
Tabie 1) for different sets of activity levels. In all of these cases damped oscillations

[{t+T,)

L +T;z)

Fig. 8. The effect of a smail seasonal
vaniation in the transmission coefficient
B =0.20+0.005 sin wi where

@ =24 /year, o =0.50. The coordinare
system is as in Fig. §
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are observed. The dominant eigenvalues are complex, and their imaginary part
b may be estimated by b=2m/t,, where t, is the time for one revolution of the
spiral. Then if a is the real part of the complex eigenvalue and peaks of ¥ Yi
occur at times ¢, and f,, a can be estimated from

TYe-3TYi
TYL-L YD

The large ratios of b to a in Table 1 indicate that the solutions spiral slowly into
the equilibrium, so that they would be difficult to distinguish from periodic
solutions if one observed them for a short time period. The equilibria in Table
1 are reached before 2000 years. These results arc not surprising since it is
generally believed that symmetric age-specific contact rates by themselves can at
most drive slowly damped oscillations (for example, see Anderson and May
(1984), Schenzle (1985)). Our results suggest that age structure is important, but
perhaps primarily in its direct effect on the fraction of susceptibles; that is, an
age structure relatively skewed towards earlier age classes will have a higher
proportion susceptible. We remark again that these sirmulations have provided
us only with a suggestive picture that we feel deserves further investigation. To
examine the results just outlined, in the following sections we look at a sequence
of continuous time approximations which can be derived from the same basic
principles used in the derivation of our simulation model.

e““z_ﬁ) =

3. The coatinuous model for two strains without age structure

The model in this section incorporates the effects of two co-circulating strains
into the dynamics of a homogencous population. Let X (1), Y(2), Z(1), Vi(4),
and W(t) denote the fractions in the respective classes as specified in Sect. 2.
Here, B; denotes the transmission coefficient of strain & % denotes the recovery
rate from strain i, u denotes the constant mortality rate, and again, o; represents
the relative susceptibility of types Z, in terms of their acquisition of strain j (i.e.
the degree of cross-immunity). If we now follow the transfer diagram in Fig. 2,
we arrive at the following set of equations:

X{1) = —[Br( Yy + Vi) + B Ya+ VI X+ —pX 3.1)
Yi(e) =B Yi+ V)X - (n+p)Y ©(3.2)
ZiU) =Y, —(g8,(Y;+ V) + ) (3.3)
Vi) =B Y.+ VIZ - (vitm)Vi (3.4)
W)=y Vi+rVi-uW (3.5)

X(©)=Xo, Y(0)=VYe, Z(0)=Zo, Vi(0)= Vo, WO =W, (36)

where j=2ifi=land j=1ifi= 2. The Eq. (3.5) is redundant since for all times

we have

X (1) + Y+ Ya(0) + Zi(0) + Zo(e) + VilO) + v+ w(y=17 G0
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The non-negative orthant in R’ is positivel'y invariant for (3.1)-(3.7) and unique
solutions exist for all time. The contact number for strain i is

B;

=— 3.8
R, o (3.8)
This model is similar to the model in Dietz (1979) except that his model has
o, = @, =1 so that recovery from one strain does not reduce a person’s susceptibil-
ity to the other strain. Dietz’s model is based on the Monte Carlo simuiation
models of Elveback et al. (1964). Some of the analysis of the model above is

similar to the analysis in Dietz (1979), so we omit some details.
The model has four equilibria G, for i=1, 2, 3, 4. The trivial equilibrium
G, has X =1 and all other variables equal fo zero so that neither viral strain is
present. If the contact numbers satisfy R, <1 and R,=<1, then G, is the only
equilibrium in the non-negative orthant and ail solutions in the non-negative
orthant approach G,. The global asymptotic stability of G, in this case is shown
by using the Lyapunov functior V,+ V| + Y2+ V. and the Lyapunov-LaSalle

theorem (Hale 1969). .
If R, > 1, then there is a boundary equiljbrium G, given by

GZ:(X1 Ylozl’ YZ'ZII VI! V!)

={——, - —],—/—{(1-——],0,0,0,0). (3.9)
(Rl nte Ri/ 7t R,

Analysis of the Jacobian of the system at Gzireveals that G, is locally asymptoti-
cally stable if R, > 1 and

R,
R, < (3.10)
2 < 1+ 0o(R — 1}/ (7 +ﬂ')
The equilibrium G, i is an unstable saddle if condition (3.10) is not sansﬁed If
R;> 1, then there is an analogous boundary equilibrium G,.
If the two conditions

R,
3.11
Ra> 1+0'2(R|_1)1’1/(‘Y|+.U-) ¢ )
' R,> Ry (3.12)

1+ a(Ry— 1) ya/ (72 + )
are both satisfied, then there is a nontrivial equilibrium G, at which both strains
remain endemic. Equivalently, these may be written

R, R,
>R,> , 3.13
14(R,~ 1A~ " 1+(R,-1)B (3.13)

where B = o,v,/(v,+p) and A= (1 —(o;v2/(v2+u)) ") '. Note that a necessary
condition for this to occur is

71+#+72+#-
Y172 Y2

If o, =0, then recovery from strain 2 also gives complete immunity to strain |
so that no one ever enters class V;. In this case threshold condition (3.12) reduces

<1
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to R,> R;. If both o, =0 and o, =0, then states V., V2 and W are always empty
since no one enters them. In this case the equilibrium G; is locally asymptotically
stable if R,>1 and R,> R,, while the equilibrium G; is locally asymptotically
stableif R,> 1and R;> R,.If R, =R,> 1, then there is a line segment of neutrally
stable equilibria joining G, and G, and which equilibrium is approached depends
on the initial conditions. In the following, we assume that o,>0 or o> 0 to
avoid the unusual case above.

If we let A, and A, be the G, equilibrium values of B Y+ V) and B,( Y2+ V2),
respectively, then the coordinates of the equilibrium G, are

7
x=—-t— .
HA
Y, = 3.15
ot At )7+ 1) (3.15)
KA
;= 316
TN I TOOSTRR T (3.16)
A
Vv, BYrAA (.17)

T (A At )yt adaAce)(rte)

where j=2if i=1and j=1if i=2. The local stability of the equilibrium G, is
not easy to analyze since one must show that all eigenvalues of the 7 X 7 Jacobian
matrix at G, have negative real parts. However, numerical calculations with
system (3.1)-(3.4) suggest that if (3.11) and (3.12) are satisfied and both Y, and
Y, are initially positive, then all solutions in the non-negative orthant approach
the equilibrum G,. The cigenvalues were computed for different values of o,
and o;. In all cases, we found that the eigenvalues have negative real parts. We
note that the eigenvalue with largest real part usually has its real part around
—10"* and its imaginary part around 1072, so the imaginary part is approximately
100 times the real part. Hence solutions will spiral rapidly as they approach
equilibrium. More detail on these simulations is shown in Table 2.

Table 2. Dominant and subdominant eigenvalues, 5, and 8,, for the nontrivial equilibrum in the
two-strain madel for different values of oy and o, (B, =08, 82 =09, 7=, =03}, u = 0.00004). All
the cigenvalues have negative real parts including those not shown here. The imaginary part of the
dominant eigenvalue is about 100 times larger than its real part

o, oy Re($,) Im{3,) Re(5,) Im(5.)

0.9 0.9 ~3.767Tx107° 4.136% 1072 ~6.514% 107 4,683 x 1073
0.9 08 -3.137x107* ~ 4.076x107? ~7.137%107% 4.603x107*
09 0.4 -2.790% 107 : 3.581x107 ~7.696x107° 4.423x 1077
0.8 0.9 -3.655x107° 3946 x 1077 -6.622x107° 4.704% 107
08 0.8 ~3.184x107° 3.869x 107} -7.031 %107} 4.643 %107
0.8 04 —2670x10™* 3.369x 107! —7.546 x 16~° 4.417x107°
04 0.9 -3.964x 107° 3.024x107? -6.571x 107" 4.746x 107°
0.4 0.8 -3.533x107° 2.927x107° -6.715%107* 4719x107?

0.4 0.4 -2.300x107* 2.453x 107 -6.959x 1077 ¢
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When the viral strains are similar so that 8, = B2, »1=17:, and o, =0, and
the initial conditions are symmetric, then Y,(r) = Y1), Zi(t) = Z,(1) and V,(£) =
Va(1) for all time. In this case the system (3.1)-(3.4) reduces to a four dimensional
system. Furthermore, when the threshold condition R = B/(y+u)>1is satisfied,
then there is a nontrivial equilibrium corresponding to the equilibrium G, for
(3.1) to (3.4). This nontrivial equilibrium is locally asymptotically stable. This
suggests that periodic solutions do not arise by Hopf bifurcation at the equilibrium
point G, for the system (3.1)-(3.4). For further details we refer the reader to

Appendix A,

4. The threshold condition for the continuous age-structured one-strain model

The basic epidemiological model for one strain of influenza virys (or one infec-
tious agent) is formulated in terms of continuous variabies. Then a threshold
condition is obtained which determines the asymptotic steady-state age distribu-
tions. The population is separated into susceptible, infected, and removed classes,
where x(a, t), y(a, t) and z(q, t) are the probability densities in these respective
classes. In this SIR epidemiological model, [2x(a,1)da, | 2 y(a, 1) da,
I:f z(a, t) da, denote the proportions of the population in each class that have
ages in the age-interval (a,, a;) at time ¢ The transfer diagram for this model is
that of Fig. 1.

Assume that the population has reached a steady-state age distribution, that
all newborns are susceptible, and that the transfer of infection is due to a
proportionately-mixed age-dependent bilinear incidence rate. The dynamics of
the classes are governed by the following initial boundary value problem (see
Hoppensteadt 1974; Dietz 1975; May 1986; Schenzie 1984; Dietz and Schenzle

1985; Webb 1985):

(.0, 28D\ (1)b(a)x(a, 1) - p(a)x(a, 1), (@.1)
da at
WD) HBO_, b(aria, 0~ (v+rl@ipia, ., (42
Jda at
D LD oy yia 0 -n(@)z(a, 1), (43)
da ar
. A{f)=1vy J b(a'y(a’, t) da’, (4.4)
L]
x(a, 0) = xo(a), y(a, 0) = yo(a), z(a, 0) = z5{a), (4.5)

1
x(O,l)=p=W&;, M(ﬂ)=J pla) de,
0

¥(0,ty=0=12z(0, 1), (4.6)

where u(a) is the age-specific mortality rate, g is the birth rate, v is the constant
recovery rate, b(a) is the age-specific activity level, A(1) is the Instantaneous
force of infection, and £ is a transmission scaling factor. In this model the activity
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level between a susceptible person of age a and an infected one of age a’ is
proportional to (a)b(a’). This is a particular case of the so-called proportionate
mixing assumption used by Barbour (1978), Noid (1980), Hethcote and Yorke
(1984), Dietz and.;Schenzle (1985), and Hethcote and Van Ark (1987). The initial
age distributions are assumed to be zero beyond some maximum age.

When the activity level b(a) and the mortality rate u(a) are independent of
age a, then integration of the differential equations {4.1)-(4.6} over all ages leads
to a time-dependent SIR model with vital dynamics. For this ordinary-differential-
equation model involving the fraction of individuals in each class at time 4, the
contact number R (basic reproduction number) is Bb*/(y+u). If R<1, then
the disease dies out; if R > 1, then the fractions in each class approach endemic
equilibrium values (Hethcote ( 1976)). .

The model (4.1)-(4.6) is well-posed. The proof is found implicitly in Appen-
dix D since this model is a special case of the two strain model that is shown to
be well-posed there. In the remainder of this section we determine a threshoid
condition, that is, a quantity that must excced one for the disease to remain
endemic (persistent). This threshold condition was obtained previously by Dietz
and Schenzle (1985) and also for a simpler model by Webb (1985). Due to its
~ importance in our stability analysis and numerical experiments, a brief derivation

of the threshold condition is presented. '

Assume that the steady-state age distributions are reached as time approaches
infinity, so that the force of infection asymptotically is a constant denoted by A%
The method of characteristics is used to obtain the following expressions for the

steady-state age distributions.

x*(a) = p e A" BlIrMEN (4.7)
y*a)y=pe ™ Lﬂ A*b(a’) e 2 Bl ram) 4ot (4.8)
z*(a)=p e ™~ x*a)—y*(a), (4.9)
where
B{a) = J: b(a) da. (4.10)

If we now substitute y*(a) into Eq. (4.4), we obtain that either A*=0orelse A"
satisfies the characteristic equation :

1=8 J’ b(a)pe M (j b(a) e~ * B "via—a) da) da, (4.11)
0 o

which has a positive solution A* provided that the threshold condition

1< J‘m bla)pe M (J’n b(a) e” 7@ da) da (4.12)

0 ]

is satisfied.
Above the threshold (that is when inequality {4.12) is satisfied) the force of

infection A* is a positive constant, and Egs. (4.7)-(4.9) correspond to an endemic
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{persistent) steady-state age distribution. Below the threshold {that is when Eq.
(4.12) is not satisfied), the force of infection A* is zero and Eqs. (4.7)-(4.9)
correspond to a trivial steady-state age distribution where the disease has died
out and there are no infected or recovered individuals.

5. Stability of the steady-state age distribations for the
continuous one-strain model

We now proceed with a local stability analysis of the steady-state age distributions
of the model of Sect. 4 by taking perturbations of the steady states:

x(a, t}=x*(a)+£(a, 1), (5.1)
ya t)=y*(a)+n(a,1), , (5.2)
A(L)=A%+0(1). (5.3)

A linearization approach leads to the following first order approximate model
for £ 7, and @: -

2 o A*b(a)e— B(1)b(a)x*(a) - () (5.4)
j—;’+-§?=a*b<a)5+a(z)b(a)x*(a')—(ym(a))n. (5.5)
6(t)=p L b(a)n(a,1) da, (5.6)

£0, 1) = (0, £) =0, (5.7)

£(a,0) = xo(a} ~x*(a), n(a, 0) = yo(a) — y*(a). (5.8)

If there exists a solution of (5.4)-(5.8) in separable form £(a, t)= é(a)f(:), then
it corresponds to a steady-state age distribution since the fractions in any age
bracket are constant. Since the right hand sides of {5.4)-(5.6) are linear in the
parts of the separable forms involving ¢, these parts involve an exponential in ¢
Thus we restrict curselves to perturbations of the form

&a, t)=£(a) e”, (5.9)
s n(a, t)=f(a) e, (5.10)
8(t)=He” § a constant. {5.11)

A straighforward computation shows that

£(a) = —pd ¢~(A"Blar+M(a)] I b(a) e ") dqa, (5.12)

0

#(a) = —Gp e I b(a’) e™((A+a=ar+a"Btan]
]

x [1 —-A* J‘a b(a) e #te—= da] da', (5.13)

[}

é=58 J b(a)#(a) da. (5.14)
[+]
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Putting Eq. (5.13) into Eq. (5.14) leads (provided that §#0) to a Lotka-type
characteristic equation for p:

0

]

x [e—pta-a')_A* J bla) e Pe™® da] da'} da. (5.15}

0
If all roots of {5.15) have negative real parts, then all solutions of the form
(5.9)-(5.11) will tend to zero as ! tends to infinity. Using the threshold condition
given by the expression in (4.12) so that A*>0, we quickly find that no non-
negative p can satisfy Eq. (5.15). The study of the nature of all the roots of Eq.
(5.15) is more difficult. Nevertheless, in some particular instances we have
determined numerically that their corresponding nontrivial endemic steady-state
age distributions are locally asymptotically stable.
For the trivial steady-state age distribution (A* =0), Eq. (5.15) becomes:

1=8 I b(a)pe ™ U b(a’) e~ v plama) da'] da (5.16)
0

0
If Eq. (4.12) is not satisfied, then the monotone character of the integrand in Eq.
(5.16) implies that it has a unique reai root py=<0, and that p,=0 only at the
threshold. It is also clear that compliex roots (if any) appear in conjugate pairs.
If we now let p=r+is denote a complex root in (5.16) withk s>0, then by
equating real and imaginary parts we observe that

1=8 j b(a)pe M J‘ b{a—@) e r? cos(.rﬂ).do da, (5.17)

(] 0
and since cos(s8) <1 for some values of 8 in the range of integration, it follows
that '

ﬁj b(a)p e'”“’J‘ b(a—0) e """ dgda>1. (5.18)
[+] ]
From this we conclude using (5.16) that r < po<0. Hence if we are strictly below
the threshold, then the trivial steady-state age distribution is locally asymptotically
stable, at least for perturbations of the form (5.9)-(5.11}. If inequality (4.12) is
satisfied, then (5.16) has a unique pasitive root p, so that the trivial steady-state
age distribution is unstable. In this case the disease does not die out, but persists.

In the remainder of*this section we indicate how a numerical analysis of a
particuiar case for Eq. (5.15) leads us to believe that the one-strain model without
age-specific mortality rate u(a)=g (a constant) has an endemic equilibrium
peint that is locally exponentially stable. In this particular case we take the
age-specific activity level rate to be
b(a):{l‘ 0=<a<C,

D, C=sa<ow, 0<D#1.

In this case the threshold quantity in Eq. (4.12) becomes

1 (1 —D) e’(#-»'r)c _ c( Dz D |
+ 4o M _
b ["‘(“+7) (n+7y)y i !-c(u+7)+7(#+7) w)]’ (3.20)

(5.19)

Iz

e
TR
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the characteristic equation is given by

1 (1 - D) e—(u*v)c
(L +A%) (g +y) (u+y)y—2r®)
) D? D 1 1
4o (A ]C[ + — ]-——::0
¢ (L +A*DYu+y) (v AN uty) (=AW m+a"] w8
(5.21)

and Eq. (5.15) reduces to

(1 —é':) [1—e w*r0C] AT [1— g (ura+eiC]
P Ji y[1+(D—1) e~ ®*r2)
(+A")y=A%+p)  (y=A*)u+A*+p) (y—A*+p)(y=A*)u+y+p)

A* A*
—_ - 1__ D—.
e ’CD[ P, D(u+p) _ p ]
mw+y+p Ly=A*+p (p+A*DY}u+A*D+p) “t+A*D+p
At
D_ e—(p.+A‘+p)C D
i 1 1
+ + +—=0. 5.22
p+y+p [y*z\"‘ ,u+/\"D+p] Bu 5-22)

The numerical procedure computes the threshold quantity from Eq. (5.20). If it
is greater than one, then the characteristic equation (5.21) is solved for A*. Using
the force of infection A *, we solved the Eq. (5.22) numerically for p. For example,
if the average infectious period 1/7v is 1 week, the average lifetime 1/ is 70
years, C' =35 years, D=4 and 8 = 0.2, then the threshold quantity (5.20) is 2.99,
the solution of the characteristic equation (5.21) is A*=0.000132 and the roots
of (5.22) with largest real part are p = —0.000693 + i0.0228. Results of numerous
runs with reasonabie epidemiological parameters for influenza, different values
of D and C, suggest strongly that the p roots always have negative real parts so
that (at least for these particular cases) the stable age distribution is locally
asymptotically stable for the one-strain continuous model. We note that for this
b(a), the p root with the largest real part usually has its real part around —107°
and its imaginary part around 10~? so the imaginary part is approximately 10
times the real part. Since the solutions are very weakly damped, they would
osciilate rapidly as they approach the equilibrium solution and might look
numerically like periodic soiutions.

Calculations with the one-strain model in Sect. 2 are consistent with the resuits
above. Thus age-specific activity levels do not seem to lead to periodic solutions
in the one-strain model. Furthermore, simulations with different age-specific
mortalities do not lead to periodic solutions.

Other investigators have also shown that models with age-specific mortality
do not lead to periodic solutions. Andreasen {1988, 1989) considers the model
(4.1)-{4.6) with constant age-independent activity level (b(a) = 1) and age-specific
mortality corresponding to a fixed lifespan of A years for every individual.
He approximates the Lotka-type characteristic equation (5.15) by observing that
the infectious period is four orders of magnitude smalier than the lifespan A of
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the host. The approximate p roots suggest that solutions are slowly damped with
the period given by 2o/ KD where D =1 /v is the average infectious period, and
K is the average age at infection.

6. The model for two strains with partial cross-immunity

trains of a virus such as influenza both are circulating in a
who have been infected by one strain may have
partial immunity (i.c. decreased susceptibility) to the other strain. The two-strain
model here is the continuous analog of the simulation model in Sect. 2. In what
follows, the sub-index i indicates that its class is infected or recovered from
influenza due to strain i Assume, as before, that those individuals infected with
one strain are not suceptible to the other, and that an individual once recovered
from a strain of influenza has permanent immunity to this strain, and possibly
a reduced level of susceptibility to the other strain.

The initial boundary value problem governing the dynamics of these classes
under proportionately mixed age-dependent bilinear incidence rates and the

If two related s
population, then individuals

assumptions of Sects. 2 and 4 is: \ a)-\/

§§+%’f= _a(0)b(a)x(a, £) - A(Db(@)x(a = p(@x(a ), (61)

i’i‘+f"(_;’;‘= A8 b(a)x(a 1)~ vyla ) —p(@)p(a 1), (6.2)

da

%, 24 i, 0= o (Db(@)2(a 0= (@)@ 0. (6.3)

v, 9% (6.4)

o oA (1)b(a)z(a 1) - yvla, 1) - pla)ula 1),
aw dw

;—+-—= ylul(av l)+‘)’2vz(a, ‘)—,u-(a)w(a'v t)l

a dJt

{6.5)

Ade)=8: Im b(a" ) yi(a’, t}+vla’, 1)] da’, (6.6)
lo

70, )= 1,0, ) =20, ) =w(0,8) =0 (6.7)

x(oa ‘) =SP=TFw 4
J' e ™) da’

/]
x(a,0)=xq(a), yi(a0)=yola), vi(a, 0) = voi(a),
z(a, 0} = zoi(a), w(a, 0) = wola), (6.8)

where i=1,2,j=1if i=2,j=12 if i=1, 7 denotes constant recovery rate, and
wu(a) and b(a) denote the age-specific mortality and activity level rates respec-
tively. The transmission scaling factors here are B, and B,. The susceptibility
factors o, and o, which are between 0 and 1, are measures of the cross-immunity.
Note that the one strain model in Sect. 4 is a special case with 8, =0. If the age
specific activity level b(a) and the mortality rate u(a) are constant, then the
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integration over all ages of the differential equations in the model above leads
to the two-strain model in Sect. 3.

The well-posedness of this two-strain model is cstablished in Appendix D. If
We now assume that the steady-state age distributions are approached as time
approaches infinity, so that the forces of infection asymptotically are constants
denoted by A¥ and A%, then proceeding as in Sect. 4, we obtain that either A* =0
or A¥ satisfies the characteristic equations

1=8, J'“' ba)p e-M(a)[J’“ ba) e_A,(a-a)(e-ugﬂg)s(.)

Q Q9

o

+ayA¥ J' e~ At (Bla)-B(8))
(4]

[+]

(6.9)

where M(a)=f; u(a)da and B(a) =[5 b(a)da. The two characteristic
equations correspond to (i,j)=(1, 2) and (i,j)=(2,1). We have not found
threshold conditions that are necessary and sufficient conditions for the two
characteristic equations to have positive solutions AT and A¥ (for further details
see Appendix B).

We now proceed to linearize the system (6.1)-(6.8) around its steady-state
age distributions as in Sect. 5 (details are found in Appendix C). If we assume that

x(a, t) =x*(a)+ £(a)e™, (6.10)
ya, t) =y a)+ fia)e™, (6.11)
z(a, 1) =z8(a)+ j,(a)e”, (6.12)
vi(a, t) = v}(a)+ d(a)e”, (6.13)

A1) =A%+ e, (6.14)

for i=1, 2, then we arrive at the following Lotka-type characteristic equations
for p:

L]

6: =g, J; b(a)[ﬁt(a)'*“:'l(a)] da, (6.15)

for i=1, 2. The local stability analysis of the general case has then been reduced
to the study of the roots of Egs. (6.9) and (6.15). Unfortunately, the general case
is complicated; however, the analysis is /be carried out here for the special case
when o, = o, =0. In this case recovery from one strain gives complete immunity
to both strains so that no one ever enters classes vy, v, and w. If

oy

b(a)pe"”‘"’j bla) e 7a==)=A"B@) g4y gg  (6.16)
Q

Hi(a *) =B, J'

0

then the characteristic equations (6.9) for 0 =0:=0 become H,(A¥+A¥)=1
and H(AY+A¥)=1 (note that each characteristic equation is similar to the
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characteristic equation (4.11) for the one-strain model), and the Lotka-type
characteristic equation (6.15) for p reduces to

é‘[ =8, J’ b(a)pe'”“’ r bla) e~ Tama) - t+An1B(a)

0 1]
x [é‘,.e""""" ~ (8, + G)AT I b(p) e~ P ® d¢] da da. (6.17)
o
For the trivial steady-state age distribution (A¥=a¥=0), Eq. (6.17) reduces to

¥ a
1=8, I b(a)pe ™M™ J. b(a) e P*7*~= do da, (6.18)
] (4]

which is similar to Eq. (5.16) for the one-strain model. Thus the analysis there
can be used. If H,(0)<1 for i=1,2, then the trivial steady-state age distribution
is locaily asymptotically stable. If H,(0)<1 for i=1, 2, then there is a positive
real root of the characteristic equations so that the trivial steady-state age distribu-
tion is unstable.

A steady-state age distribution with AT >0 and A% >0 seems to occur only for
very special parameter values, so we do not consider this case (see Sect. 3).
Consider the case when H,(0)>1 and H(0) <1 so that there is a steady-state
age distribution with A} >0 and A% =0. Now H,(0)<1 implies that Eq. (6.18)
with i =2 has only roots p with negative real part so that this steady-state age
distribution in which only the first strain persists is locally asymptotically stable.
If H,(0)> 1,then thereisa positive root p so that this steady-state age distribution
is unstable. There is also a steady-state age distribution in which only the second
strain persists; this has analogous stability properties. Recall from Sect. 2 that
the two-strain simulation model had periodic solutions for some age-specific
mortalities, but not for exponential removal survivorship corresponding to a
constant mortality rate u. Consequently, Andreasen (1988, 1989) considers the
symmetric version of model (6.1)-(6.8) with b(a}=1 and age-specific mortality
cotresponding to a fixed lifespan of A years for all individuals. He approximates
the Lotka-type characteristic equation (6.15) by using the fact that the infectious
period is four orders of magnitude smaller than the lifespan A of the host. The
approximate roots are'purely imaginary, which suggests that there are periodic
oscillations around the endemic steady-state age distribution. Furthermore, the
approximate period is 3V KD/ o where D =1/ v is the average infectious period,
K is the age at first infection, and o is the relative susceptibility due to cross-
immunity. Thus the approximate results above and the simulation results in Sect.

2 are consistent.

7. Discussion

In his excellent survey paper Fine (1982) says: “Rather than continue to force
influenza into simple epidemic theory an effort should be made to tackle some
of the major puzzles of influenza patterns in large communities — the bimodal
or undulating incidence pattern which is often observed, the apparent disappear-
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ance of virus for several months in large areas, or the recent recognition of
widespread co-circulation of different shift viruses. Simulation techniques which
incorporate important factors such as weather patterns, seasonal factors (e.g.
school terms), or social geographic structure may be useful here.” It is this
challenge that motivates us to introduce and analyze (at different levels) models
that incorporate age structure through age-dependent proportionately mixed
contact rates, age-dependent mortality rates, and interactions among viral strains
or subtypes. It is the incorporation of two viral strains in our simulation model
that produces the most interesting albeit the less reliable results. These two strains
are coupled by a coefficient of cross-immunity (o); the coupling is strong when
o is small (antigenically very similar strains) and weaker when o is intermediate
(different strains same subtype}. In both instances, the simulations yield sustained
oscillations. Periods of 10 to 20 years are observed when ¢ is small, while periods
of 3 ta 4 years are observed when cross-immunity is intermediate. These results
are consistent with the recently documented evidence on the co-circulation of
strains of the same subtype (Couch and Kasel 1983; Thacker 1986, Fig. 2). When
only one strain is present, we have not found sustained oscillations; however,
we observe very slowly damped osciliations. Hence, from a biological point of
view, age structure by itself is capable of driving “sustained™ (that is, slowly
damped) oscillations. These results are in agreement with those previously
reported by Anderson and May (1984) and Dietz and Schenzle (1985). When the
age-structure is removed from the one- and two-strain models, we observe damped
oscillations. Hence, for sustained oscillations, we require at least an age-structured
population and two or more co-circulating viral strains. Age-structure enters this
model through age-dependent activity levels and age-dependent mortality rates.
Our simulations suggest that the interaction between cross-immunity and age-
dependent survivorship may be enough to drive sustained oscillations, and that
age-specific activity level rates with constant mortality are not sufficient (even in
the presence of cross-immunity) to drive sustained oscillations. Variation of the
transmission coefficients {8, , 8;) of our two viral strains seems to have significant
effects on the amplitude of the oscillations. In contrast, the oscillations seem less
sensitive to changes in the coefficient of cross-immunity () and slightly fluctuat-
ing transmission rates.

The consequences of co-circulating viruses within age-structured populations
provide us with new insights and hypotheses into the dynamics of epidemics and
pandemics. Our results suggest that the interactions between the immune system
and multiple viruses<could play a prominent role in the dynamics of viral infections
such as influenza. The coefficient of cross-immunity provides a measure of this
interaction between muitiple strains of a virus. A very rough attempt at computing
this parameter from the epidemiological data can be found in Castillo-Chavez
et al. (1988).

Further numerical and analytical investigations of the models presented would
be heipful in achieving a more compiete understanding of models related to
influenza. In particular, it would be desirable to analyze further the steady state
age distributions of the continuous age-structured model in Sect. 6 and to consider
various models with time delays, and numerically integrate the systems of partial

differential equations found in Sects. 4 and 6.
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Appendix A

Let A, and A; be the G, equilibrium values of B,(Y,+V,) and 8,(Ya+ V), respectively. Since the
infective replacement numbers {contact sumber times the susceptible fraction) R, (X + o R;) and
R, (X +oyR,) are both one at & nontrivial equilibrium, then A, and A, satisfy the equations

(A A+ oA, +F)_‘ﬂt(’l*l"":‘i?}j(?)"’ﬂ)"’#). (A1)
(A ¥+ A+ p)ohs + i) = uRy(ahs oA yn/ (1 +u)+u) (A2)

The coordinates of the equilibrium G, are given by (3.14)-(3.17). In the symmetric case (8, =8, =
By =11= v, O =0y =) with symmetric initial conditions, the system (3.1)-{3.4) reduces to a four
dimensional system

X'(1)==28(Y+ V)X +p—pX (A3)
Y()=8(Y+ V)X ~(y+p)Y . (A4)
ZW)=yY —(aB(Y+ V) +u)Z (AS)
V() map(Y+VIZ~(y+n)V (AS5)

where W(¢) can be found from X +2Y +2Z+2V+ W=l The existence of a nontrivial equilibrium
corresponding to the equilibrium G, is guaranteed provided that the threshold condition R=
B/(y+p)>1is satisfied. The Jacobian of the system (A3)-(AS) is

—{2A+pu) 0 ~28X =28X
_ 0 — (oA +pu) -opZ —oBZ+y
I= 0 aA aBZ-y—p apz I (A7)
A 0 BX BX—-vy—p

N /
At the nontrivial equilibrium, the Egs. (Al) and (A2) reduce to
(22 + w)(oA +p) = uBloAQy+p) tuly+ )/ (y+4)h (A8)

Using the expressions (3.14) and (3.16) for X and Z and Eq. (A8) for B, the characteristic cquation
det(J — sI) = 0 for the nontrivial equilibrium reduces to the foilowing equation ia the four parameters

Y, i, o and A
[y(20A + )+ (oA +p)](2A + u+s)Hod +utsiy+p+sh
—(y+ ) or+pu)p+sHoA +p+s)y+p+shrory]
—aay(y+u)2A +p+sHy+p+s)pts)=0. (A9)

We have shown using the symbolic manipulator MACSYMA that the Routh-Hurwitz critenia are
satisfied for the fourth degree polynomial equation (A9) so that all eigenvalues have negative real
parts. Thus this nontrivial equilibrium is locally asymptotically stable.
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Appendix B

The steady-state age distributions and characteristic equations are now described for the continuous
two-strain model (6.1)-(6.8). Assume that steady-state age distributions are approached as time
approaches infinity so that the forces of infection are asymptotically constants denoted by A? and
AZ. The following steady-state age distributions with B(a)=fg b(a}da and M(a)= Ia #{a) de are
solutions of (5.1)~(5.10) that are independent of ¢,

x*a)=pe M@ expl (A} +4A2)B(a)], (B1)
yHa}=pe M@ J- ATb(a) e=vieal-Otrans) 4 (B2).
[+]
2¥{a) mpe~Me) J’. ya® e"f‘T"‘"""”[J.. b(p) e~ rim—d)1~(at+at)Bte) d¢] da, [ (Bj)
& (]

0¥(a) = p e=Mia) J" sATb(a) e-v.(-—-,[J‘* e e~*A ST B(a)—B(s)]
0 °

5 (I.b(¢) e_.,’(o-ol-ﬂfd-ag)l(o) d¢) dﬂ] da, . (54)
[]

j wa)=pe ™ —x*(a)~ y¥(a) - y¥(a) - v¥(a) - vi(a)-z¥(a)-z}(a). L (BS)

Substituting y¥(a) and v*(a) in
A?“‘B:J- bla)lyH(a)+ v¥a)) da (B6)
0
we find that either A* =0 or A* satisfies the characteristic equations

1=38, J‘m b(a)p e~ Mia}

]

x [J’. b(a) 8—"'('""(8—“7‘“;“(']+¢r,'r,Af J-. e~"ANB=)- B0y
° o .
[ ]

x ” b(@) e Tt S)-At i 1A d¢] da) da] da, (B7)
°

(8/)=(1,2) and (i, /)= (2, 1).

Appendix C

Let us consider the following perturbation solutions from the steady-state age distributions to the
system (6.1)-(6.8) ¢

x(a, t}=x*(a)+ £a, 1), {C1)
yila t) = yta)+n(a, 1), (c2)
z{a, 1)=zfa)+pa,r1), (C3)
vl f)=v¥a)+wl(a, 1), (C4)

A()=At+0,(1), (Cs)

where 0= £(0, 1) = n,(0, 1) = 2,0, 1) = w, {0, t) for i = 1, 2. Neglecting terms of order higher than one,



Epidemiological models 255

we find that & m, p;, @ and 4, satlsfy the following linear system

(_3-+i) £(a, )= —(AT+ADB(a)E(a, )

da at
—b{a)[8,(n)+ &(N)]x*(a)— u(a)é(a ¢), (C6)
(f;*‘%)m(a. ) = A Fb(a)E(@ 1)~ (@) + ydm(a, )+ Bla)8()x*(a), e
(-::-Pi)p.(a- ) =—ab{a)Atpla, 1) —azb(a) gz (a)
+ym(a, )= p(@pla 1), (C8)
(aiafi)u,(a, ) = gbla)alpla 0+ a',b(a)a,(!)zf(a)
~[n +p(a)]oa t) (C?)
8, =5 J‘ bla}[ m{a 1) +w(a, t)] da (C10)
9

Sepanbie perturbations of the form A(a) T{1) require that T(t)= e, f{enoe we consider perturbations
of the form £{a)e”, 7, {a)e”’, fi(a)e?, @ a)e”, and é(a)e”, where & is a constant. We then find that:

.f(a) ==p e-Mia—taTrapatay §| + 52) J‘ b(a) &P da (C11
(]

ﬁ,(a) =p e~ M) J. b(a) e-y'(-—-)-ufﬂ;)l(.;
[}

x [é,z"“’"-(él-i- d)A? J b{p) e P ® d¢] da. (C12)
0

The expressions for p,(a) and @ (a) are omitted since they are very complicated. When o, =0 =0,
then no one enters the classes v, 07, w. Hence Eq. (C10) reduces to

Iy
e
i

é, -j b(a)#(a) da. (C13)
o

After substituting (C12) imto {C13), we arrive at the following Lotka-type characteristic equation for
P

6,=8 j b(a)p e~ ™M I b(a) e YHa—@)I—(ATFAD A}
o o

x [5.- ePeme (4, +dy)At I b($) e~Pte dcs] da da.

[}

Appendix D

In this appendix we show that the models (4.1)-(4.6} and (6.1)-(6.8} are weil posed. The method of
proof is similar to that used by Hoppensteadt (1974) to show the well-posedness of a very general
ane agent age dependent epidemic model. First let U(a, £y =collx, y, 2y, V20 23, Uya V2, w] and let A
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denote the matrix

(A, +2,)8(a) + ula) 0 o 0 [ 0 e °
=A,(1)b(a) 7, +ula) 0 [ o [ 0 0
0 - oA (Dba)+ule) 0 0 o ] ]
—iy{1)b(a) 0 [ ¥y tula) 0 0 0 0
0 ° 0 -1 & Al 1a)+ ula) [ ] °
0 0 0 o —a A (r)ia) 7 +ula) e [
0 [ —ayd {1)b{a) [ ° 0 7+ u(a) o
a 1] 9 L] [} -% -7 ula
Then the two-strain model is given by
)
—+— U+ AU =0, (DY)
a¢ 3da

" which along characteristics parametrized by s is given by the system

(d/ds)U = —-A(LNU; U(0)
_ {U(o, {)=col[p,0,0,0,0,0,0,0], >0, o2
U{a, 0) = col[ xo(a), yo1 (@), 7:(a), Yoz, 22, Oot, Doz, Zol, a>9.

Since —A(L/) has only non-negative off-diagonal terms, all solutions to (6.15) are non-negative for
50 provided that U/ =0 at s =0. If we now let

n(a, t}=U(q, ) = x(a, )+ y,(a 1)+ y;(a, t)+2,(a 1)
+z(a )+ oa t)+oya 1)+ wia, ),

then the dynamics of n(a, {) obeys a particular case of the MacKendrick (1926)/Von Foerster (1957)
model, namely:

d 4
(;+a—‘+p(d))ﬂ(d, 1)=0, {D3)
n(0, ¢)=p, (D4)
n(a, 0)={ U(a, 0)). (Ds5)

Qur formulation (6.1)-(6.8) is chosen so that the total population probability density n{a, t) is at the
steady-state age distribution given by p ™™ before the disease dynamics starts. Thus the epi-
demiologic dynamics are not complicated by simuitancous demographic dynamics. Our choice of
p=U7 ¢ da']"" implies that the total population size has been tormalized to 1. With the a
priori bound given by 1, the existence and uniqueness proof is now exactly the same as the well
known contraction mapping proof for initial value problems of systems of ordinary differential
equations. Moreover the a priori bound shows that the solution can be continued for all time.
Continuous dependence on the data follows from known results on continuous dependence of fixed
points to parameter-dependent contraction maps.
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