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Abstract. Social dynamics have had a strong impact on the development of theoretical epidemiology
over the last six years. Interactions or contacts among individuals have traditionally been modeled
by the use of the mass-action law or proportionate mixing, giving limited understanding of effects
that the environment, changing social structure, has on disease dynamics. Furthermore, while gender
plays a central role in the dynamics of sexually-transmitted diseases, the use of two-sex models has
been rare. In this article, we review briefly our mixing/pair formation framework and illustrate its
application to population models of the type currently used in demography, epidemiology, and social
dynamics. A new application to frequency dependent competitive interactions is discussed in more
detail. Connections between deterministic and stochastic processes are presented. The results of the

simulations of a demographic two-sex stochastic model that follows the dynamics of pairs are presented.

Keywords. Epidemiology, social dynamics, demography, food web dynam-
ics, mixing and pair formatiomn, contact rates, consumer-resource interactions,
predator-prey systems, differential equation models, vector-transmitted dis-
eases, AIDS, sexually-transmitted diseases, stochastic processes.

1. INTRODUCTION

The transmission of diseases, genetic characteristics, or cultural traits is influenced by
many factors including the contact/social structure of the interacting subpopulation, that
is, the social environment. Classical demography (see MacKendrick, 1926; Lotka, 1922;
and Leslie, 1945) ignores social dynamics and usually concentrates on the birth and death
processes of female populations under the assumption that they have reached a stable

T Jorge X. Velasco-Herndndez dedicates his part of this work to the memory of Stavros Busenberg, who was

his teacher., adviser and friend.
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age distribution. They usually ignore the specific mating/contact structure of the popula-
tion. The incorporation of mating structures or marriage functions, as they are commonly
referred to in human demography, was pioneered by Kendall (1949) and Keyfitz (1949).
However, despite the fact that their work was extended by Parlett (1972), Fredrickson
(1971), McFarland (1972), and Pollard (1973) two decades ago, their impact on demogra-

phy, epidemiology, and population biclogy has been minimal.

The grim scenario due to the HIV/AIDS epidemic has accelerated the pace at which social
dynamics have been incorporated into epidemiological models. Researchers are developing
new models and innovative modeling approaches to help us identify and/or improve our
understanding of the mechanisms responsible for HIV transmission; for example, there has
been intensive research activity on the effects of social dynamics, the immune system vari-
ability, etc., in HIV dynamics as well as on the development of methods for the evaluation

of competing control measures.

Dietz (1988a) and Dietz and Hadeler (1988) have brought to the forefront, and for the
first time in epidemiology, models that incorporate heterogeneity through the processes
of pair formation and dissolution. Epidemic models can be very sensitive to changes in
the sexual/social mixing structure of interacting subpopulations and may not only have
different quantitative dynamics but also distinct global dynamics.

The work that we (this generic ‘we’ includes many collaborators who will be cited through-
out the text) have conducted over the last few years has had as a major component the
development of a mathematical framework for the systematic incorporation of very general
contact structures. The modeling approach outlined in Section 2 of this manuscript has
been used to develop models for the study of disease dynamics, the dynamics of frequency-
dependent predation in heterogeneously mixing populations (food web dynamics), trans-
mission dynamics of cultural traits, social dynamics, general demographic processes, and
so forth. In addition, we have made serious efforts to connect these models to data (see

Rubin et al., 1992; Castillo-Chavez et al., 1992; Hsu Schmitz and Castillo-Chavez, 1992)
and have participated in the collection of appropriate data (see Crawford et al., 1990).

This manuscript is organized as follows: Section 2 introduces the basic formalism and states
the basic theoretical results; Section 3 uses it in the context of demography and social
dynamics; Section 4 applies the same approach to model frequency dependent predation
and food web dynamics; Section 5 discusses the uses of our approach in the study of models
for vector-transmitted diseases. Section 6 illustrates the connections between deterministic
and stochastic processes. The results of the stmulations of a demographic two-sex stochastic
model that follows the dynamics of pairs are presented.

2. BASIC FRAMEWORK FOR CONTACT STRUCTURES

The mass-action law has played a central role in the development of stochastic and de-
terministic epidemiological models (see Bailey, 1975: Anderson, 1982; Anderson and May,



1991: and references therein). The assumption that the rate of new infections (the inci-
dence) is proportional to the product of susceptibles and infectives in the exposed popula-
tion has no mathematical significance when one deals with interacting subpopulations that
have a constant number of individuals {although it may have an important effect on the
interpretation of relevant epidemiological parameters such as the transmission coefficient).
However, the mass-action assumption seriously affects the qualitative and quantitative be-
havior of models with interacting subpopulations of varying size (that is, when the sizes of
the interacting subpopulations vary according to deterministic or stochastic rules). Unfor-
tunately, a thorough analysis of basic assumptions such as those implicit in the mass-action
law was not carried out in a systematic fashion because mathematical epidemiology was
growing almost independently of epidemiology (there are some exceptions, e.g., see Heth-
cote and Yorke, 1984).

The HIV/AIDS epidemic revealed the deficiencies and inadequacies of the existing theory.
Several questions relevant to the dynamics of heterogeneously mixing populations affected
by fatal diseases could not be properly studied under the existing framework. The contact
structure of the population must respond at least to the potential population changes due
to a heterogeneously transmitted fatal disease (or more generally to frequency dependent
predation). The importance of the contact process—well recognized by Ross (1911) in his
work on malaria—in frequency-dependent systems has motivated the work that we present
in the final volume of this series.

Qur general approach for modeling contact processes describes who is mixing or pairing
with whom. We let M(a,t) denote the density of males of age a who are not in pairs at
time ¢, and let F(a,t) denote the density of females of age a who are not in pairs at time
t. Pairing is defined through the mixing functions:

1. pla,d’,t).proportion of partnerships of males of age a with females of age a’ at time
P g

t, given that they formed a partnership;

2. gq(a,d’,t) proportion of partnerships of females of age a with males of age a’ at time
i

3. C{a,t) expected or average number of partners of a male of age a at time ¢ per unit
time;

4. D(a,t) expected or average number of partners of a female of age a at time ¢ per
unit time.

Definition 1. The following natural conditions characterize these mixing functions:

l) p.gz2 0;
i) fJ°p(a,a’ t)da = [ q(a' a,t)da=1;
iii) pla,a’,t)C(a,t) M (a,t) = q(d’,a,t} D(a',1) F (a',);
iv) C{a.t)M (a.t)D{a’,t) F(d' t)=0= pla.a’ ty =q(a’,a.t) =0.

Condition (ii) is due to the fact that p and g are probabilities. Condition (i) simply
states that the total rate of pair formation between males of age a and females of age



a’ equals the total rate of pair formation between females of age a' and males of age a
(all per unit time and age). Condition (iv) says that there is no mixing in the age and

activity levels where there are no active individuals; i.e., on the set £(t) = {(a,d’,t) :
C(r,a,t)M(a,t)D(a, t)F(a,t) = 0}.

Remarks on property (i) :

Remark 1. This property states the obvious, that is, that the effective rate of outflow from
the a-male compartment into the (a-male, a'-female) paired compartment must match
the outflow from the a’-female compartment if we are to have only heterosexual pairs or
contacts.

Remark 2. Property (iii) would be satisfied only for very special functions C and D if we
insist on assuming that they are only functions of a and &’ respectively. This can, and
must, be relaxed in a variety of ways. We (Castillo-Chavez et al., 1993¢} have studied
frameworks and models that assume that ¢ and D are functions of M and F.

Remark 3. If we replace axiom (iii) by
0(t)C(a, t)M(a, t)p(a,a’,t) = D(a’, t)F(a', t)g(a’, a,t) for all a,a’
where

1 fOOOC(a,t)M(a,t)da

8(t) j‘ooo D(a',t)F(a’,t)daf (the sexual activi y ratio ) (¥)

then property (i) is automatically satisfied for “arbitrary” functions C and D. However,
this solution, in some sense, implies that one sex calls all the shots. This can be modified
so that the gender with the smaller number of total contacts per unit time has the upper
hand. For further elaboration see Hsu-Schmitz (1994).

Remark 4. If we use property (*) then all the results of this paper hold essentially without
change.

The pair (p, q) is called a two-sex mixing function if and only if it satisfies axioms (i-iv).
Further, a two-sex mixing function is separable if and only if

p(a! a'lvt) =Bh ((1., t)pQ (a',*t) and Q(a‘ a’!t) =q1 (G.. t) g2 (a":t) .

If we let
hp (a,t) = C(a,t) M (a, t) (1)

and
hg(a.t) = D{a,t) F(a,t) (2)

then, omitting ¢ to simplify the notation. one has the following results (see Castillo-Chavez
and Busenberg, 1991):



Result 1. The only two-sex separable mixing function satisfying conditions (i-iv) is given
by the Ross solution (§, §), where

I hq(a,)
pla’) = fooo hq(u)du’ (3)
i) = (@

fooo hp(u)d.ﬂ'.

We named this solution the Ross solution because Ross (1911) was aware of the importance
and necessity of axiom (c) and used it in his model for malaria, although he only used one
vector and one host type. This fact was clearly pointed out by Lotka (1923) in his review
of Ross’s work on malaria models {(Ross also outlined the potential use of this work in

modeis for STD’s).

Result 2. Any solution of axioms (i)-(iv) can be written as a multiplicative perturbation of
the Ross solution (p, §). These perturbations are a measure of the deviation from random
or proportionate mixing among subpopulations (given by the Ross solutions) and can be
parametrized by matrices that estimate the affinities/preferences of individuals.

In the next sections we discuss the applications of this framework in a variety of settings.
We first outline its use in demographic and social contexts and then provide a new ap-
plication of this approach in the context of frequency-dependent predation and food web
dynamics. Finally, we discuss its use in epidemiology and its implementation in stochastic
frameworks (Markov chain models).

3. ‘DEMOGRAPHIC AND SOCIAL DYNAMIC MODELS

Classical demographic models that consider pairs and follow the dynamics of pairs have
been studied by Kendall (1949), Keyfitz (1949), Parlett (1972), Fredrickson (1971), Mc-
Farland (1972), and Pollard (1973), and have been extended to epidemiology by Dietz
and Hadeler (1988), Dietz (1988a), Hadeler (1989a,b), Hadeler and Nagoma (1990), and
Waldstatter (1989). Their approach is based on the use of a nonlinear function to model
the process (rate) of pair formation. This mixing/pair formation function is assumed to
satisfy the Fredrickson/McFarland (1971, 1972) properties:

a) ¥(0,F) =%(M,0)=0.1In the absence of either males or females there will be no
heterosexual pair formation.

b) w(aM,aF) =9%(M,F) for all a, M, F > 0. If the sex ratio remains constant, then
the increase in the rate of pair formation is assumed to be proportional to total
population size.

¢) Y(M+u. F+v}>9(M, F)forall u, v, F, M > 0. Increases in the number of males
and/or females does not decrease the rate of pair formation.



Condition (b) implies that all mixing functions are of the form

vty =ar o (£) e (1)

where h and g are functions of one variable.

Examples of mixing functions satisfying the above axioms include:

Ww{M,F)=kmin{M,F), k a constant,

Yv(M,F)=kvVMF, and
MF
M+ F

The simplest demographic model that takes into account pair formation is constructed by
balacing the rates of flows between the different compartments/subpopulations; that is, by
keeping track of the transition rates associated with the transfer of individuals and pairs
of individuals (couples) as they form or dissolve pairings. To state the explicit equations:
let u denote the rate of pair dissolution, & denote the natural mortality rate, A denote
the ‘recruitmen’ rate, and W denote the number of (heterosexual) pairs. Then Kendall’s
demographic model is described by the following set of equations:

v (M, F) =2k

O A wF 4o+ )W - (M, F), (5)
dW

If A, 4, and o dre constant, then there is always a globally stationary solution (M, F, W),
where W is determined by non-trivial solutions to the equation

w(%—W]%‘i—W) = (g +2u)W

For references to this and related results see the work of Dietz and Hadeler (1988) and
Waldstatter (1989). Extensions of this model that incorporate the age structure of a
population have been carried out by Hadeler (1989a,b).

We now specify an age-structured demographic model equivalent to those studied by
Hadeler (1989a,b) but using the framework of Section 2. Specifically, let f(a’,t) and
m(a,t) denote the age-specific densities for single males and single females respectively,
and assume that C' and D are defined in Section 2, and 1, and gy are functions of age (the
mortality rates for males and females). In addition, let W(a,a’,t) denote the age-specific
density of heterosexual pairs (where a denotes the age of the male and o’ the age of the
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fernale). Then, using the two-sex mixing functions p and ¢ of Section 2, we arrive at the
following demographic model for heterosexual populations with pairing:

dm om

Ft_—i- -% = —C(a)m(a,t) - Hm (a)m(a?t)

+ / [7 (@) + o] W (a,a', t) da’,
0

8F L OF _ _p(a’)fd,t) — s (o) F(d,)

Bt | od (6)

+ [ [pm (a) + o] W (a,d’, t) da,
/

ow oW oW
+

—_ " / ’
at + Sa E —D(a)f(a,t)q(a,a,t)

— [us (@) + pm (@) + o] W (a,a',1).

To complete this model we must specify the initial and boundary conditions. To this effect
we let A\, and A; denote the female age-specific fertility rates, and let mg, fo, and Wy
denote the intial age densities. Hence, the initial and boundary conditions are given by

m(0,t) = [ Am (al) Ny (a', t)da',
/
f{0,t) = f,\f (a') Ny (o, t)da’, (M)
) 0
W (0,0,t) = 0,

f(a,[)) = fO (a): m(a,O) = My (a)v W(G.,G,’,O) = WO (av a’),

where

Nf(a',t):/ Wi(a,d', t)da.
0

We observe that Ny and f + Ny satisfy the following set of equations:
O DN (f+Np) = g (@) [f + Ny ®)
5t da’ = 241 FaR)

and
(58,; + 58-) Ny =D (@) f(d,t) — [y (@) + o] N

—f,um (a)W (a,a’. t)da.



Remark 5. If we take into account Remark 4, then C(a)m(a, t) in Equation (6.1) should
be replaced by fooo D(a’)f(a’,t)q(a,a’,t)da’ (for more details, see Castillo-Chavez, 1993c,
and Hsu-Schmitz, 1994).

If we let o — oo (while fixing a, ¢, and p.,(a) constant) then N¢(a,t) — 0% and formally
equation (9) approaches the classical MacKendrick/Von Foerster model. However, since in
the model given by equations (7)-(9) only pairs reproduce, we can not recover the classical
boundary condition. This situation is easily corrected if one uses Dietz’s (1988a) definition
of a pair. For some preliminary analysis of this model see Castillo-Chavez et al. (1991).

Models like (7) are useful because of the importance of the mating system and the average
duration of partnerships in the transmission dynamics of cultural traits. Superficially, the
cultural transmission of traits appears similar to genetic transmission. However, there are
further complications, as the inheritance of social traits such as language and religion is
influenced by the level of heterogeneity of the population at large. Previous approaches to
the modeling of cultural trait transmission have been either very specific, as in the bilingual
competition model of Baggs and Freedman (1990), or quite general, albeit within very
restricted or rigid frameworks. Cavalli-Sforza and Feldman (1981) and Boyd and Richerson
(1985) assume that cultural transmission happens once per generation, e.g., at birth. Hence
they exclude many situations including religious conversion, otherwise their model has the
usual inherent limitations of models with non-overlapping generations. In Lubkin et al.
(1992), we have developed a flexible framework to study the transmission dynamics of
cultural traits in age-structured populations with overlapping generations. The flexibility
comes from the incorporation of pairings, partnership duration, and ‘arbitrary’ mating
systems. Examples are provided that include the melting pot, biparental determination,
and maternal determination models.

Finally, we note that the models of the type here constructed represent more than just
an exercise in modeling, since their use has begun to have a serious tmpact in the area
of sociology, epidemiology, immunology, and ecology. The current revisions of the theory
have increased the number of interactions among a large number of scientists from biology,
sociology, epidemiology, statistics, and mathematics. The large number of interdisciplinary
conferences and workshops that have brought these groups together over the last five years
has radically changed the fields of mathematical population dynamics and mathematical

epidemiology.

4. FREQUENCY DEPENDENT PREDATION MODELS

Here we shift gears and discuss applications of the framework of Section 2 to situations
in which frequency-dependent predation is important. Qur emphasis is on the description
of prey selection, competition for common resources (see Pimm, 1982. 1988), interaction
strength (Pimm and Kitching, 1988), and their relation to food web dynamics. In this
section, we define a food web as a network composed of biological species interacting
through frequency-dependent predation and competition and illustrate our approach with

il
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the use of a simple three-level food web ( top predators, intermediate species, bottom
species).

The mechanisms by which predators select prey for their diet has been the subject of
intensive research (Akre et al., 1979; Cock, 1978; Levin and Segel, 1982; Chesson, 1978,
1983; Gendron, 1987; Qaten and Murdoch, 1975; Teramoto et al., 1979). A given predator’s
diet is, in principle, not necessarily related to the abundance of the different prey types
available (Gendron, 1987). From a phenomenological point of view, this outcome can be
seen as the product of a density-dependent risk of being captured and the density of other
alternative prey (Gendron, 1987). To model these interactions we let ¢;; denote the average
per capita number of effective contacts (leading to a successful meal) between predators of
type i and prey of type j per unit time; while r;; denotes the average per capita number of
prey of type j captured by predators of type i per unit time. If T;(t) denotes the number
or density of predators of type i at time ¢ and N(t} denotes the number or density of prey
of type j at time t, we must then have that

Tic,;j = Nj?"ﬁ.

By setting
m n
Cij = Zcija i = Z"'ji:
J t
one has
CiTiCijC:l = TijTjiT‘;l.
Defining

e -l
pij = cijc; - and Qi =TT

permits the interpretation of p;; as the proportion of prey of type j on the diet of the ith
predator, and q;; as the proportion of the jth prey type consumed by the ith predator,
given thant it had a meal at time ¢. Hence the matrix (pik, qri) satisfies the discrete analog
of properties (i)-(iv). Using these definitions we introduce the concept of a mixing matrix
in the context of a finite number of interacting subpopulations:

Definition 2. The matrix (pix, gk:) is called a mixing/contact matrix if and only if it satisfies
the following properties:

di) 0 <pix <1,and 0 < g £ 1
dii) Z:;lpik = 1= Z?=1an fori=1,---,nand k=1, --,m;
diii) &;Tipix = reVigrifori=1,---,nand k=1,---,m; !
div) if forsome?, 1 <1< n and/or some j, 1 < j < m we have that c;7xT; Ny = 0, then
we define pix = gx; = 0.

1 The assumption of constant contact rates is limiting, but facilitates the discussion. Modifications similar to

those discussed in Sections 2 and 3 are easily made.



Condition (diii) is interpreted as a conservation of contacts law or group reversibility
property. The total number of contacts per unit time of predators of type ¢ and prey of
type j has to be equal to the number of contacts between prey of type j with predators of
type ¢, given that they had a contact at time £. The condition relates the rates at which
k-prey are captured by i-predators, that is ¢;p;, and riqr;. The use of Ny and T; as state
variables introduces the abundance of prey and predators in a contact structure based
on biological species interactions. Condition (div) asserts that the mixing of nonexistent
subpopulations, either of prey or predators, cannot be arbitrarily defined. The symmetry
involved in the total number of contacts per unit time required for predator-prey, consumer-
resource or host-parasite interactions is an obvious fact that has not been fully explored
until very recently (see Castillo-Chavez and Busenberg, 1991).

We re-derive expressions for the mixing probabilities that allow for the incorporation of
handling times. Let 7; be the fraction of the total time available to an average predator of
type i spent foraging, and let o;; denote average fraction of time spent by a predator of

species ¢ handling prey in group j,t=1,---,n, j=1,---,m. Then

m
=3 oikcik (10)
k=1

Qi

denotes the mean per capita handling time of predators of group i. The searching time
(the available time that predators of species i have to find prey suitable for consumption)
of predators of type 1 is = — &;. Hence, the number of contacts that an average predator

of type ¢ has with prey in group j during the searching time is

C.-,'j = (Tl‘ - &i)biijs (11)

where b;; denotes the proportion of contacts that result in a capture of prey from group j
by predator species 1. Substituting (10) in (11) gives

m
o = (7‘,; - 5‘1) Zdikbika-
k=1
Solving for & leads to
S b N,
&y = TzZ’“ilak =t (12)
1+ Zk:l O"ikbika

while substitution of (12) into (11) leads, after some algebra, to

Cii = sz'ij NJ
Y1+ 30 bk Nk
From the ratio ¢;;/c;, we conclude that the probability of an effective contact between a
predator of species i and prey of group j is

bij N,
i = T - 13
P ’ k=1 bika ( )



To derive the probability g;; of an effective contact of predators of group ¢ with prey of
species j we solve the relation Tjci; = Nyry; for 7. The formula g;; = 7;i/r; leads to

Tibi; T - Tubu; T
i = . 14
o 1+ Ez;l Tikbik N /uzzzl 1+ Z?:I Tukbuk Ni (14)

Equations (13) and (14) satisfy the mixing axioms (di)-(diii). Formula (14) may be in-
terpreted in the following way: b;; is the maximum capture proportion in the absence of
frequency-dependent effects; 7;6;;7; is the number of captures of prey of type j by preda-
tors of type i during the total foraging time characteristic of the predator species. The
numerator of (14) gives the proportion of captures of all potential prey of predators of
type i, while its denominator represents the total number of captures made by all types
of predators per unit time; p;; depends only on the weighted relative proportion of prey
types, while g;; depends also on the handling times of each predator species involved.

Definition 3. A predator-prey mixing probability is separable if and only if
pij = pib;  and gy = 4G

To obtain separable solutions from formulae (12) and (13), one requires b;; = & for all
indices (ie., the maximum capture proportion is the same for all predators regardless
of the prey type they capture). This assumption leads to the following set of contact

probabilities (Ross solutions):

_ N
Pi = =) (15a
’ Z:l:l Nu )
and
- T-;Ti =~ Tka
i = e . 155
"ETE b3 pey Oik Nk ; L4563 1 OkulVy (155)

Thus, the frequency of a prey type in the diet of a predator depends on the proportion
of prey types available, while the presence of a given prey type in the diet of a predator
depends on the relative foraging time invested in capturing it. This last factor is commonly
associated with the functional response of the predator (see, e.g., Price, 1990).

4.a The Components of Predation Risk

Gendron (1987) has shown that the components of risk (how likely it is for a prey of any
given type to be captured by a predator) can be understood in terms of the following

factors:

a) The efficiency of the search path.
b) The area searched by the predator per unit time.
¢} The conditional probability of detecting prey.

/.



d) The conditional probability of attacking and then capturing detected prey.

Models for predator switching behavior are defined in terms of the frequency of each prey
type in the diet of the predator. Specifically, F}, the frequency of prey type 1 is defined as

F = ﬁ'iNi
YT BN (16)

where J; is a measure of the relative risk of prey i. Usually 3; is computed by the formula
i

Z;T:l Ty

where r; denotes the risk index of species . Frequency-dependent predation requires risk
indices which are functions of the relative density of the prey species and give rise to the
switching behavior of predators. Generalizations of this switching behavior model useful
for statistical analyses are of the form

Bi =

_ _f(X) '

>, FUXg) (17)
where f is a nonlinear (usually a polynomial) function of X, the density of prey species j
(e.g., Gendron, 1987).

To account for several predator species competing for a collection of prey species, we
reformulate equation (17) in the following way

_ Bi; Ny
Do Bie Ny

The model is complete after the postulation of appropriate functional forms for the relative
risks of predation J;;. These functional forms usually weigh each prey type according to
the risk of being captured (see Gendron, 1987). The connection with the mixing theory
described before is made by reinterpreting the matrix (pij, q;:) in (13)-(14) to model F;,
above. Tt has the added advantage that it can be incorporated into dynamic models (seé
Sections 4b and 4c).

' Fy (18)

Predation in nature is a selective process and has also been explored in the context of food
webs (Pimm, 1982, 1988; Fretwell, 1987). This frequency-dependent process may be due
exclusively to frequency-dependent effects—the most numerous prey provides a greater
share of the diet of any predator—or by an active process of preferential prey selection
which may be more suitable for the survival of a predator. The formalism introduced by
the mixing probabilities describes both processes. Pimm (1982, 1988) observes rare as well
as common species of prey in predators’ diets, thus imposing a ranking in prey species
selectivity. This ranking depends on each predator species but it is not transposable to
communities. The modeling approach introduced here allows for the incorporation of these

12
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effects. In the next sub-section we incorporate the mixing formalism in dynamic models
of predator-prey interactions. These models form the basis of our approach to modeling
food web dynamics.

4.b Predator Prey Interactions and Food Webs
The general model of predator (P)-prey (N} interaction is given by the system:
N'(t) = g[N(t)|N(t) — R(N,P); P'(t)= P(t)G(N, P) — dP(t), (19)

where G(N, P) is the numerical response of the predator, R(N, P)/P is the number of prey
consumed relative to prey density per unit time or functional response of the predator,
and the symbol ¢/’ denotes derivative with respect to time. The term g(/N) models the per
capita growth rate of a prey population when predators are absent and d is the density-
independent mortality rate of the predator.

A generalized form of the predator-prey model (19) that allows for heterogeneity in prey
and predator interactions is given by the following set of equations:

N! = g({Netem1) M = D Prack Pe;
= (20)

P]: = ek ZTijqJ'k — 5kpk,

j=1

where ey represents the efficiency of the kth predators in transforming prey captured into
predator biomdss, and i = 1---,m, & = 1,---,n. In (20) the per-capita growth rate
g may be a function of each of the basal prey types (thus assuming, in the absence of
predation, interspecific competition between basal prey types). (Pki,qsk) is the matrix of
mixing/contact probabilities whose eelements satisfy Definition 2.

Model (20) may also be used to describe the competitive interaction between species that
share a spectrum of biotic resources distributed among themselves according to the mixing
matrix (pik,qri). The first equation in (20) describes the ith prey population growing
according to g({Nx},_,) in the absence of predators. The term

n
0
Zpgci)ckpk
k=1

represents the total consumption rate of N by all predators in the community. Analo-
gously, the term

m

(0)
Z Ti qujk

Jj=1
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represents the total consumption rate of prey by predators of type i since these predators
eat not only prey of type j but of all types. By virtue of the relations

0
Ckpkpi‘j) = TJNJqu):

n

m
Z Ckpk = erNj’
j=1

k=1
we have that the total rate of prey captured equals the total rate of prey consumed.

One of the simplest food web models considers only three trophic levels (basal, intermediate
and top) each with m, n, and i species, respectively. The dynamics are specified by the
following food web transfer diagram:

N—-P-T,

where T = {T;}7 denotes the set of top species, P = {P;}} the set of intermediate species
and N = {N;}T" the set of basal species. The model equations are

N = g({Ne}i=1 ) N: — prﬁ’cvcﬂm

—%’Z?‘J i — }:p Db T, (21)

T[ = 311) Zakpqug - &1,
L] k l

where efi*) are coefficients that measure the efficiency of conversion of captured prey into
predator biomass, for the (*) predator level. The term g( {Nk}izl) denotes the per capita
growth rate of the kth basal species in the absence of predators. There are (i + m)n

links in this completely connected food web. The contact probabilities (pU ,qﬁ) ) (for

encounters between T and P populations) and (pu ,qj(? ) (for encounters between P and

N populations) satisfy the axioms in Definition 2 as well as the conditions

1
WTY = aePyald

Q
Ckpkka = TJNJqJ(,k)'I

(22a)
fori=1,--- 7, k=1,---,nandj=1,---,m. Therates ax and b are defined analogously
to r; and c; (see Definition 2 and the discusion that follows it on p. 8).

This model implicitly assumes that all species in level T are linked to all species in level
P, and that all species in level P are linked to all basal species in V.
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The following example assumes that, in the absence of predation basal species compete
according to a Lotka-Volterra model (e.g., Brauer, 1976) and that the mixing probabilities
are separable. Thus,

P
i
z
T
B
i
S
.
R
=2
I
o}
2z
2

- 22b
Py =Q£0)T‘N-—5Pk£, (22b)

T, =¢."aP, - 6,T;,

where s represent the intrinsic growth rate of the kth basal species, «;; represent the
competition coefficients of the community matrix, and the subscript  represents the sum
over all types in each of the trophic levels, i.e., the total population of the corresponding

trophic level. Also, in this case, the explicit forms of q(o) and q( Y are given by:

D
(0) 7" P, (1 _ T;

TR SCpra R TG S AT

where the superindex in the parameters relate to the position of the trophic level. The
assumption of separable contact probabilities forces the contact rates in (22a) to be in-
dependent of the type although not necessarily constant within each trophic level, thus
we write this as ¢; = &, ax = &, b = b r; = 7 for all 1, k, [ and j respectively. However,
separable contact probabilities allow dependence on total population density in the contact
rates. Condition (22a) must be also satisfied for all time.

The mixing probabilities in (22) are assumed to have the simplest possible form, i.e., they

are assumed to be Ross solutions (sepa.rable solutions) describing proportionate mixing of

captures. Thus we have p( Y = ﬁg ) and q = ‘lz( ), where the superscript * denotes the

trophic level as described above

In model (22) we consider the case where the capture of prey by corresponding predators
is given by Ross solutions (15) in both the top and the intermediate levels of the food
chain. The capture of prey is essentially a random process where predators do not show
preference for prey of any type. Furthermore, we have that the total population in each
trophic level follows the dynamics specified by the system
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This system is a representation of the dynamic behavior of the trophic species N, P, and
T or, in other words, it represents a model for the dynamics of the trophic web as such.
Only in very special cases, can the RHS of these equations be written in terms of N, P,
and T, and hence be solved independently of the species that constitute each trophic level.
Statistical models of food webs deal at this level of organization, therefore incorporating
a particular aggregation structure.

If we assume that gy = s a constant for all basal prey types (i.e., for all species belonging
to the N level), and furthermore, if we choose ¢ = ¢N,, 7 = rP,, h = bP,, and & = aT,
with a, b, ¢ and r constants, we get

N.=3sN, —cN,P,,
P:ZTP.N.'"bP.T.,
T! = aT.P. — 6T,

which is a Lotka-Volterra predator-prey system.

Another important model that can be derived from our mixing framework under the as-
sumption of separable mixing probabilities is the published by Hastings and Powell (1991).
Here we need to assume the growth rate of each type to be a function of the total popu-
lation, that is gr, = s(1 — N./K) where K stands for the carrying capacity of N,. Further

we assume

a cN, . TP,
= ——— T o=

D+ N’ D+ N,
. (LP. 5__ bT.
“TE+p "TE+DR

where D and F ‘are the prey population levels where the predation rate per unit prey is half
its maximum value {Hastings and Powell, 1991). Substituting these definitions into (21),
summing over i, k and ! and using separable mixing probabilities as we did when the
Lotka-Volterra predator prey system was derived we obtain

eN,
N =5(1—-N,/K}N, — ° A
- S( / ) D+N.P7
P, aP
pl=_""* N, _ * T, -
*~ D+N, E+p, e T H
bT,
T = *_P,— 6T,
* E+P, o1,

where u is the mortality rate of the intermediate predator population. This food chain is
known to present chaotic dynamics.

4.c Relation to Other Models

From model (22) we can obtain some interesting results that relate to ratio-dependent
models (e.g., Matson and Berryman, 1992). We do not want to expand in this aspect
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whose discussion in the context of our approach will be published elsewhere. Here we only
outline some preliminary ideas. Setting the RHS of (22b) to zero we find the equilibrium
relations (* denotes values at equilibrium):

P _ 9t
Ny &’
* *(0) 2w A7x
L _ gt (23)
Pe Py
" (1) «
Iy _4 @
P; &

The first equation predicts, at equilibrium, a proportional change in the ratio P)/NJ
whenever a change in the growth rate of any basal type takes place. In the last level of
the trophic chain, again at equilibrium, our model predicts a change in the density of the
jth top predator species proportional to the total population size of its prey population,

which is equivalent to
(1)

T: = q;
.="* 24
ERLDIE (24)

by summing over all j in the last equation in (23). Thus, the ratio of predators to prey is
simply proportional to the average probability of capture of the whole top predator pop-
ulation. These conclusions hold for specially aggregated chains of arbitrary length. Thus,
this very simple model constructed under the assumption of separable mixing (contact)
probabilities may serve as a framework for the theory of ratio-dependent predator-prey in-
teractions. This possibility and the empirical verification of the predictions will be explored
elsewhere.

4.d Remarks

Models of food webs can be divided into two categories: classical, or static, and dynamic.
Dynamic models include those of Hastings and Powell (1991) and Tilman (1991}, and they
are the main topic of this section. Classical models include those that attempt to describe,
from a statistical point of view, characteristic patterns common to sets of food webs. The
cascade model of Cohen et al. (1390) provides a successful example of a classical or static
model. It describes the plausible behavior of the population densities of trophically related
species.

The concept of trophic species on which ‘static’ food web models are based is not a natural
biological class but rather a theoretical classification. It is an equivalence class made of
those organisms, regardless of the species to which they belong, that share the same preda-
tors and the same prey. Thus, when one tries to define a trophic species from data, sources
of error. associated with the identification of common predators and common prey, arise.
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The applicability of the concept of trophic species to the field of applied ecology depends
heavily on the ability of experimentalists to eliminate errors in the classification process.
This problem is not unique to the study of food web dynamics; it is quite common in the
biological and social sciences. Once the researcher establishes what is a weak (negligible)
interaction and what is a strong one, the trophic level of each organism is determined.
However, as the study of Polis (1991) shows, it is difficult to decide what is a weak and
what is a strong interaction in a trophic web.

Moreover, the existence of omnivory makes it difficult to justify the classification of or-
ganisms into trophic species. This is particularly important if one is interested in the
population dynamics of the web. Omnivory implies a very diverse diet with some items
being more frequent than others (a matter of taste, opportunity, or chance), and if a large
share of a predator’s diet is made up of rare organisms, their neglect on the basis of weak
or strong interactions may be misleading. Consequently, the trophic structure dynamics
of the food web cannot be defined exclusively in terms of strong interactions, but rather
through a ‘distribution’ of interactions that reflects the composition of an organism’s diet.
In a recent study Paine (1992) concludes that in an species-rich herbivore guild there are
mainly weakly negative or positive interactions with only a few strong negative ones.

A trophic web may be better described from a dynamical point of view if the description
centers on what resources are used and the way these resources are used, that is, if the
description is centered on guilds of species. A trophic web is a model of the interrelations
between species that share common resources which have been shaped by natural selection
through various mechanisms such as diffuse co-evolution (Maddox and Root, 1990). In
fact, the mechanism of switching or apostatic selection has been recognized as one of the
factors that may promote diversity in prey populations (Greenwood, 1984; Levin and Segel,

1982).

-

For the simple three-level food web discussed here, we have shown that the conservation
principle of the, mixing probabilities (in Definition 2) allows us to structure predator-prey
interaction in terms of two main factors: the probability that a predator encounters its prey,
and the conditional probability of capturing and eating the prey once it has been found.
Moreover, the use of the mixing framework described in this work constitutes an approach
to the modeling of switching predator behavior, of frequency-dependent mechanisms in
prey selection, and interaction strength in food webs.

The models of food web dynamics based on our framework can be used, for example, to
study the time evolution of any given initial food web configuration. It is possible to
assign different ‘strengths’ to the interactions in the web through the initial contact rates
satisfying conservation relations as the one shown in (22a), and then follow through time
the fate of the individual species.

5. MODELS FOR VECTOR TRANSMITTED DISEASES

As Ross (1911) had noted, there is a close relationship between the mathematical formalism
used to study sexually-transmitted diseases and the mathematical formalism used to study
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vector-transmitted diseases. In this section, we outline the use of our framework in the
context of vector-transmitted diseases.

5.2 Host-Vector Mixing Frameworks

Mathematical models have played a very important role in the history and development
of vector-parasite epidemiology. Sir Ronald Ross in 1911 developed a theory for parasite
transmission mechanism while engaged in the study of malaria. He developed a simple
mathematical model that provided him with the concept of transmission threshold. Later
on, Macdonald (1957), based on the work of Ross, developed a new model from which
he extracted the concept of vectorial capacity. The involvement of mathematical models
in epidemiological theory has persisted along the years. In particular, we mention the
mathematical mode! developed for the evaluation of control measures for malaria in the
Garki Project (Molineaux and Gramiccia, 1980). This model was developed using the
extensive research on the transmission of malaria in Northern Nigeria. It is based on the
theory and results developed by Ross and Macdonald. Despite the construction of new
models (e.g., Aron and May, 1982; Rogers, 1988; Pacala and Dobson, 1990; Dietz, 1988b),
all estimates and assumed mechanisms for parasite transmission from vector to host still
rely on the assumptions implicit in the definition of vectorial capacity as presented by
Macdonald (1957). The goal is to estimate it in order to understand and evaluate the
strength and effectiveness of vectors for the transmission of parasites.

Transmission in vector-transmitted diseases depends on the life history of the vector
species. malaria and dengue, for example, are transmitted by mosquitoes of several species
including Aedes spp. for dengue and Anopheles spp. for malaria. Chagas’ disease is trans-
mitted by triatominae bugs of various genuses, e.g., Triatoma spp., Rhodnius spp., and
Pastrongylus spp. In malaria and dengue, transmisson of the parasite to human hosts
involves only adult individuals since the larval stages are aquatic and have a completely
different ecological niche. In Chagas’ disease, however, the vector is a triatomine bug
with 5 nymphal stages preceding reproductive maturity (Velasco-Herndndez, 1991, 1993).
All of them are hematophagous and all of them may be involved in the transmission
process (Zeledon and Rabinovich, 1981). Thus when speaking about general models for
vector-parasite-host interactions we must consider the age and stage structure of the vector

population.
5.b Vectorial Capacity

The factors affecting transmission by the appropriate vector stages according to Molineaux
(1988) are: (1) density of the vectors in relation to human hosts; (2) the effectivennes of the
vector in acquiring and maturing the infection after feeding on an infective subject; (3) the
frequency with which the vector takes a blood meal and the fraction of these blood meals
taken on human hosts; (4) the duration of the parasite incubation period in the vector; (5)
the longevity of the vector. Most of the above factors are included in the formula for the
vectorial capacity defined as the capacity of the vector population to transmit the disease
in terms of the potential number of secondary inoculations originating per unit time from
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an infective person (Molineaux, 1988; Molineaux et al., 1988). A formula for the vectorial
capacity is derived form the concept of basic reproductive rate (not a rate) proposed by

Macdonald (1957):

maZPn

~inp’

= (25)
where C denotes the vectorial capacity, m the number of vectors per human host, a the
number of blood meals taken on a human host per vector per day (biting rate), p the
proportion of vectors surviving per day, and n the length in days of the parasite incubation
period in the vectors. Formula (25) is species specific since, for example, n varies from

species to species.

If we denote by Ry the basic reproductive number or ratio, then we have that

Ry = —,

T

where r~! denotes the expected duration of infectivity (Molineaux, 1988). If we define u
as the death rate then p = e™ and

male k"
C = — (26)

then Ry = C/ur, the form used by Aron and May (1982) in their models of Malaria,
transmission.

The assumptio:}s on which (25) is based are, according to Molineaux (1988): (a) the vector
is fully effective in acquiring and maturing the infection. This amounts to ignoring vari-
ability in susceptibility by the vector species; (b) vectors die at constant rate, independent
of age, and senescence is ignored; (c) longevity is unaffected by the infection; (d) the prob-
ability of feeding on hosts is unaffected by the number of previous meals or by differences
in host type, and (e) parasite presence does not affect preference by vectors (Dye, 1990).

Some of the important factors neglected in Formula (25) were described by Ribeiro et al.
(1985) in their study on the blood finding strategy of Aedes aegipty and its interaction with
the parasite Plasmodium gailinaceum. The probing behaviour by Aedes aegipty is complex
and involves periodically repeated probing while searching for a blood meal (Ribeiro et
al., 1985): new attempts to feed depend on the success of the previous search. During
each search the probability of feeding success may be interpreted as a function of the
blood vessels on the skin. There is some evidence that the probability of desisting from
feeding increases linearly with time while decreasing as a function of the previous number
of attempts. Ribeiro et al. {1985) conclude that the dependence of the probability of
feeding success on the density of blood vessels implies a preference for infected hosts since
parasites induce an increase in the availability of blood vessels (see also Molyneaux and

Jeffreries. 1986).
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Feeding and probing behaviour of hematophagous arthropods may change during feeding
depending on the infected status of the host, and this fact, according to Dye (1990),
makes direct estimation of the vectorial capacity impossible. He argues that it is better to
estimate the relative vectorial capacity before and after a control measure is applied.

In Chagas’ disease, the feeding and developmental cycle can be broken into clear stages (see
the study on the population of Rhodnius prolizus, Friend et al., 1965). Trypanosoma cruzt
is transmitted to susceptible hosts by contamination rather than by injection during biting.
Triatomines urinate and defecate during or after a blood meal (Zeledon and Rabinovich,
1981), and this excretory behavior impacts the transmission dynamics of the parasite.
Infective forms of T. eruzi go in the feces and are able to penetrate wounds or soft tissue—
around the eyes and the mouth—infecting the host. The probability of infection increases
with the duration of a blood meal (Zeledon and Rabinovich, 1981). Hess and Hayes
(1970) have explored the potential of domestic animals to attract zoophilic species of
mosquito (Culez tarsalis and other species of the same genus). It has been established
that preferences do exist among vector populations in the selection of hosts; however, host
preference in the field depends not only on the vector preferences but on the density and
relative abundance of host types.

These results indicate that a careful modeling of the process of acquisition of blood meals
by vectors is necessary in order to obtain a better estimate of the transmission probability.
Searching and handling times must be explicitly considered as well as the functional form of
the dependence of the transmission probability on these parameters. We cannot proceed
to use formula (25) when the vector does not transmit the disease by biting, as in the
case of Chagas disease, when there is more than one stage involved in the transmission
process (Schofield, 1982; Zeledon and Rabinovich, 1981), or when handling, search times,
host-preference: and frequency and density dependent effects are important.

5.c Contact Structure

The need for further theoretical work is therefore quite evident. We reinterpret the contact
structure for frequency-dependent predation, completed in Section 4, in the context of host-
vector interactions. We hope that our approach will provide a useful framework on which
the questions raised may be systematically addressed.

Assume that vectors as well as hosts are subdivided into groups according to some variable
of interest (geographical location, susceptibility to infection, species, etc.), and denote by
Ci; the average number of contacts per day that vectors of group ¢ have with hosts in
group j. Consequently (fori=1,---,M and j =1, - , N) we must have

Vi () Cyy (8) = H, (6) Cy (1), (27)

where V;(t) denotes the number of vectors of type ¢ at time ¢ and H;(t) denotes the number
of hosts of type j at time ¢.
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Let 7, be the fraction of the total time available to an average vector of type i spent
foraging, and let 0.5 denote average fraction of time spent by a vector of species i handling
and probing hosts in group j, ¢ =1,---,n, j = 1,---, m. Then, as before,

N
o; = Z Tk Cik (28)
k=1

denotes the mean per capita handling time of vectors of group %, and the proportion of
time available for searching of vectors of type ¢ to make contacts, that is, to find suitable
hosts, is 7, — &;. Therefore, the average number of contacts that a typical vector of type i
makes with hosts of type j per unit time is

Ciy = (1 — 6:) Bi; Hy, (29)

where 3;; denotes the rate of successful contacts, ie., the actual biting rate of vectors
of type i on hosts of type j. In many situations it is reasonable to assume that Bi; is a
function of the total number of vectors of any type feeding at time ¢ on hosts of type j. If
I1; denotes the average number of vectors of any type feeding on a host in group j, and if
we assume that vectors are less efficient at biting very popular hosts (that is, hosts with
many vectors feeding on them), then as a first approximation we have that

s

where the matrix (r;;) can be interpreted as the matrix of maximum biting rates at low
vector densities. We impose the condition rij =rjforalll<i< M,1<j<N, and set
rji = 0 otherwise. Substituting (29-30) into (28) one obtains as before

N
o; = (T'i - 5&) E TikTik Mk,
k=1

where my = ;ﬁ;‘: is the ratio of hosts of kth type to vectors of any type feeding on a host

of type k. If p;; denotes the proportion of effective contacts between vectors of type ¢ and
hosts of type j, then one easily sees (as in Section 2) that

Tiq T,
pi; = —2 3 (31)

N
D Tijn;
J=1

Similarly, if ¢;; denotes the proportion of effective contacts between hosts of type j with
vectors of type ¢ then

M
Tzrzjl/; Tirzgvt

1+ Z:/:I TokTie™Mie ' =] L+ Z:;l TikTik Mk

;1 =

272.



Therefore the matrix (p:;, ;i) is a mixing contact matrix; that is, it satisfies properties
(di)-(div). Solutions (31-32) are not Ross-solutions, however, they become Ross solutions
if we require that r;; = r for all indices (see Section 4, Equations 15a and 15b}.

Remark. From equations (31) and (32) we see that the mixing of susceptible hosts de-
pends on the ratio m;-—measuring how the host population is allocated to each vector
type—while the mixing of susceptible vectors depends on the foraging time invested in
‘capturing’ a host. In this sense, solutions (31) and (32), allow for the possibility of mod-
eling asymetric forms of transmission as those discussed in relation to Chagas’ disease (see
Velasco-Hernandez and Castillo-Chavez, 1993).

In a classical contact epidemic model, which is quite appropriate for host-vector interac-
tions, the incidence rate for infective hosts, or the number of newly infected hosts per unit
time, has the general form

M .

L,
Sh, Zpijgim: (33}

i=1

where g; is a parameter that measures the infectivity of vectors of type 7, 5y; and I,; are
the susceptible and infective subpopulations respectively of vectors of type 1, and Sy; is
the susceptible host population of type j. Similarly, the incidence rate of infected vectors
has the general form

I

M
S E ;i f; S 1L (34)
i=1 7

h;

+ Iy s ’
where f; is a parameter that measures the infectivity of hosts of type 7, and Sk, and Ip;
are the susceptible and infective host populations respectively. The full equations are then

readily written.: Some preliminary work using these equations has begun to be carried out
by Velasco-Hernandez and Castillo-Chavez (1993).

6. THE DETERMINISTIC-STOCHASTIC CONNECTION

Classical deterministic models for the sexual spread of STD’s such as gonorrhea among
heterosexual populations can be found in Hethcote and Yorke (1984) while classical and
pair formation models under a unified mixing framework for the spread of STD’s can be
found in Blythe et al. (1991), and references therein. A stochastic version of one of the
deterministic models found in Blythe et al. (1991) is provided below. This formulation
uses the modeling approach comumon to interacting particle systems (for details see Luo
and Castillo-Chavez, 1991, 1992). Hence, it has great generality and flexibility.

6.a General Notation
Let X ={0.1.---, L}x{0,1}x{0,1,--- N }x{0,1} — {0}x {0, 1}x{0}x{0,1} and consider a

stochastic process & : X — {0.1,2,---}. ¢ 2 0. For z=(i,4;j,v) € X, our interpretation
of this process is as follows:
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1) The labels p and v represent the epidemiological status of the individuals. Specif-
ically, O=susceptible and 1=infected. The labels ¢ and j represent groups of males
and females.

2) For ¢ > 0 and 7 > 0, &(4, 4; j, v) gives the number of pairs where the male is of the
ith type and has epidemiological status p and the female is of the jth type and has
status v at time ¢.

3) Singles are labeled by triplets. However, to keep the domain fixed we use four
coordinates and set either ¢ or j equal to zero. Specifically, if ¢ > 0 and j = 0,
then & (7, 1;0) = & (7, 4;0,0) = & (4, 4; 0, 1} denotes the number of single males with
status f In the ith subpopulation at time ¢. Similarly, if ¢ = 0 and j > 0, then
&(0;7,v) = £(0,0;7,v) = &(0,1;7,v) denotes the number of single females with
status v in the jth subpopulation at time ¢.

Let S ={0,1,2,---}* and let ¢ : § x § — (0, 00) be a real-valued function—the flip rate—
to be specified later. We view {& : t > 0} as an S-valued Markov process with flip rate
c(,), ie., if & = € for some t > 0 then c(£,n) denotes the instantaneous rate at which &,

may change to the state n. The generator of this process is

QF (€)= c(&n) (F(m) ~ F (&), (35)

where f is a continuous function on S. Thus,

ZEf (&)= E;c(e,n) (F(m) — £ (&)

We assume the‘existence of an underlying mixing/pair formation matrix (p;;(€), g:;(€)) of
the type described in Section 2. To specify the flip rates we use the following notation.
For£e S, ACX,BC X and ANB =8, we define {4 € S as

E(z)+1 ifzeA
Ef(z)={E(x)~1 ifzeB

£{z) otherwise

If we change the notation slightly and now use the letters m and f to denote the parameters
associated with uninfected males and females and M and F to denote those associated
with infected males and females then one defines the flip rate (-, ) as follows (here =, 8,

and o are constant parameters):

a) Pair formation. For ¢ > 0, 7 > 0,

(1,1417.0) _f PR € (i, 14;0)
c (f.é(l,ﬁ;é),(g;j,u)) = ‘b_j (£)€(0;7,v) P (’5) (i, 1 0) + ¢ (i, 1- %0 .
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b) Pair-dissolution (o denotes the pair-dissolution rate). For ¢ >0, j > 0,

(5 E(‘-“D (OJU)) :amé(i,u;j:f/)-

(i.p35,0)

¢) Transmission (§ denotes the transmission coefficient—transmission may occur only
while paired). For ¢ >0, j > 0,

.;I;Ivl o g .,1;‘,1 . ..
e (. 6630) = 6p6 (.05, 1), e (§€0170)) = 816 (1, 1:5,0).
d) Recovery (v denotes the recovery rate}). For i >0, 7 > 0,
10; .70 . . .,0; ',0 . -
o (6 €5000) =re (5,03, c(6£0070)) = 16 (1140,
c(6£010) =bre i), e(6E00a) = Mt (014, 1),
while for single infected individuals we have

(5 ‘fé:?g)> =vmé (5, 1,0), ‘3(55535?3) =vr§(0;4,1);

furthermore; for i > 0, j > 0 we have the combined recovery rate
c (é, EGTIN) = 1emE (315, 1).
e) Removal (u denotes the removal rate from sexual activity). For i >0, j > 0, p, v
‘ (6.€580,)) = mr€Gumidw), e (66800 ) = wmE Gowidiv),
while for‘ the removal rate of single individuals we have that

c (65 f(i.,u;ﬂ)) = ,'.ng (%, I 0) R (ga E(U;j,u)) = #IE (O! J V) .

f} Recruitment (all recruited individuals are susceptible). For : > 0, j >0,

c (5,5(1’.0;0)) — AT, ¢ (é,é(o;j,o)) - A;.

g) Other. For other n # £, we assume

c(&,n) =0 and c(§,6) = — ) _ e(é, 7).

£#n

(More details are found in Luo and Castillo-Chavez, 1991, 1992).
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As the time ¢ changes, singles may form pairs, pairs may dissolve, and the disease may be
transmitted (usually only within clearly specified pairings). The system {£;} consists of a
series of changing elements in the set X, the set of all functions on S. The dynamics of
the system is described by the rates at which the system changes. These rates are given
as a set of nonnegative numbers {c(¢,n) : € # 7, £,v € X}. Specifically, each ¢(£, ) is the
rate at which the system changes from £ to n, that is,

Pllhsn=n]&=8&=c(nh+o(h), vt20.

The deterministic model that corresponds to the above stochastic model in the context of a
STD such as gonorrhea (susceptible—infected—susceptible) but that incorporates couples
(transmission can only occur in a couple where one of the partners is infected) is described
below (for more details see Blythe et al., 1991).

Consider a population of sexually active heterosexual individuals divided into subpopu-
lations by such factors as sex, race, socio-economic background, and average degree of
sexual activity. There are N/ female and N™ male subpopulations, each divided into two
epidemiological classes for single individuals: f;(¢) and m;(¢) (single susceptible females
and ma.les, at time t), and F;(t) and M;(t) (single infected females and males), all for
j=1,-- Nl and i = 1,---,m. Hence the sexually-active single individuals of each sex
and ea.ch subpopulatlon are given by Tf f3+E; and TT* = m;+ M;. The epidemiological
classes for pairs are given by 71'jr i wﬁ"", w{iM, 7f;M, which are respectively the numbers
of pairs of f-with-m, F-with-m, f-with-M, and F-with- M 1nd1v1duals Transmission can
only occur among those individuals in pair types 7rF ™ or 1r . Since ij_lM = wﬁf f we need
only consider four types of pairs. We assumed that the tra.nsrmssmn probablhty per unit
time is constant within each pair containing one infected individual. We let &7 and § be
the rates for male-to-female and female-to-male transmission, respectively. The per capita
recovery rates are vy and ~yr for infected males and infected females, respectively, when
their partner is uninfected. When both partners are infected (F-with-M pairs), simulta-
neous treatment of both is the norm for gonorrhea, so we incorporate ‘combined’ recovery
rate yrar, with both parties moving directly to the f-with-m (no infection) pair type. The
per capita dissolution rates are ofm, Ofum, TFm, and opps for the different types of pairs,
and the per capita removal rates from sexual activity due to death or other causes are u f
and ., for all females and all males respectively. Let A; and A" denote the ‘recruitment’
rates (assumed constant) of single {assumed uninfected) individuals in the female and male
populations respectively. We use the notation

_ m; M_ M v __fi /7 Q- t
p_:;:r M +m p_;u p;::. M +m p]z? th - Fz""'ftpg, pij = F;+f1p$,

(z=forFandy=morM,fori=1--- N™andj=1, -, M) for the fraction of pair
formations between the specified sub-groups (z and j) which are of given infection status;
for example, p)c " and pjf-iM give the fractions involving uninfected (m;) and infected (M;)



males respectively. Then the gonorrhea pair formation/dissolution model? is

NYYI

df;
dt Af‘*"YFF+[#M+UfM]ZI7T31 +[JU’M+0.fm]ZTrJ1 - |:ij+p‘fl f_’,‘?
i 1=l
dF; - Fm
b [m +«0Fm] 9 TH™ + [tm + 0] Z [ +’YF‘+Nf} Fy,
f
dm,- m i
- AT sy M+ [pg +0'Fm]Z7r + [py +Ufm]z7" = [CT" + pm] T,
j=1
M, A
i M FM
*d—t=[#f+°'fM]Zﬂfi +[#f+0’FM]ZWﬁ - [CT" +vm + ] Mi,
=1 f=1
d”"}'fim f ™ Fn.'r. fm
i =Cj PJ; D fi A YMT YR +’YFMWJ, — (g + e+ Tpm] T
dmji™ f. Fm FM Fm
—— = O P Fy M T - {if + tim +0Fm +6p +YF] T,
d"'rfiM f FM M
T_&C pjt fj+'YF7"ji ~ lug +pm + O ppr + 61 + M T
dnf™ oM FM
dt L _CfpFMF; +bpmf; M4 Syl < g+ + OFM + VM VP + YEM] M,

w1th initial conditions f;(0) > 0, m;(0) > 0, Tr ™(0) = 0, ‘n'fM(O) 0, ﬂ'F’“(O)
M(0) = 0, and at least one of the F;(0) and M; (0) greater tha.n zero (fori=1,- N"‘

a.nd j=1, ,'NT). We invoke the results of Kurtz (1970, 1971) and conclude tha.t for

large popula,txons the deterministic and stochastic models will have the same asymptotic

-

behavior.
6.b Simulations of the Process {&, : t > 0}

The general approach for simulating jump Markov processes is as follows. From the con-
struction of the flip rates we know that

c(€) = c(&n) <o

nes

Hence, if we let the sequence 0 = pp < p1 < p2 < --- denote the jump times of the process.
Then 7, = pn — Pn—1 has an exponential dlstrlbutxon with rate c¢(§,__,). We can simulate

the process using the following procedure:

In general, this model should be modified using Remark 2 and Remark 5. However, this modification implies
that one gender makes the decisions (but see Castillo-Chavez et al., 1993c, and Hsu-Schmitz, 1994).



i) Set initial state & and assume a sequence of n jump times 0 = pg < py < -+~ < py
and their corresponding states §,,, 1 < ¢ < n have been determined.
ii) Get T+ from exp{c(§,,,)} and let pn+1 = pa + Th.
iii) Set £,, , =7 with probability C(—gp-—"ﬂl.
+ C(f.on)
iv) Define & =&, for pn <t < pn41.

We proceed to simulate the above stochastic model in a very special situation. We assume
that the infection rates &y and §r are equal to zero or, equivalently, that there are no
infected individuals in the population. Hence, we are simulating a purely demographic
model. Individuals form and dissolve pairs. There is constant recruitment and we have
individuals of several (economic, social, etc.) types. The simulation (described below)
will have as its average dynamics the corresponding deterministic dynamics. However, the
stochastic version allows for the study of changes in the variance as a function of time.

A 10,000-realization run was allowed to simulate the process up to time ¢{ = 2.0, and a
1,000-realization run was extended to t = 32.0. Simulations were carried out using four
groups of single males and four groups of single females, resulting in 16 possible pair-
types. The initial numbers used for single males, by group, were: m; = 1000, m; = 900,
ma = 800, and m4 = 2700. For females, the corresponding numbers were: f; = 2000,
f2 = 1000, f3 = 500, and f; = 3500. The initial number of pairs was constrained to zero
for all possible pair-types. Removal rates for individuals—whether single or in pairs—
were held constant at 0.1. For this exercise, pair dissolution rates were also assumed to
be invariant, but with a 5.0 value. Recruitment rates used for (single) males were the
following: m, = 100, my = 90, m3 = 80, and my = 270; the recruitment rates imputed for
(single) females were: f; = 200, fo = 100, f3 = 50, and f; = 350. Pair formation rates for
males were set at: mqy = 3.5, me = 3.0, mz = 2.5, and m4 = 3.5; and pair formation rates
for females were set at: f; = 2.5, fo = 2.45, f3 = 2.3, and fq = 2.586.

As shown in Figure 1, stability in absolute sizes is reached early—at ¢ < 0.5 (relative
distributions, not shown, expose the same trait). This pattern of very rapid stabilization
is maintained when averages are computed from simulations based on as few as 30-to-100
realizations. Variance, expressed as standard deviations, for all possible pair-types also
stabilizes at ¢ < 0.5 (see Figure 2). However, variation for each of the groups of single
individuals, male or female, continues to increase until 10 < ¢t < 12 (Figures 2 and 3).
Further simulations will allow us to ascertain whether the pattern observed beyond t = 12
indeed reflects stability—or only smaller increments in variation. A simulation with 10,000
or more realizations and a time horizon of 50 < ¢ < 100 may be necessary to accomplish
this. Further numerical studies of this framework have been carried out by Castillo-Chavez

et al. (1993a,b).
7. CONCLUSIONS

In this article we have introduced a flexible framework for the modeling of contact struc-
tures in biology, which was built on our earlier work (see Blythe and Castillo-Chavez, 1989;
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Castillo-Chavez and Blythe, 1989; Busenberg and Castillo-Chavez, 1989, 1991). It can be
implemented in stochastic and/or deterministic frameworks. We have provided model-
ing applications in demography, including demographic models for pairs, epidemiology,
inheritance of cultural traits, and food web dynamics. Recently, we have also estimated
the contact structure, as modeled by our mixing matrices, of a student population as a
function of sexual or dating activity (see Castillo-Chavez et al., 1992; Hsu Schmitz and
Castillo-Chavez, 1992). In addition, we have worked on methods for estimating the pa-
rameters associated with arbitrary mixing structures (see Rubin et al., 1991; Blythe et
al., 1992). Furthermore, the representation theory of mixing matrices as a function of the
preference structure of a population, as first developed by Busenberg and Castillo-Chavez
(1989, 1991), has allowed us to begin studying the role of preference in two-sex mixing
populations (see Hsu and Castillo-Chavez; Hsu et al, 1993). In fact, we designed and
conducted a behavioral survey of a college population in order to estimate the preference

and mixing structure of two-sex mixing populations.

This research represents our initial efforts in understanding the role of ‘social’ structures
in disease dynamics. Most models in the past assumed a fixed social/behavioral structure.
The serious study of the transmission dynamics of HIV pointed out the serious limitations
of this approach. We have observed a large number of theoretical advances over the last
few years (see Castillo-Chavez, 1989; Jewell et al., 1992; Anderson and May, 1991; and
Hethcote and Van Ark, 1992). However, we have just begun to understand the effects of
changing contact structures in population dynamics. This is what happens when biology
meets mathematics!
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Figure 1. Population by Sex, Class, and Group. Simulation with ¢ = 5.0,
t <= 2.0, and 10,000 Realizations.
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Figure 2. Standard Deviation, Total Population by Sex, Class, and Group.
Simulation with o = 5.0, t <= 2.0, and 10,000 Realizations.
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Figure 3. Standard Deviation, Total Population by Sex, Class, and Group.
Simulation with ¢ = 5.0, t <= 32.0, and 1,000 Realizations.

50
3 1 iy ¥
\-lll-ll‘llh“ -~ ’ ‘.‘-\\‘\'\“m\f\’//
) \\‘““\mlm," “““uw;,,“”' ““\,”"“\\w,” ||uliI""flm,“\\\“"""""“‘ 7]
o3 unrppt
LA
LS [}
M Pre—— ’ -,
@“ - - - — My
F -
3
I 7/ -~
N
l -I"'--u'nv'--n
» ALPOL LY
-
& g ? (Y +
— (3 -l u [, ~ - '~& - N - *
o < ’—.‘."-. L P I P &t ' - L
o Coog b W l’
Q e
- P
‘g’ * hd P - = - - -
3 .'.---- '.___..'o ~¢‘--_- - [ » S, = ==
-y - . - . L LR
= b .. e i e g et L LT
- y,
210 icl » N i P I e - e - .
-~ x — .
[ '---___/' o+ S [ e N P | p—
> -7 | e I S N S A\
[ T — . .
a R S L I i g B R L e
B — = i ST
g __-:’__\:n_':-"_:":\“\‘/— e R ‘““\"’ ~
s / ..... N J——— ~ ’/,,_.,-»- —e " | ‘""_‘_p-”—%"‘*‘*.._h‘_‘./_-r\\‘ T
o =TT - PN —
s ) T T ™~ A
J—— —_— e —— — —
3
""" | Al Y P N .
- T L ~ T . ~ - - |7 ' - ~ 17 ~ - 4 7 ~4
s N -
—_— - e e —_- - Fe - e - - _ = - — = .
P - ~ 9 -
2
0 4 B 12 16 20 24 28 32
Time
mt e - ] e e AT == m2H = - = - m3f1 e m o= mdf
—— 2 e & 4 & 2 ————— mf2 — — m2f2 m3f2 ==w——— m4f2
................ m3 N B f3 . mif3 - - - - m2§3 - - - — - Mm3f3 e m4f3

MBI M4 S vt mm 4 = o= = o= mitd ==« o mm mMm2f4 = o= ww s mM3f4 mmmmee 44

]







