

INTERNATIONAL ATOMIC LNERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE



SMR.780 - 6

#### FOURTH AUTUMN COURSE ON MATHEMATICAL ECOLOGY

(24 October - 11 November 1994)

"Two-species Interactions, Stage Structure and Environmental Factors"

> Miguel F. Acevedo Institute of Applied Sciences University of North Texas Denton, Texas 76203-3078 U.S.A.

------

These are preliminary lecture notes, intended only for distribution to participants.

# Two-species Interactions, Stage Structure and Environmental Factors

Miguel F. Acevedo University of North Texas acevedo@unt.edu

# Readings (1 of 2)

- **#** For stage-structured models:
- Nisbet R.M. and W.S.C. Gurney. 1986. The formulation of Age-Structure Models. pp: 95-115. In: Hallam T.G. and S.A. Levin (Eds.) *Mathematical Ecology: An Introduction*. Springer Verlag, 457 pp.
- For stage-structured models of Daphnia:
- Nisbet R.M., W.S.C. Gurney, W.W. Murdoch and E. McCauley. 1989. Structured population models: a tool for linking effects at individual and population level. Biological journal of the Linnean Society 37:79-99.

## Readings (2 of 2)

- For ingestion, growth and reproduction:
- Kooijman S.A.L.M. 1993. DEB in biological systems. Chapter 3. pp 53-113. Cambridge University Press.
- For a recent paper on cladocera:
- Acevedo M.F., W.T. Waller, D.P. Smith, D. W. Poage and P. B. McIntyre. 1994. Cladoceran population response to stress with particular reference to sexual reproduction. Non Linear World. In press.

### One consumer - Two producers





\_\_\_\_\_

.\_\_\_\_\_





#### Ingestion rate: Environmental controls

Ingestion rate: class i

 $C_i(t) = C_{maxi} Qf(t) QT(t) QP(t) QX(t)$ 

Food limiting factor: Qf Environmental limiting factors:

QT = temperature limiting factor QP = photoperiod limiting factor QX = stress limiting factor

# Growth rate: class i

 $Gi(t) = eff Ci(t) [q_1 a + q_2 (1-a)]$ 

eff = assimilation efficiency Ci(t) = ingestion rate q1 = quality food 1 q2 = quality food 2 a = fraction of food 1/total

#### Ingestion rate: stress limiting factor : 0.8 ÷ T 0.6 Half rate ÷ 0.4 /Threshold sexual reproduction ē. 0.2 0 <u>.</u> 0 2.5 5 7.5 10 12.5 15 17.5 20

**Chemical Stress** 

# Ingestion rate decreases with toxicant concentration

Experimental evidence:

-e.g. Cladocera including Ceriodaphnia lacustris

K. Day and N.K. Kaushik, 1987. Arch. Environ. Contam. Toxicol. 16:423-432.

-recent results with rotifera: C.M. Juchelka and T.W. Snell. Manuscript.

# Experimental evidence

Ingestion rate decrease as the stimulus for sexuality in populations of *Moina macrocopa* 

L. R. D'Abramo. 1980. Limnol. Oceanogr. 25(3):422-429

encode a company de la company

Correlation with particle density Physical receptors Threshold at 30 % of maximum rate

-----



0

0

10 20

30 40

50 60

Time (days)

70 80 90 100

0

0

20 30 40 50 60

10

70 80

Time (days)

90 100



#### Light limiting factor: Depth averaged

Averaged down to euphotic depth u

 $QL = {exp(1)/(ku)} { exp[-L(u)/Lop] -exp(-L0/Lop) }$ 

Beer's law:

1

 $L(z) = L0 \exp(-kz)$ 

Steele's model

P = Pmax [L(z)/Lop] exp[1-L(z)/Lop]

# Light extinction factor

 $k = a + b y(t) + c y(t) ^ 2/3$ 

y(t) = P(t) (carbon/chlorophyll)

P(t) = algae density

### Field version/ mid latitude



### Producer Dynamics: Differential Food Quality, Mid-latitude





Sensitivity to maximum ingestion rate

-variable temperature, photoperiod, food quality



#### Effects of Toxicant Lab/Const Food/ Equal Quality



## Sensitivity to switch threshold

Eggs

---

Neonates

Adults

Males 

0.5

0.4



#### Experimental evaluation: preliminary results 200 Fluorescently labeled beads رس of brads بر **00**1 150 Beads consumed Number 50 Pentachlorobenzene 0 \_0 0.2 0.4 0.5 0.1 0.3 Toxicant concentration (mg/L)

# Lecture Summary (1 of 2)

- Importance of structuring the populations in community models
- Life-cycle provides guidance to structure the population models
- Importance of including environmental controls in community models

# Lecture Summary (2 of 2)

- Toxicant concentration affects ingestion rate
- Ingestion rate decreases lead to sexual reproduction
- Simulated changes in reproductive mode imply detectable population level responses
- Experimental evaluation
- Potential application to risk assessment
- Potential application to evolutionary demography