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ON THE EVOLUTION OF MARRIAGE FUNCTIONS:

IT TAKES TWO TO TANGO

Summary

In earlier work, we characterized two-sex marriage functions as multiplicative
perturbations of the Ross solution, that is, heterosexually random or proportionate
mixing. These perturbations are expressed in terms of the preferences/affinities of
males for females and viceversa. Ma.le‘ and female preferences/affinities are not
independent, in fact, they depend on the availability of male and female behavioral
“genotypes”. The key result of this article says that knowledge of the
preferences/affinities of one gender completely characterizes the preferences/affinities of
both genders; in other words, it takes two to tango. This is the basic content of the T3
Theorem. In addition, we show that different sets of preferences/affinities, that is,
distinet behavioral “genotypes”, can give rise to identical mixing/mating probabilities,
the determinants of the behavioral “phenotypes”. Hence, different sets of individual
decisions can lead to identical social dynamics—a fact well established in genetics. The

work in this article extends and applies prior results published in this journal.



1. Introduction

Marriage functions are solutions to the two-sex mixing/pairing problem.  Despite their
importance in areas such as population genetics (mating functions), demography (population
projection), cultural anthropology (preservation and dissemination of cultural traits), and evelutionary
biology (life his.tory), their application has been quite limited. Most researchers have addressed
theoretical issues in these areas through the use of single-sex models or highly simplified two-sex
models. A basic premise that it is being ignored is that “it takes two individuals to tango”. The
difficulties involved can be seen in the pioneering work of Kendall}, Keyfitz%, Fredrickson?,
McFarland?, Parlett®, and Poilard®.

Over the last few years, we (Busenberg and Castillo-Chavez) developed an axiomatic framework
that allows for the systemetic study of marriage functions’™®. Although our work is still in its infancy,

it has already been applied in areas as diverse as cultural anthropologym, demographyn, epidemiology
and food web dynamics'?, and parameter estimation'®1%, We provide a detailed characterization of
marriage functions for populations defined through fixed characteristics such as race, language,
biological species, religion, level of education, and socioc-economic level. Therefore, the framework
described in this article can be utilized to address sociological and biological questions for this type of
populations via finite dimensional deterministic or stochastic models. Questions about populations
defined in terms of dynamic characteristics such as age require the use of infinite dimensional systems
that, in principle, are more difficult to analyze'S.

We? characterized two-sex marriage functions as muitiplicative perturbations of the Ross solution,
that is, heterosexually random or proportionate mixing. These perturbations are defined in terms of
the preferences/affinities of males for females and viceversa. Male and female preferences are not
independent, in fact, they depend on the availability of male and female behavioral “genotypes”. The
key result of this article says that knowledge of the preferences/affinities of one gender completely
characterizes the preferences/affinities of both genders; in other words, it takes two to tango--the basic

content of the T? Theorem. In this articie, we also show that different sets of preferences/affinities,

that is, distinct behavioral “genotvpes”. can give rise to identical mixing/mating probabilities which



are the determinants of the behavioral “phenotypes™. Hence, different sets of individual decisions can
lead to identical social dynamics--a fact well established in genetics. The work in this article extends
prior results published in this journallT.

This article is organized as follows: Section 2 reviews and summarizes our earlier work on
marriage functions using fixed classifications; Section 3 introduces flexible parametric families of
mixing solutions that make connections to data possible and presents an example using our own data
to estimate a heterosexual mixing matrix; Section 4 discusses the relationship between males and

fernales preferences/affinities through the T3 theorem; Section 5 summarizes our results and suggests

future directions.

2. Two-sex Mixing Framework for a Population with Fixed Characteristics

We consider a population with L types of males and N types of females. Let T"(t) denote the
number of males of type i at time t (i=1, ..., L), and Tf(t) denote the number of females of type j at
time t (=1, ..., N). In addition, we let ¢; (=1, ..., L) and b; (7=1, ..., N) denote the rates, assumed.
constant (for simplicity), of pair formation for males of type i and for females of type j, respectively.

A two-sex marriage function is described by two matrices: P(t)={p;;(t)} and Q(t)={q;(t)},
where p,;(t) denotes the probability that a male of type & pairs with a female of type j given that he
has formed a heterosexual partnership at time t, and q j,-(t) denotes the probability that a female of
type j pairs with a male of type i given that she has formed a heterosexual partnership at time t. The
pair (P(t), Q(t)) is called a marriage or mixing/pair-formation matrix if and only if it satisfies the
following properties at all times:

(Al) 0<p;{t)<l and 0 <q,(t)<1 for =1,..., L, 5=1,.., N.

(A2) J%lp.-j(t) =1 for =1,...,L; é:iqj.-(t) =1 for j=1,..., N.

(A3) ¢; TM(t) p;,(t) =b; TI(t) qu(t) for i=1,.., L, j=1,.., N.

(Ad4) p;;(t) =q {t) =0 by definition if ¢; b, T(t) T;(t) =0 forsome: 1<i:<L, and/for

some 3, 1 <7< N,



Property (A3) expresses the fact that the total average rate of pair formation between males of type 1
and females of type 7 must be equal, while property (A4) asserts that individuals from populations that

do not interact cannot possibly mix. An immediate consequence of the above properties is that the

total average rates of male and female activity must agree at all times, that is,

L m N i
Yoo, T =J};;1bj T/, (1)

=i

A special solution, the only separable solution”, to axioms (A1)-(A4) is the Ross solution: P;;=P;

and q;;=4;, where
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{both are implicit functions of time).

Castillo-Chavez and Busenberg® characterized all solutions to axioms (Al)-(A4) as multiplicative
perturbations of the Ross solution. The perturbations were defined in terms of two matrices,
®"={¢;} and V:{qﬁ{-i}. The matrices $™ and ®/ define the preferences and/or affinities of types
of individuals of one gender for other types (here of the opposite gender), and these preferences may
change with time directly or through changes in the frequency of the types. We refer to these two
matrices as the male and female preference mairices, respectively. To present some new results, we

need to explicitly state our characterization theorem of two-sex marriage functions. The following

expressions are needed:
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Theorem 1.°
For each marriage function (P, Q), matrices ®™ and @/ can be [ound so that
E[_Rf R R™ R/
— b ' — ' J
Pij = B; L V7 + (D?;- and q,; =G v + Qf' (4)
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with 0<RP"<1 and 0<R{<1 for i=1, .., L j=1, .., N, and > € g <1l and
i=1

N
> 8‘; P; <1 if and only of
1=1

m o 4f 1l 1

¢:’;—¢,,+R;"R1[v_m_7] (5)

The conditions 0 <RP®<1 and 0<RI<1 imply that 0<E™<1 and 0<&f <1, while the
L N

inequalities Y {™ §; <1 and Eﬁf P; <1 guarantee that V™ >0 and v/ > 0. Expression (4)
=1 =1

reveals that P:; and q ; are implicit functions of frequencies (and time). Condition (5) shows the

implicit frequency {(and time} dependent relationship forced by (A3) bewteen the elements of ™ and

&', Let
. Py . q;
p=( ;) and T=[ i)
PN qr,

Using matrix notation, we can combine the constraints imposed by (5) in an implicit nonlinear

relationship of the following general form
" =y(7, T, ¢, &), (6)

where the elements of ¥ are defined component-wise by {5). The nonlinear expression (6) succinctly
summarizes the constraints imposed by (A3) on the mixing subpopulations and their defining
paramneters.

We conclude this section with a useful result which gives an insight into the role of ®™ and &/:

Theorem 2.°
If either ¢$=‘1’ 0<a<l Vi3 or ¢§.-=ﬁ, 0<pB<1 VY3 i where a and § are
constants, then p;.;=p; and q;=q;. That is, Equation (4) reduces to the unique separable Ross

solution in (2).

3. Parametrization of Preference Matrices

Equation {4) encapsulates all possible mixing patterns in terms of {wo preference matrices. It
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may be argued that this representation just passes the buck by transferring the difficulties from one set
of matrices, (P, Q), to another, (‘b”‘, @) In fact, mixing between individuals is a complex process
which is not really possible to get around. The use of preference matrices (‘bm, @f) heips increase our
understanding of the marriage/social structure of a population. Preference matrices facilitate the
modeling of specific, non-trivial mixing patterns between individuals. Earlier theoretical work was
based on random, or specific types of assortative mating, and few other variations, particularly in
population genetic.sls. Modelers, who were interested in mating systems at the level of the individual,
began to move away from random mating through the use of special mixing matrices including like-
with-like, preferred mixing, or biased mixing!®. Other forms of mixing such as those females preferred
to mix with older males and maies preferred to mixed with younger females were avoided because
either they led to intractable mathematical models or there was no obvious way of modeling this type
of mixing. The consequences of this type of self-imposed limitation have just begun to be explored.
For example, disease-dynamics and demographic studies were based on models constructed with
unrealistic mating structures. The question that must be asked is, to what extent are these results too
dependent on the used of specialized forms of mixing?

Preference matrices ('I'"‘, (bf) help construct more realistic mating/social structures. In this
section, we present a simple resuit that allows for the modeling of flexible mixing structures
parametrized with \-rery few para.metel_'s. We illustrate the use of these matrices with real data, that is,
with mixing matrices that we constructed using the method that we published in this journall”. The

key result is expressed in the {ollowing theorem:

Theorem 3. V/ =V™ if and only if o™ = (‘PJ)T, where T denotes transposition.
Proof. It is immediate from Equation (5) that Vf = V™ implies that q&}’; = q&f‘-.

Since
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The z;bove result implies that the only solutions to axioms {(Al)-{A4) with frequency independent
™ and &/ are those with $™ = (‘)f )T. Namely, males and females have matching preferences which
do not change with T(t) and Tf(t.). Although the class of solutions with Q'“:(‘Df)T is quite
restrictive, this class extends, considerably, the mixing/mating structures available in the literature.
Furthermore, if we use constant preference matrices ™ and &/, then the class of parametric mixing
models becomes quite rich and flexible. Figure 1 shows a real mixing matrix, which is also listed in
Table 2. It was constructed using our data from a known population of undergraduate students and
their partners?®. The data summary is listed in Table 1. The known (targeted) population was
stratified by school year as class 1 for freshmen, class 2 for sophomores, class 3 for juniors and class 4
for seniors, while those partners who were not members of the known population were assigned to an
additional class of their own, the non-targeted population, or class 5. This stratification is highly
correlated with age and, consequently, we can also “read” the age-structure mixing from this matrix.
Figure 1 shows strong evidence of like-with-like mixing (individuals prefer to mix with those of the
same class or age) coupled with an additional trend, namely, females tend to pair with older males and
males tend to pair with younger females. In addition, it shows that the link between targeted (classes
1, 2, 3 and 4) and non-targeted (class 5) populations is very strong. Thus, the use of constant
preference matrices that satisfy the relationship ™ = (Qf )T provides a reasonable first approximation

for the construction of a mixing parametric model.

[Table 1 about here

Table 2 about here

[Figure 1 about here]

Figure 2 about here
g




The model most commonly used in the past is that of random mixing (the Ross solution}. Figure

2 shows the corresponding random mixing pattern associated with our data. Clearly the Ross solution

does not capture the features observed in the data. We propose ®f matrices of one of the following

types
- - _ -
1 d d d d d d d d
0 1 d d 0 d d d d
= 0 0 1 d d or &= 0 0 d d d |, (8)
0 0 0 1 d 0 0 0 d d
0 ¢ 0 o0 1 0 0 o o0 d

and hope to capture the qualitative feature observed in the data with a single parameter, d, under the
assumg‘ion that ™ :(q,f)'r_ Other types of &f might fit our data as well. The following example,
shows that mixing matrices, parametrized in the above fashion, provide useful and realistic parametric
models.

For our illustrative example we assume that data were collected at t = 0 and that the pair-
formation rates and initial population sizes {c,, b, TT{0), T_{(O) : =1, ..., L; =1, .., N} are known
(Table 1). The mixing matrix (13(0), Q(O)) is estimated using our recently developed methods!? and
our own datal®, which is presented in Figure 1 and Table 2. We estimate the parameter d in models
Q{ and (% using least squares. For a given d, the predicted mixing matrix, (f’(O), Q(O))d, is given by
(4) {(or by (34) in the next section). The least squares estimate of d, d, minimizes the sum of squared
differences of all corresponding elements bewteen (13(0), Q(O)) and (P(G), Q(O))d given that the
range of d is constrained by the conditions 0 < €™ <1 and 0 < E_‘;— <1 If & = (b{, then the lower

bound of d is nonpositive, and the upper bound is 1 because

1:1;‘_11_1L—f1'2S —l—qqm
= _ L
28 X g
1=72 1=
and
L—Pn _ 1—-Png 1-p,
I:N-l_ o - R P
P, 2o Pj



If @ = 02’, then the constraint reduces to 0 <d <1 because

N NP S
1= L_ < L_ = SaL
28 24
and =1 =2
__1 1 1
l=gl—<gf—< <
=1 =1

Because our data come from a non-closed network, wel? developed a methodology based on mark-
recapture techniques that allows us to conditionally estimate the size of the non-targeted population.
Furthermore, with the use of properties (A1)-(A3) wel 15 were able to estimate (P(O), Q(O)) using
the five classes as shown in Figure 1 and Table 2. Along with the estimated population sizes and pair-
formation rates in Table 1, we compute the least squares estimate of d for Q{ and Qg The estimates

are: d, ~ 0.50 for & = (b{, and &2 ~048 for ® = Q{ The predicted mixing matrices with d,

(l-’, Q)& , are presented in Figures 3 and 4.

[Figure 3 about herej

[Figure 4 about here|

Since the sum of squared errors with d, is smaller (0.699) than that with d, (0.797), the model with
& = Q{ is preferable to that with o = Q% It is also clear if one compares Figures 3 and 4 with
Figure 1.

If the preference matrix ™ :(éf )T is fixed, that is, if all their elements are constant, then
relationship (5) is always satisfied. Once we have computed d from the data, we can predict P;; and
q;; for all times by (4) or (34) through the dynamics of the population, i.e., T7(t) and Tf(t), which
can be predicted using deterministic or stochastic models. In fact, we!l have constructed stochastic

and deterministic demographic and epidemiological models that incorporate the contact structure

described in (4).

4. The Two Body Problem or it Takes Two to Tango

In Section 3, we found the relationship



=%, 4, ¢, "),
or, in other words, the preferences of males for females and viceversa satisfly a complex relationship
unless they both “agree”, that is, ™ = ((PJ)T Common sense dictates that if the set of preference of
one gender {e.g., Qf) is known then so must be the other (e.g., ®™). Consequently, we should be able
to solve (5), that is, we should be able to compute a relationship like
" =%, T, ¢).

Hence, ™ is just a function of the Ross solution and fbf, and a simpler relationship is not possible in
general. This result will be referred as the “T° Theorem” as it convincingly shows that, in all
situations, it “Takes Two to Tango”.

To find a solution of ™ in terms of P, 4, and qﬁf‘-, we multiply P, on both sides of Equation (5)

and sum over ;. The resulting relationships are:
%5,‘;5'.'“,: %L—).qéf..;. iﬁ-Rm rf1 Ll L
T T T R T Ty

N
—R™=%Y'5. ¢ moyf(_ 1 _ L
@ 1-RT'= L5, ¢+ RV [ -

V
N !
< 1- _Ell"j ¢ =R |:¥Fﬁ:| (9)
1=
If we define
Y
uf = 3 5; 44, (10)
1=1
then from Equation (9) we obtain
1-u{ R
T = V:ﬁ , (11}

which reveals the fact that male preferences can be obtained from female preference if we can solve

(11). Explicitly, if we define

8f = L. (12)

then the system that must be solved becomes

R -3l v =0, (13)
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or

or in matrix notation

where
_. (4 _. (R°
gf = and R™=[ :
Bl R{
If we let
B=1-4/3",

then we observe that B, an L x L matrix, is rank one perturbation of the identity.

L
det B=1- 33, 8{ =0,

i=1

which can be seen from the following simple calculations:

L L
2.4 (1—U{) 1- 35, uf
det.B:l—'—"l =1 1=1
\Z vi
L N_ N L p
1-3.3; 2P, 5 1- 3 2.P;3 5
-1- i=1 =t 1 - =1 =1
vf vf
Vv -
= 1-Vf_0 (using (7)).

Note that Equations (18) and (19) also imply

L

! t
1=1
Since det B = 0. all solutions are given by

—_—

R™ =y A/,

Furthermore,

(14)

(i5)

(16)

(17)

(18)

(19)

(20)

(21)

where v is an arbitrary “constant” for each time t. In other words. the null space of I—ﬂfT_fT is



equal to spa.n{?}’f}. To verify this result, we substitute the solution in (21) into (14) and obtain
L f L
LES = 5 8] = B Y51 9 =7 /! (1- S pf)=0=rus
=1 =
L
for all 1, where (1 -3 G ﬁi) =det B=10.
k=1

. Substituting the solution (21) into (5), we obtain

m_ yf fIL_ L gf =X
o7 = ¢l +v 8] RS [7 Vf]_ #%i+ B RS [1 Vf] : (22)
N
From the condition E§ p, <1 in Theorem 1, vf >0 for all times because
J=1
N 7 N L i L,
ZEEJ p; = _Zz:t(—l.' b3 I_?'J':Z:lﬁ.' U{<1 ' (23)
1= 1=h= =

and thus by Equation (20)

L
vi=1-Yg,U{>0.

=1
N
If we further constrain qb-;'- to assure that U{ = E[_)J- qbfi <1, then ,3{ >0 for all i by (12) as
=1
negative values of ﬁ{ would imply that U{ > 1. Finally, in order to have 0 <R[ <1, we need to

choose « satisfying

0$7_<_maiﬂf. (24)

Note that not all ﬁ{ can be zero, or not all U;f can be one, otherwise vf = 0. The parameter 7 gives

an extra degree of freedom in the choice of R]* and ¢$ To reparametrize or rescale the free

parameter, we let
ar

Hence, Equation (22} becomes

\ £l RS VI(I_F) ! s
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Plugging Equation (26) into Inequality (24) resnlts in

05Vf(1—1‘)< 1

~ max g
= 0<1 -0 < —>t —
v/ max g{
1
. j——1  _<r<i,
v/ max g{
1 4
which by Equation (12) holds
& 1-—1 —<r<i1
1 —min U{
1
— min U{
& : <T<1.

1 — min U{

These preliminary computations allow us to state our main result, the T Theorem:

T3 Theorem. The preference matrices at all times obey the following explicit relation:

(1 - U{) RS

where T is an implicitly time-dependent arbitrary “constant” satisfyin
p g

— min U{
<P <
1 —min U{ -
1]
and conversely

_ U™ R
asf-=¢'-"-+a(l U’)R‘

7 i v

where

L

and A is an implicitly time-dependent arbitrary “constant” satisfying

— min U;-"

. <AL,

1 —min U™ -
;o

(28)

(29)

(30)

(31)

(32)
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The function ¥ is thus defined explicitly by Equation (29).
If d}{l. = o (constant, and 0 <a < 1) for all 1, 5, then 0< Rf =l-ag<l for all j by (3),
0<Uf =a<1 forall iby (10), and 0<V/=1-a<1 by (20). Thus, gf =L1= = by (12
? L] 1—a™ Y ( )

and 0 <RT=+7<1 by (21) for all i. Hence, from (22)

¢7 -ﬂ_a+(1-a)[ —%ﬂ]_:l-—}*:constant

for all ¢, j, and 0 <1—v < 1. This is an alternate proof of Theorem 2 of Section 3, which states that
lack of selectivity {preference) in one sex implies lack of selectivity (preference) in the other. In this
case, p;;=P; and q;i=d;, that is, the population mixes at random. If I'=0 or A =0 for all
times, then @™ = (<I>f )T, the frequency independent mixing matrices of Theorem 3.

If the female preferences dominate and are hypothesized as 3 i» and the actual male preferences
are given by .g_S['J', then we can obtain the optimal hypothesized male preferences 3:’; through (27) or
(29) by choosing I' so as to minimize the sum of squared differences between 3:; and &:’; Thus, the

choice of T is given by

v
=

LY
il
bt

5“: (8! RIy? 4

I

-
il
-

[

A similar result holds through (30) if the male preferences dominate and the actual female preferences
are given. In addition, one can also derive expressions for I' and A if one assigns a weighted preference
dominance to each of the two sexes,

Using the mixing solution given by (21) and (22}, the general mixing matrix in (4) can be

rewritten as follows:
_|REv 8!
p£j=pj[—-—’ ¢h+ 0l RE(1-L7 )| =5, (8! RS +oL],
(34)

R
q; =q; {*—7—+¢f} q; [ﬁ{ Rf-i-‘ﬁj";:l-

The terms containing =+ are canceled. If we visualize the preference matrices @™ and &/ as behavioral

~genotypes”, then (34) which expresses the mating system as a function of the behavioral “genotype”
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turns out to be independent of y. Therefore, behavioral “genotypes” with different v can give rise to

identical behavioral “phenotypes”, that is, to the same set of mixing probabilities.

5. Conclusions

The word “marriage” tacitly implies the involvement of two individuals and, consequently, the
possibility that the behavior of “single” individuals will influence the behavior/decision of his/her
potential partners. Thus, two-sex marriage functions must indeed be complicated and therefore,
random mating marriage functions have strong limitations. The axiomatic framework developed by
Busenberg and Castillo-Chavez”™® provides a systematic approach to the study of marriage functions:
all marriage functions are characterized as multiplicative perturbations of the Ross solution via a pair
of preference matrices. These preference matrices are intimately connected and knowledge of one
implies knowledge of the other. The general relationship between the two preference matrices is stated
as the T3 Theorem and involves a free parameter. The range of this parameter is constrained by
explictly stated conditions. However, this free parameter does not contribute to the calculation of the
marriage functions. In other words, the value of the free parameter models a class of behavioral
“genotypes” that give rise to identical behavioral “phenotypes”.

The only frequency-independent preference matrices are those satisfy ®™ =(¢f)'r, which are
supported by our data. We propose two types of & with one parameter which can be estimated from
data using least-squares criterion. Other types of @/ are being explored.

The application of matriage functions is of importance in various fields such as cultural
anthropology, demography, ecology and evolutionary biology, social dynamics, and epidemiology. The
exploration of general mating functions in specific biological or sociclogical settings is yet to be
explored. However, our!®'11 initial results are quite promising and alterantive approaches have been
utilized by others?!:22, In this paper, we use fixed classification for the stratification of individuals,
extensions to populations stratified by dynamic classifications such as age or age of infection are being

worked out™ 315,
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Table 1. Population sizes and pair-formation rates estimated from data

Class Male Female
Population Size Pair-Formation Rate Population Size Pair-Formation Rate
i T™(0) < T4(0) | b,
1 339 1.69 376 1.45
2 636 1.33 500 1.38
3 505 1.30 754 1.17
4 897 1.40 674 1.04

5 2343 1.50 1796 2.24




Table 2. Male, 13(0), and female, Q(O), mixing matrices estimated from data

Subject Class - Partner Class j/i
ifj 1 2 3 4 5
1 0.444 0.111 0.037 0.037 0.370
2 0.063 0.281 $.063 0.063 0.531
15‘-1;(0) 3 0.000 0.154 0.154 0.154 0.538
4 0.029 0.114 0.200 0.314 0.343
5 0.057 0.041 0.129 0.036 0.736
1 0.172 6.103 0.138 0.103 0.483
2 0.028 0.361 0.139 0.056 0.417
4;,(0) 3 0.048 0.095 0.262 0.167 0.429
4 | 0.000 0.000 0.034 0.241 0.724

5 0.103 0.114 0.057 0.210 0.516




Figure 1.

Figure 2.

Figure 3.

Figure 4.

Mixing matrix estimated from data.
(al) Male, P(0), 3D piot; (a2) Male, P(0), contour plot;

(bl) Female, Q(0), 3D plot; (b2) Female, Q(O), contour plot.

Random mixing matrix for our data.
(al) Male, 3D piot; {a2) Male, contour plot;

(b1) Female, 3D plot; (b2) Female, contour plot.

Mixine matrix for our data with perference matrices ™ = (@{)T and d = 0.5.
(al) Male, 1-5'(0)0_5 , 3D plot; (a2) Male, ?(0)0.5 , contour plot;

(b1) Female, G(0), 5 , 3D plot; (b2) Female, Q(0),.5 » contour plot.

Mixing matrix for our data with perference matrices ™ = (q.g)'r and d = 0.48.
(a1) Male, P(0)q .z , 3D plot; (a2) Male, P(0)_4q , contour plot;

(b1) Female, Q(0)4 4 » 3D plot; (b2) Female, Q(0) g , contour plot.
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