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Abstract

We use a simple epidemiological model to investigate the effects of a2 nonlocal feedback
on the disease dynamics. We consider a context in which two groups can be identified:
the population that is experiencing an epidemic and an “outside” population that acts
primarily as a source and sink of uninfected individuals. The disease dynamics of the
afflicted group is effected by immigration from the outside group, which, in turn, 1s effected
by the state of the disease. The response to this type of feedback can be investigated using
a model in which the net influx of susceptibles into the afflicted population is a function
of the disease prevalence in that group. We extend and generalize the analysis of Blythe
et al. (1993a) to include more general net immigration functions. Since the population
does not respond instantaneously to the state of the epidemic we include a time delay in
the immigration function. We find that the state-dependent recruitment, which was found
to be destabilizing by Blythe et al., can actually stebslize the dynamics when such a time
delay is included. Furthermore, consistent over(under)-estimation of the disease prevalence
reduces(increases) the size of the endemic equilibrium populations. '

Keywords: Epidemiological modelling — Nonlocal response — Behaviour-change — Time-
delay

I. Introduction

The mathematical modelling of epidemics plays a crucial role in understanding the dy-
namics of many infectious diseases (for an introductory review, see, e.g., Hethcote (1989).
Models are particularly helpful as experimental tools with which to evaluate and compare
control procedures and prevention strategies, and to investigate the relative effects of var-
ous sociological and biological factors on the spread of a disease. Recent advances have been
made on many fronts. For example, current models help us understand the consequences of
the long and variable incubation and infectivity periods of the human immunodeficiency
virus (HIV), which is believed to lead to acquired immunodeficiency syndrome (AIDS)
[see, e.g., Castillo-Chavez et al. (1989a,b,c,d), and Thieme et al. (1989), (1990)]. Other
models are helping to identify the role of non-homogeneous mixing in populations, [see,
e.g., Busenberg et al. (1991), Castillo-Chavez et al. (1991), Sattenspiel (1987a,b) and
Sattenspiel et al. (1988)], of multiple hosts for a given virus, [Dobson (1992)}, and of the
dynamical response of a population to an epidemic [see, e.g., Blythe et al. (1993a,b,c)].

The responses of a population to the stresses of a disease are manifold, can occur
at many levels, and can, in turn, significantly effect the disease dynamics. For example,
governments may introduce prevention and control strategies such as vaccination sched-
ules, education programs, and, even, mandatory quarantine [Perez-Stable (1991)]. At a
more individual level, behavioural factors may come into play, which might change social
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interactions and the overall mixing structure, effect immigration patterns and migratory
routes, and encourage more cautious and prevention-oriented behaviour. The type, degree,
speed, and variety of responses depends on the particulars of both the population and the
epidemic. Some factors which can influence the population’s response include the severity
of the epidemic, the lethality of the disease, the ease of contraction, educational awareness,
public consciousness, availability of funds, and scientific knowledge. In attempts to control
the disease, it is important to recognize which factors are involved and their potential

impact on the disease dynamics.

When the time-scale of the epidemic is much shorter than the population’s reaction
time, one expects that the dynamical response of the population will have little effect
on the current epidemic. However, when the time-scales are comparable, this feedback
may be significant. For example, in the HIV/AIDS context, it has become clear that
many behavioural changes are occurring at both the population and individual levels: the
number of contacts and the number of partners are being reduced, the degree of interaction
and the mixing structure is changing, [see, e.g., Centers for Disease Controlk(1985), Evans
et al. (1989), Martin (1987), McKusick et al. (1985a,b), Griensven et al. (1989), Fineberg
(1988)]. Even if the effects of changing behaviour are not significant on the time-scale of
individual epidemics, they may have significant consequences on an evolutionary time-scale
[see, e.g., Ewald (1993)].

The dynamical consequences of some behavioural responses have been investigated
by a number of researchers. For example, Blythe et al. (1991) investigate the effects
of disease prevalence on incidence rates. Palmer et al. (1991) study the consequences of
state-dependent mixing. Velasco-Hernandez and Hsieh (1994) analyze a model which takes
into account a change in contact rate that results from individuals realizing that they are

infected.

In these models, attention is essentially restricted to “local” population responses, i.e.,
only the behavioral response of the afflicted group is considered. Nonlocal effects may
also be important. “Outside” groups can function as sources and sinks of individuals. For
example, immigrants from a group which implements a different vaccination program could
seriously undermine the vaccination strategy in the population being studied. In fact, it
has been suggested that the failure of the U.S.A. to eliminate measles is due in part to
immigration from Canada and Mexico, countries with different vaccination strategies. In
order to take into account such nonlocal effects, we must understand the structuring that

can exist in a population.

Structure in a population can occur at many levels: groups can be distinguished by age,
sex, social interactions, geographical separation, contact levels, and so on. While it can be
quite difficult to identify the relevant groupings, the particular choice can significantly effect
the results of the analysis. Here we briefly consider two examples. Sattenspiel (19872,b)
and Sattenspiel and Simon (1988) discuss the 1979 hepatitis A outbreak in Alabama, New
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Mexico among children attending day care. Within the set of daycare centers, most of
the cases occurred in a small group of family owned centers. Mixing within this group of
related centers was higher than mixing within the group composed of the remaining centers
and higher than mixing between the two groups. In trying to understand the spread of the
disease among the children, Sattenspiel and Simon argue that it is important to recogunize
this two-group structuring of the population. The dynamics were essentially driven by the
group of family-owned centers, while the role of the remaining centers was simply a higher-
order effect. Similarly, Hethcote and York (1984) identify two distinct groups in their study
of sexually transmitted diseases (STD), namely the “core-group”, which constitutes the
most sexually active group in the adult population, and the “meta-population”, which
encompasses the rest of the adult population. They found that most new cases of STD
were generated by the core group. Again, the first-order dynamics were essentially driven
by the core group and the effect of the meta-population was higher order.

Theses examples motivate us to consider an epidemiological context in which eésentially
two groups can be identified: the afflicted group in which most of the cases occur, and the
outside population. The afflicted group can be regarded as driving the disease dynamics,
while the coupling between groups, as well as the disease dynamics within the outside
group, can be regarded as a higher-order effect. This type of division occurs naturally in
many situations as illustrated by the preceding examples. The groupings are not static
due to migration into and departure from each group, which most models have not taken
into consideration [but see Scalia-Tomba (1991), Blythe et al. (1993a,b)].

Net immigration between the outside population and the afflicted group may influence
the dynamics of the epidemic. The immigration may, in turn, depend on the state of the dis-
ease in the “target” group ( Fineberg (1988)). The consequences of some state-dependent
recruitment scenarios have been investigated by Blythe et al. (1993a,b), Velasco-Hernandez
(in preparation) and Hadeler et al. (in preparation). Blythe et al. (1993a) consider a sim-
ple two-variable (SI) epidemiological model. In that model, the equilibria are stable if the
recruitment into the afflicted group is constant. However, if net immigration drops off as a
function of the disease prevalence in the target population, then the endemic equilibrium
can be destabilized.

It is this “behavioural” response of the population at large to the population being
studied that we investigate in detail using more realistic immigration functions in order to
clarify the mechanisms relevant to the dynamics. In Blythe et al.’s model, the population
is assumed to have instantaneous knowledge of the state of the epidemic. However, in
reality the response will be time-lagged due to the fact that it takes time to assess the
state of the epidemic, time to publicize the information, and time for the population to
react to the information. We will show that the inclusion of a discrete time delay in the
immigration term can actually stabilize the dynamics.

We also deal explicitly with aspects of the fact that one never has exact knowledge
4
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of the state of the epidemic. Although exact knowledge is often assumed, (e.g., Blythe
et al (1993a)), in reality, however, there will always be a degree of inaccuracy and uncer-
tainty. For example, the prevalence may be over- or under-reported, its severity over- or
underestimated. It i1s the perceived state of the epidemic, not the actual state, to which
the population will respond. If we suppose that the prevalence figures are consistently
deflated or inflated by a constant fraction, or that the population, on average, consistently
misinterprets the reports, then we find: if the figures are over-estimated, the size of the
endemic equilibrium population is lower and, conversely, if they are under-estimated, the
equilibrium size is higher. While the parameter ranges for stability are slightly changed,
the dynamics are qualitatively the same. This underscores the influence of the media, and
the value of educational programs.

In the next section, we investigate the dynamical consequences of a general state-
dependent net immigration function on the disease dynamics of a simple epidemiological
model. After discussing the model assumptions, we consider three functional dependencies
of the immigration term, give the disease-free and endemic equilibria and their stabilitv.
In Section III, we study the effects of a time delay in the functional dependencies of tl::e
immigration term. Section IV contains a brief summary of our results.

II. State-dependent immigration model

As discussed in the introduction, we consider epidemiological contexts in which essentially
two groups can be identified: the population which is experiencing an epidemic and the
outside population. The outside population is weakly coupled to the afflicted group and
its primary effect is as a source and as a sink of individuals to and from the afflicted
population. The epidemic is driven by the outbreak in the afflicted group while the effect
of the outside population is purely secondary and can be neglected as a higher order effect.
Hence, in what follows, we consider the dynamics of only one group, namely the afflicted
group. The number of healthy individuals in that group are called susceptibles and are
denoted by S(t), and the number of infected individuals, by I(t), where ¢ denotes time.
" To a first approximation, the progress of the disease can be modelled by two first-order
ordinary differential equations, '
S=g-—uS5—-f,
I= f —al , (1)

where the recruitment function, g = ¢(5,I), describes net immigration, u is the (constant)
natural mortality, the force of infection term, f = f(S,I), describes the contact structure
between infected and susceptible individuals, a = o + y, where o is the constant migration
out of the infected class due to death, recovery, emigration, etc., and the dot denotes
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derivative with respect to time. In this simple system there are four (or more) parameters
(depending on the form of ¢ and f). ¢ and u have the dimensions of inverse time, and
the functions g and f have the dimensions of number of individuals per unit time. To
simplify the analysis, we do not include a recovered class. Thus, we implicitly assume
that the disease is fatal, that all recovered individuals leave the afflicted group, or that the
epidemic is short-lived relative to the length of illness and, therefore, that the recovered
class does not contribute significantly to the dynamics. Since we are primarily interested in
the effects of state-dependent net immigration, we do not include additional complications
such as incubation periods. Given the context of interest, we do not include a birth term,
although this would be straightforward to do. We also assume that immigrants are not
yet infected [but see Hoover et al.(1991)].

The form of the force of infection, f = (S, I) depends on the particulars of the disease.

Here we take the general form

ST
feess @)

where ¢ is a constant having the dimensions of inverse time. This term needs some Jjustifi-
cation (see also Busenberg and Cooke (1993)): suppose that a susceptible has z contacts
per unit time. Assuming homogeneous mixing among susceptibles and infecteds, a fraction
I/(S + I) of these contacts are with infected individuals. (This assumes that all of the
infecteds are intermingling as freely as those uninfected, i.e., that the disease is not suffi-
ciently debilitating to restrict the movement of infecteds (which is a good approximation
for some diseases such as colds). More generally one could take into account the reduced
mobility of infecteds by setting the fraction of contacts with infecteds to be pI/(S + pI)
where p represents the degree of non-homogeneity in the mixing, (e.g., p < 1 for diseases
which immobilize those infected and thereby significantly reduce the mixing of susceptibles
with infecteds)). Let the probability of contracting the disease per contact be p. Then
the total number of contacts per unit time which lead to infection is given by Eq.(2).
with ¢ = zp. For some diseases it is reasonable to assume that the number of contacts
per unit time, z, is a function of the total population size, N = S+ I, i.e.,, z = z(N).
Additionally, one frequently assumes that z(N) is directly proportional to N — this gives
the so-called mass-action force of infection term f = BS5I, where f is a constant. It is
unlikely, however, in most epidemiological contexts that the number of contacts per unit
time will increase indefinitely with population size. Therefore it is appropriate to intro-
duce an upper threshold to the possible number of contacts per unit time. Then the force
of infection term becomes f = ¢(N)SI/(S + I ), where ¢(N) is an increasing function of
population size assymptoting to the upper threshold at large N, e.g., e(N) = cgN/(1+ N),
(cf. Holling’s type II functional response, Holling (1959)). Since we take ¢(N) = ¢ =
constant, we are therefore assuming that the changing size of the afflicted group does not
significantly effect the contact rate. If we are considering a population that is distinguished
by its (high) contact level (near the upper threshold, say, e.g., the “core” group in STD),
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then taking ¢ to be a constant is appropriate: the group being modelled is near its contact
threshold, in fact, it is defined by its contact level c. If the contact level of an individual
changes so that the mixing is no longer described for that individual by the parameter c,
then that individual is considered to have left the group. This is taken into account by the
net immigration function, ¢ = g(S,I), and the emigration term, o. Note, however, that
since ¢ 1s conéta.nt, we are assuming that the total population size in the afflicted group
remains high encugh to sustain the high contact level. Alternatively, if we are considering
a population distinguished by, say, geographic location, the assumption that the parameter
c is constant means that there is not much that this population does, or can do, to change
their contact rate.

There will generally be some mixing between the afflicted group and the outside pop-
ulation. We assume that this is a higher order effect that can be ignored. Explicitly,
inter-group mixing could be included by taking the force of infection term to be, say,

I Ip )
ez 24 4., 1B \,5. . 3
f (zASAHAHBSBHB 2S5 | (3)

where the subscript A refers to the outside population which we call here group A, and
the subscript B, refers to the afflicted population, here group B. A susceptible in group B
will have zp contacts per unit time with members of group B, and x4 contacts per umt
time with members of group A. By assumption, there is little mixing between groups so
that g > r4. Further, we are interested in situations when an epidemniic is occurring in
group B and, although there are infections occurring in group A, the level of infection is
such that I4/N4 < Ig/Np, where Ny = Sy + I4, etc.. Combining inequalities, we have
that z4T4/N4 < zplg/Np, and hence can neglect the second term in Eq.(3). Of course,
Ip and Sp are dynamical quantities so that this condition should be satisfied throughout
the course of the epidemic. In the absence of disease in group B we assume, of course,
that there is no disease in group A. '

It remains to discuss plausible forms for the immigration function g = ¢(S,I). We
assume that as the disease prevalence increases, net immigration into the susceptible pop-
ulation decreases. We further assume that the state of the epidemic is reported to the
population in terms of either (i) the fraction of infecteds, n = I/(S +I), so that g = g(n),
or (ii), the actual numbers of infected individuals, I, so that ¢ = g(I). Motivated by
Blythe et al., we consider the following general class of decreasing functions: '

() = ae™" (4)

where £ is taken to be (i) 7, or (ii) I, and where a, b and 7 are real positive numbers. The
dimensionless parameter v is the shape parameter of the response function exp(—bn7) and
describes the rate of reaction of the population: Small v, (< 0.5), describes a response
curve that drops off sharply as a function of infection, (i.e., g(17) convex), while, larger v,

7
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(> 3), is appropriate to describe the response of a population that is more gradual, ( i.e.,
9(n) concave). The parameter b is related to the scaling parameter, 5~1/7, and describes
the degree of the reaction: As b decreases in value, the reduction in net immigration will
be less severe. The functional form given in Eq.(4) is quite general and describes a wide
variety of plausible responses. Note that the function (4) is derived from the Weibull
distribution and is often used to model survivorship curves in demographic models.

It would also make sense to consider other functional dependencies of g=9(51I). In
the immigration function given by Eq.(4), we are assuming that the population is reacting
to the precise state of the epidemic. However, assessments of the state of the epidemic will
rarely be so accurate. To get a rough first approximation of the effects of misinformation,
we assume that the population consistently over- or under-estimates the disease prevalence
by a constant proportion. This leads one to consider immigration functions that depend
on, case (iii}, 7 = xI/(S + xI), where x is a constant parameter approximating the degree
of over- (x > 1) or under-estimation (x < 1) of the disease prevalence, (more generally, x
could be a random variable). Taking a recruitment function of the form given in Eq.(4)
with functional dependence g = g(7}), one finds qualitatively the same dynamics as in case
(1). However, the parameter range of the various dynamics depends on X- Additidna.lly, it
may be appropriate to take the immigration function g to be a decreasing function of the
real or perceived virulence, g = g(v). Such a model could be used to compare the relative
importance of the recruitment term for different diseases which are distinguished by their
virulence, however, we do not investigate this possibility here. -

In summary, to model the disease dynamics (in the afflicted group), we take the system
given by Eqgs.(1) together with the form of the force of infection function, Eq.(2), and the
form of the immigration function, Eq.(4), with functional dependencies (i) g(), (ii) g(I),
and (iii) g(#). For case (i), the system can be written, in dimensionless units, as follows

b _ o IS

5=ae_

u *m 1
) IS -
I=m—aIa - (5)

ﬁhere we have non-dimensionalized by setting S — SK, I — IK, ¢t = t, a — oK ¢,

.# =+ pc, 0 — oc, and ¢ = 1, where K is some constant reference population level.

The parameter ¢ has been eliminated and there are only four remaining (dimensionless)
parameters u, o, a, and b.

First, let us consider case (i) where recruitment is taken to be a function of the fraction
of infecteds, g(n) = aexp(—bn7), Eq.(4). The disease-free equilibrium of the system (5) 1s

= a
So=—-, =0,
0=7 0 (6)

where the subscript ‘0’ means that the quantity is evaluated at an equilibrium. This
equilibrium, (S, Iy), is globally stable if 1 < a, (see Appendix L)
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If 1 > «, the endemic equilibrium of the system (5) is

So = go——

1—
=5 , 7
T » fo=s0— (7)

where gg = g{ng) and from Eqs.(5) one has that 79 = 1 — a. The size of the endemic
equilibrium population (Sg, Ip) increases as v increases: For larger -, immigration will be
relatively high at a given incidence level as compared to a population response that is
described by smaller v. The endemic equilibrium, (Sy,Iy), Eq.(7), is stable provided that

Osgp <1l—0 , (8)

where 85 = 8/0S and dsgg denotes (9s9)lo = (859)l(s,,1,)- For the special case v =1, 1t
can be shown that the equilibrium (7) is globally stable (see Huang et al. (in preparation)),
if (8) holds. At 8sgp = 1—0, the real part of the roots of the characteristic equation become

zero and we have a Hopf bifurcation.

Substituting in g(n) = aexp(-bn7), the stabﬂlty condition (8) can be written
bya(l — a)? < 1 . (9)

Figure 1 shows the regions of stability in terms of the parameters b and «. As < increases,
the boundary between the stable and unstable regions shifts towards smaller «. In other
words, if the response of the population is gradual, (large 7), the system will be stable for
smaller values of ¢, lower emigration. Conversely, for small v, i.e., for a rapid response,
the system will be unstable except for « large or small. Varying the parameter u gives
qualitatively similar curves as in Figure 1, however, the shape of the curves are modified

For the case v = 1, the equilibrium (7) is globally stable if ba(1 — ) < 1. Thus, in
terms of the parameters b and «, we have stability under the following conditions: if b < 4,
for all a; if b = 4, except when a = 1/2;if b > 4, for a > a4 or o < a—, where q4 are
the roots of ba(1l — ) = 1. Recall that the parameter b describes the degree of reaction of
the population and the parameter a = y + o, where ¢ describes the migration out of the
infected class. These results are essentially equivalent to those in Blythe et al., where the
model (5) is studied with v = 1.

It will prove conceptually helpful in the next section to show how the local stability
condition, 8sgg < 1 — o, Eq.(8), arises from a second-order ordinary differential equation.
Linearizing the system (5) about the endemic equilibrium, (Sg, Ip), one gets two first-order

ordinary differential equations for the linear perturbations Sy and Iy, (i.e., § = 50 + Sy
and I = Iy + eIy, for € small). Combining the equations for S, and I), one gets the

second-order equation for S;:

S1+(A-C)S;+(B+D)S1 =0, _ (10)
9



where
A=08sfo+u+a—0ify (11)
B =a(dsfo+u) —udrfo (12)
C =0ds9p , (13)
D = 0590 (01 fo ~ @) — 819085 fo - (14)

Equation (10) is the equation for a damped harmonic oscillator. Since linear oscillators
are well understood, the conditions for stability can be read directly from Eq.(10): For
negative restoring force and positive damping, B+ D > 0, and A— C > 0 respectively, the
system is damped so that the equilibrium is stable. On the other hand, if A — C' < 0, the
oscillations are unstable. This is {(of course) precisely the condition (8). For the recruitment
function ¢ = aexp(—bn7) and a force of infection term f given by Eq.(2), at the endemic
equilibrium (7), we have A = 1~ ¢, B = Aa(l—a), C = Aaby(l—a)?, and D = 0. Thus,
one sees that the condition that A — C > 0 is precisely the stability condition given by
Eq.(9). (Of course, this is simply the Routh-Hurwitz criteria in two dimensions (see, e.g.,
Murray (1990)), where the determinant of the eigenvalue matrix of the linearized system
is B+ D > 0 and the trace, —(A — C') < 0. The harmonic oscillator analogy is, however,
conceptually useful.)

These results are quite different than those obtained when the effect of the disease
on net immigration is not taken into account. In this case, the recruitment is constant,
which corresponds to taking b = 0 in Eq.(4), (giving ¢(S,I) = a). The disease-free and
endemic equilibria are again given by Egs.(6) and (7) respectively. However, for & = 0,
the endemic equilibrium is always stable since the stability condition, dggg =0 < 1 — o,
Eq.(8) always holds. On the other hand, if there is state-dependent immigration that is
appropriately described by the function g(n) = aexp(—bn7), the system is unstable when
Osgp > 1 — 0. Further, due to the reduced net immigration as the epidemic spreads, the
size of the endemic equilibrium population is smaller for nonzero b.

Now, we consider case (ii), where the immigration term is taken to be a function of
the number of infecteds, g(I) = aexp(—&I7). The equilibria of the system (5) with this
functional dependence of the recruitment function are the same as in case (i) and are given
by Eqs.(6) and (7). However, in this case the endemic equilibrium, (Sg, Iy), is only defined
implicitly by the Egs.(7)-since gy = aexp[—(1 — a)75]]. The stability conditions are also
as in case (i): the disease-free equilibrium is stable for 1 < a and the endemic equilibrium
is stable for dggg < 1 — o, Eq.(8), i.e., C < A. For g(I) = aexp(—bI"), the coefficients A
and B in (10) are as before. However, from (13) and (14) one finds that C' = dggg = 0, and
that D = —8;gp(1 — a)2. Thus, the stability condition given by Eq.(8), 8sgp =0 < 1 -0,
is trivially satisfied, and the endemic equilibrium for the system (5), with the recruitment
function g(I) = aexp(—bI7), is always stable, (in fact, globally stable, by the Bendixson-
du Lac criterion, see, e.g., Clark (1990)). Consequently, if the state-dependent recruitment

10
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is best described as a function of I of the form (4), then, the equilibria are stable although
the size of the equilibrium population is smaller than for constant recruttment.

As a final functional dependency of the immigration function, we consider case (ii), g =
9(7}), which crudely includes the effects of misinformation. Rather than taking recruitment
to depend on the precise ratio of infecteds, suppose that the recruitment depends on
7 = xI/(S + xI), where x is a (dimensionless) positive real parameter that accounts
for the fixed degree of over- or under-estimation of the disease prevalence on the part of
the population. As one would expect, over-estimation, ¥ > 1, leads to smaller endemic
equilibrium populations, 1.e., .5’0 < Sy, while underestimation, x < 1, leads to higher
equilibrium populations, i.e., S5 > Sy, where .§’0 is the equilibrium size of the susceptible
population as determined from the recruitment function g(7j), where jo = g(f9) with
70 = x(1 —a)/[a+ x(1 — a)], ie., S = §o/(1 - o), as in Eq.(7). For g(7), the coeflicients
A, B, D of the linearized system (10) are as for g(n) and are given by Eqgs.(11), (12) and
(14). However, C' = dggp is slightly modified by the parameter x to

1-o)7
(o + x(1 —a))r+!

C = Aabyx” (15)
By inspection of the “harmonic oscillator” equation for S1, Eq.(10), one sees that qualita-
tively, the dynamics of the system (5) will not be different than those with x = 1. Indeed, in
the next section we combine cases (i) and (iii). Figure 2 shows how the boundary between
stable and unstable regions, in terms of b and «, is modified by x: Overestimation of the
disease prevalence, i.e., x > 1, shifts the curve to higher «, while underestimation, shifts
the curves to lower a. Figure 3 is a phase-plane diagram for a parameter choice where the
endemic equilibrium is unstable. Note that the size of the population can change by almost
an order of magnitude. Recall from Section I, that since we take the contact rate, ¢, to be
constant, we are assuming that the size of the population remains large enough to sustain
this contact rate. Although we will not do so in this paper, one might also consider a
contact rate that depends on the size of the population, N, like, e.g., ¢(N) = coN/(1 +N),
since N can change dramatically. In the next section, we will see how a time delay effects
the results of this section.

11
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III. Time-delayed model

The results of the preceding section motivate consideration of more realistic forms for
the recruitment function. Since the information of the state of the epidemic will not
be instantaneously available, the population, is, in effect, responding to the state of the
epidemic at some earlier time, (¢ — 7). This naturally leads one to consider the effects of
a discrete time delay in the recruitment term. In this section we investigate the following
time delayed modification of Eq.(5):

S=g(nt-7))—nS—F,

[=f—al (16)

where 7 is a discrete time delay, the force of infection term f = f(5,I) is given by Eq.(2)
and the functional form of ¢ = g(£(¢ — 7)) is given by Eq.(4). Recall that all quantities are
dimensionless. We consider two cases: (i) net immigration is a function of the fraction of
infecteds with g(f(t—7)) = ae~tHt=7)"  where 7 = xI/(xI+5), and case (ii), recruitment
is a function of the number of infecteds, g{I(t — 7)) = ae~b1(t=7)" In case (i), we find that
the time delay can stabilize the dynamics. Conversely, in case (ii), we find that the time
delay can destabilize the dynamics.

While the equilibria of {(16) do not depend on 7, their stability does. We find that

~ the disease-free equilibrium, (5g,Iy) = (a/p,0), Eq.(6), is globally stable provided that

1 < o (see Appendix I). The local stability of the endemic equilibrium, (Sp, Iy}, of (16)
can be determined from the sign of the real part of the eigenvalues, A, of the characteristic
equation:

0=M 44\ + B+ (~CA+ D)™ | (17)

where, A, B, C, D are as defined in Egs.(11)-(14). For 7 = 0, the stability condition of the
non-time-delayed equilibrium is recovered, (stable if A > C, Eq.(8)). For nonzero t, there
are infinitely many solutions A = A{r) to Eq.(17). The system (16) is stable when none of
these roots has a positive real part. See Appendix II for an outline of the analysis for the
following results: If A > C, a time delay has no effect on the stability of the equilibria.
Since in this parameter range, the endemic equilibrium is stable for 7 = 0, it is stable for
all 7. The endemic equilibrium (16) is said to be “ absolutely stable” (Brauer (1987)) for

A>C.
Since for A < C, the equilibrium is unstable for = 0, a nonzero 7 may actually
stabilize the dynamics in this parameter range. The 7’s for which the system is on the
boundary between stable and unstable regions are defined by 'rl(n) = (6] + 27n)/wy, and
= (69 + 27n)/wy, where n is a natural number, 8; = arcsin(A/C), 8 = 2r — 8y, and
W] = w—, Wy = w4, with wa = (:b\/C"2 — A2 4+ V/C%2 - A2 + 4B) /2, (see Appendix II for
(0} ( 1(0)

details). For 7 between 7’ and 720), the equilibrium is stable if 7

< 7'2(0). Similarly, for
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7 between 7'1(1) and 'r.gl), the equilibrium is stable if 7'1(1) < -rél). These alternating regions
of stability and instability, ( USU regions, i.e., Unstable-Stable-Unstable), will continue
until Tf"+1) > T2(n+l), for some n. In some parameter ranges, n can be quite large, (e.g.,
for b = 12.8854, o = 0.7, g = 0.02, x = 1.0, and v = 1.0, we find that n = 338).
The time-delay which results in stable dynamics can also be quite large, (e.g., for the
parameters given above, we find that 1'2(338) = 8.2 x 10%, in dimensionless units. (To
get the dimensionfull units, divide by the dimensionfull ¢. E.g., for the parameter range
that is appropriate for gonorrhea, (Hethcote and Yorke (1989)), ¢ = 0.05 days™! so that
7_5228) = 1.6 x 104 days).) Figure 3 shows the phase-plane trajectories of the system
(16) with 7 = 0 and 7 = 5, where the parameter range is chosen so that the endemic
equilibrium is unstable for 7 = 0 and asymptotically stable for 7 = 5. The regions where 3
time delay may give rise to stable equilibria are shown in Figure (4a) for a representativev
parameter range. The time delays associated with these regions of alternating sta.biliﬁy :
and instability are shown in Figure (4b). Note that in certain parameter ranges, stability

is very sensitive to time delays. Figure (4b) has the characteristic “pine-tree” shape, (see ~
MacDonald (1989)). The lower part of the “branches” correspond to the"'r{n)’s while the
upper part of the “branches” correspond to the -rzgn)’s. The number of oscillations can
exceed n = 1599, corresponding to time delays of over 2.6 X 104 (b = 3.5007, a = 3.98,
a = 0.02, p = 0.02, x = 1.0, and v = 1.0). Our ability to detect high n is limited by the
numerical mesh with which we look. Thus, while extremely high n and T are possible, the
parameter range in which they occur can be vanishingly small (see Figure (4a)).

It is interesting that a finite time delay can have a stabilizing effect on the dynamics.
Some insight can be obtained by writing the linearized equations as in Eq.(10):

3,4+ AS; + BS] —CSi(t =)+ DS(t—1)=0 . (18)

For case (i}, D = 0, so that the time delay only appears in the damping term (o< Sl) It is
now intuitively plausible that if the damping is in phase with the oscillations, the system

may be stabilized.

Now let us consider case (ii), where the recruitment is a function of I, g = g(I{t —
7)). The first of the Egs.(16) then becomes S = g(I(t — 7)) — uS — f. The disease-free
equilibrium, (Sp, Iy) = (a/u,0), Eq.(6), is stable provided that 1 < a. For the endemic
equilibrium, referring to (18), one sees that the time delay in this example appears in
the restoring force, (x S}), since for g = g¢(I), C = 0, but D % 0. There are three
possible stability consequences (see Appendix 2 for details): (a) I the restoring force is
large enough, i.e., if D > B, the endemic equilibrium will be destabilized for large enough
7. In this parameter range, for 7 < 7c = arccos{(w? — B)/d]/w, the endemic equilibrium
will be stable. However, for 7 > ¢, the equilibrium will be unstable, (SU regions, i.e.,
Stable-Unstable). Case (b): If the restoring force is of intermediate range, i.e., if B > D
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and if (42 - 2B)? —4(B2-D?) > 0, one finds alternating regions of stability and instability
provided that 2B > A2 (SUS regions). Case (c): if the restoring force is small, B > D
and (A% —2B)2 - 4(B2 _ D?} < 0, or 2B < A2, there will be no stability change and the
endemic equilibrium will be absolutely stable. These results are summarized in F igure (5a),
which shows the regions in parameter space corresponding to the various stability regimes.
The parameter range where the regions of stability and instability alternate (SUS) is very
small and occurs for very large b and very small #. (Of course, b, here, is dimensionless.
Since the scaling parameter in Eq.(4) is actually 5=1/7, the parameter b simply appears to
be “unnaturally” large.) Figure (5b) shows the time delays that are associated with the
various stability regions. For small b, instability occurs only for large 7, (e.g., for b = 4,
a = 0.15, a = 0.02, 4 = 0.001, x = 1.0, and v = 1.0, instability sets in when 7 > 171).
On the other hand, for large b, instability can occur for quite small time delays, (e.g., for
b=100, a = 04, y = 0.001, x = 1.0, and v = 1.0, instability sets in when 7 > 6). It
might be interesting to compare these results with those obtained from a periodic forcing
of the epidemiological model (1). Seasonal forcing, for example, often arises in childhood
diseases due to cycles induced by the school year. '

IV. Conclusion

We consider a two-group ST model in which net immigration from a metapopulation
into the core group depends on the status of the epidemic in the core group. Two differ-
ent functional dependencies of a general state-dependent recruitment function ¢(S,I) =
9(§) = aexp(—be7) were investigated: (i) ¢ = g(7]) and (ii) ¢ = g(I). In case (i), if the
recruitment is a decreasing function of the fraction of infecteds, g(7), the endemic equi-
librium can be destabilized. F urthermore, the effect of consistent over(under)-estimation
of the disease prevalence lowers(raises) the size of the endemic equilibria population (see
Figure 2). Similar results hold for the rate of response of the population (see Figure 1).
In case (ii), if the recruitment is a function of the number of infecteds, g(I), the stability
of the equilibria does not change from that of constant recruitment, however, the size of
the equilibrium population is effected. It would be interesting to see how these results
compare to those obtained from queuing theory and stochastic balking models.

We find that a time delay in recruitment can significantly effects these results. In case
(i), g = g(7(t — 7)), we found that the time delay could have a stabilizing effect on the
dynamics. There are significant regions in parameter space where the endemic equilibrium
alternates between being stable and unstable as = increases (see Figure 4). In case (ii),
9 = g(I(t — 7)), we found that a tjme delay could destabilize the dynamics. Again, we
found regions in parameter space where the endemic equilibrium alternates between being
stable and unstable as 7 increases. However, these regions are small. We also found regions
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Appendices:

Al. Proof of global stability of the disease-free equilibrium

In this appendix, the proof of global stability of the disease-free equilibrium of the systems
(5) and (16) is given. First we consider system (5). Adding the two equations in Eqs.(5),
one gets N = g(£{) — uN — oI, where N = S+ I, 5§ >0, I>0. Since g(£), where (i) £ =7
or (ii) £ = I, is a decreasing function, N < a — u/N. Thus, in the limit as ¢ — oo, both
N and_S' are bounded above by a/u. From the second equation in (5), I<0forl<a.
Thus Iy > 0. To show that, in fact, J; = 0, we suppose Iy > 0 and show that this leads to
a contradiction. From the second equation of (5), we have

I=~((a=1)S+al) <0 .

I I )
< - i L —
sr1s g s e

I
So+1o
Hence, in the lin}'it as ¢ — oo, I(t) = I(0) + fg I(r)dr — —oo which contradicts the
supposition that Iy > 0 so that we must have Iy = 0. Further, since g9 = @, integrating
the first equation in (3), in the limit as ¢ ~ oo, one gets that 55 = a/u. Since this analysis
applies equally well for g(£(t — 7)), for all T > 0, it follows that the disease-free equilibrium
(59, 1Ip) = (a/u,0) is globally stable if 1 > a for both (16) and (5), for both (i) £ = 7j or
(1) £E=1.

ATl Linear stability analysis of the time-delayed system
Case (i)

In this appendix, we outline the linear stability analysis of (16) with ¢ = g(n(t — 7)). The
local stability of the endemic equilibrium of (16) is determined by the sign of the real
part of the eigenvalues, A = A(7), of the transcendental characteristic equation (17), which
changes as 7 increases. To find the 7’s where changes in stability occur, we closely follow
the analysis of MacDonald (1989) (and references therein}, where the reader is referred to
for details. It has been show that stability changes occur only at purely imaginary A. For
case (i), substituting A = iw into Eq.(17) one gets

AL E) -
Plotting the two sides of (19) in the complex plane, one sees directly that if A > C, there
are no solutions to (19). Consequently, for A > C, there will be no stability changes due to
the time delay — equilibria that are stable for 7 = 0 will be stable for all 7. The equilibrium
is said to be absolutely stable (Brauer (1987). However, if A < C, there are solutions, and
changes in stability may occur. For 7 = 0, if A < C, the equilibrium is unstable. For finite
7, the system may be stabilized. We now find the ranges of 7 where this occurs.
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Consider first the interval where 0 < wr < 2r, (when the RHS of Eq.(19), the unit
circle, is traced out for the first time). Eq. (19) now has two solutions, §; = wyr| and
62 = wary, where 0 < 6] < 7/2, and 37/2 < 8y < 2. Equating the real and imaginary
parts of (19) and solving for w one gets

ws = % (i—\/c2 - 42+ VCT AT 14B) | (20)

with wy > w; (by inspection of plots of (19)). Furthermore, (dRe(A)/dr)|x=i, < 0, and
(dRe(A)/d7)|i, > 0. Thus, if 7| < 79, an equilibrium that is unstable when 7 < 7
becomes stable when 7 > 7|, and then, as r exceeds T2, becomes unstable again provided
that at 7 = 0 there are no real roots. This will be the case if (C—- AP -4B < 0. Thus, in
the parameter range where A < C, (C — A)2 — 4B <0, and 7] < 79, for T} < 7 < 19, the
system is stable. ;From (19) we have

lez—‘;ll , T2=£%’ . (21)
where #) = arccos(A4/C), and 6y = 27 — 61. Thus, whether or not 71 < 75 depends on
the parameters b, «, o, ¥, and 7. Numerically, we find that the parameter range where
(C — A)?2 — 4B < 0 contains the parameter range for which 7, < 9. In the interval where
2m < wt < 4m, when the unit circle (RHS of (19)) is traced out for the second time, there
are again two points where there may be stability changes, namely wl‘rl(l) = @] 4+ 27 and
w272(1) = 09 + 27. Again, if 1'1(1) < 72(1), for ‘rl(l) <T< r2(1), the system will be stable.
These alternating regions of stability and instability, as T increases, will continue so long
as 'rl(n) < n), where Tl(n) = (61 + 27n)/w, etc., with n a natural number. Since as T
increases, the stability of the equilibrium alternates between Unstable and Stable, these
regions are denoted USU.

X

Case (1)
Proceeding as in case (i), we substitute A = iw into the characteristic equation (17). One
gets ,

e = %(uﬂ -B)+ iw% i (22)
This is precisely the equation discussed by MacDonald (1989), pp. 89 - 90. Briefly, equating
the real and imaginary parts of (22), one finds that

w2=%(ZB——A2:i:\/(AQ-—2B)2——4(}32—D2)) : (23)

For 0 < wr < 27, one finds the following cases: Case (a) B < D: Only the larger
of the two w’s in (23), w4, will be real and positive. Since (dRE(/\)/dT)Iw+ > 0, if
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T < Te = a.rccos((wﬁ_ — B)/D)/w4, the equilibrium is stable, however if 7 > 7¢, it is
unstable. If D? > A%B, 0 < war < /2, whereas if D? < A%B, one has 7/2 < wyr < 7.
Since the equilibrium is stable at + = 0 and then becomes unstable as exceeds 7., this
region is denoted SU. Case (b) B > D: If the radical in (23) 1s positive, there will be two
positive real roots with wy > ws, provided that 2B > A2, Since (dRe(})/dT)}i, > 0, and
(dRe(A)/d7)|iw, < 0, the system will become unstable at 7y, as T increases, and stable
again at 7y, provided that 7| < 79 . As 7 increases, the stability changes will continue
to alternate until Tfn) > 'rén), where ‘rl(n) = (81 + 27n)/w). Numerically, we have found
only regions with one alternation. Since as T increases, the equilibrium alternates between

being stable and unstable, this region is denoted SUS. Case (¢} B > D: I the radical n
(23) is negative, or if 2B < A?, there will be no real positive solutions to (23), and, hence,
there will be no stability change.
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FIGURE CAPTIONS

FIGURE 1. Stability regions of the endemic equilibrium (7) for the system (3) with
g = aexpi—bn7). case (i), for four different ~: ~ = 0.5 (dotied linej. v = 1.0 (short-dashed
line), v = 4.0 (long-dashed line), and v = 7.0 (solid line}. Each curve satisfles Eq.(9)
with a = 0.02 and g = 0.02. To the left of each curve, the endemic equilibrium is stable,
while to the right. it is unstable. We choose values of a and u appropriate for gonorrhea
(Hethcote and Yorke (1984)).

FIGURE 2. Stability regions of the endemic equilibrium (7) for the system (3) with
g = aexp(—b77). case (iii). for three different y: x = 0.6 {solid line). y = 1.0 (short-dashed
linei, and x = 1.4 (dotted line). The curves are 4 = C, where A=c—o,and C is given
by Eq.(15), with ¢ = 0.02, p = 0.02. v = 1.0. To the left of each curve, the endemic

equilibrium is stable, while to the right, it is unstable.

FIGURE 3. Phase-plane trajectories of system (16} for case (i), g{(fi(t—7)). The limit
cyvcle (counter-clockwise flow) corresponds to 7 = 0. and the inward spiral corresponds to
r = 3. The parameter values are o = 0.4, b—4. a=002 p=002~=230 x=10
+ = 5. and are chosen to be in the range where a time delay is stabilizing. For this

parameter range, So = 0.0136 and [y = 0.0204.

FIGURE 4a. Stability regions of the endemic equilibrium (7) for the system (16)
with g = aexp(—0i{t — rV7), and @ = 0.02. g = 0.02. x = 1.2. and v = 3.0. The short-
dashed curve corresponds to the stability boundary for the original 7 = 0 equations (5)
(same as the short-dashed curves in Figures 1 and 2). The solid line is the boundary where
7;0) = T.‘go) so that to the left of this curve, the system (16) is stable for certain ranges
of the parameter v (see Figure 4b for the 7 ranges). The dotted line is the boundary
where AV = r:gl) so that in the region between the dashed and dotted curve, the system

1
alternates at least twice between stability and instability as 7 increases.

FIGURE 4b. Stability regions of the endemic equilibrium (7) for the system (16}
with ¢ = g(7(t — 7)) in the (v = b}-plane for four different a: o = 0.1 (solid line), a = 0.4
(long-dashed line). & = 0.6 (short-dashed line), and a = 0.7 (dotted line). The parameters
area =002 =002 x=12andy = 3.0. To the left of each curve. the system 1s stable.
For 7 = 0, model (5), the corresponding regions of stability are given approximately by:
b < 3513 for @ = 0.4, b < 5.13 for « = 0.1, b < 6.53 for @ = 0.6, and b < 12.89 for
o =0.%.

FIGURE 5a. Stability regions of the endemic equilibrium (7) for the system (16)
with ¢ = aexp(—bI{t —7)7}, and a = 0.02. ;= 0.001, x = 1.0, and v = 1.0. To the right
of the lower curve. the SU region. the system is stable for small 7, and unstable for 7 > 7¢
(see Figure 5b for the corresponding values of 7c). In the region between the two curves,

the SUS region. the system is stable for small 7, becomes unstable as T exceeds T, and
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stable as 7 exceeds at =) isee Figure 5b for the corresponding values of r). To the left of
both curves. the S region. the svstem 1s absolutely stable.

FIGURE 5b. Siability regions of the endemic equilibrium (7) for the system (16)
with ¢ = g(I{t — 7)) in the (- - a)-plane for four different b: b = 80 (solid line), b = 90
(long-dashed line), b = 100 (short-dashed Line), and b = 110 (dotted line). The parameters
are a = 0.02, ¢ = 0.001, x = 1.0. and 7 = 1.0. To the right of each curve, the system
is stable. The boundaries between the S and SI’S regions are given approximately by:
a > 0.61 for b=80.a > 0.73 for b = 90, o > 0.89 for b = 100, and @ > 0.98 for b = 110
(see Figure 5a). The boundary between the S and SUS regions are approximately given
by o = 0.587 for b = 80. o = 0.66 for b = 90. o = 0.73 for b = 100, and a = 0.81 for

b = 110 (see Figure 3a).
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