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AFFINITY IN PAIRED EVENT PROBABILITY?

Stephen P. Blythe?, Stavros Busenberg:”, and Carlos Castillo-Chavez?

Abstract
It is shown that a general parametric functional generates the conditional and joint
probabilities of event pairs when the order within paired events is irrelevant. The
parameters represent affinities or associations between singie events. If the marginal
probabilities of the single events are known, then these parameters specify a hyper-
Examples are

surface on which ail the joint probabilities of event pairs must lie.

presented and applications in probability, ecology, epidemiology, genetics, and

distribution theory are offered.

1an advanced draft was completed on March 2, 1993, a month before the death of Stavros

Busenberg.
2Depa.rr.ment. of Statistics and Modelling Science, Strathclyde University, Livingston Tower, Glasgow

G1 1XH, Scotland.
3 Department of Mathematics, Barvey Mudd College, Claremont, CA 91711, USA.

4 Biometrics Unit, 337 Warren Hall, Cornell University, Ithaca, NY 14853, USA.
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1 Introduction

In the epidemiology of sexually transmitted diseases, the problem of modeling arbitrary mixing
patterns of distinct population sub-groups (differentiated, for example, by age, sex, number of
partners, etc.) has received a great deal of attention in the last few years, partly due to the
implications of the AIDS pandemic. Furthermore, the closely connected problem of pairing--
partnership formation—has also received considerable attention (see Dietz and Hadeler 1988; Castillo-
Chavez and Busenberg 1991; Castillo-Chavez, Busenberg, and Gerow 1991). Recently, a general
solution to the mixing or pairing problem has been found (Busenberg and Castillo-Chavez, 1989,
1991). One of the forms of this solution is a parametrized multiplicative perturbation of random
mixing, the nonrandomness arising from the preference or affinity between particular subgroups (see
Blythe et al. 1991). Because sexual mixing is essentially a paired event procws: it is possible to
express the problem and the solution in general probabilistic terms. This re-formulation of the
problem of mixing extends the applicability of the original mixing problem solution. The aim of this
paper is torprsent this extension and give examples that show how it can be applied to a variety of
paired event problems.

In this article we show that the axiomatic framework underlying the theorems of Busenberg and
Castillo-Chavez (1989, 1991) is equivalent to specifying a process where two elementary events occur
as ap “event pair,” with the order of elementary events within a pair being immaterial. Hence, we
show that a parameterized representation of all such processes may be stated explicitly. We use a
number of examples to illustrate the form and structure of the paired event representation, and
indicate a few areas where it is applicable. We conclude with a brief discussion of these applications

and ipdicate directions for future work.

2 Paired Event Probability
Let S = {1,2,---n) be an index set, and ! = {E;:i €S} be the finite sample space of disjoint

elementary events E;. We use the {ollowing notation:
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T = Pi{(ELE) (1) € s%, (E,, E)e Q%) : the probabilities of event pairs.
p; = T, = Z m,; = Pr{E;}, 1 €5, E, €Q: the marginal probabilities for events.
7=1
Pgja = Pr{{(A.B}IB}: the conditional probabilities of paired events.
Pij £ 7= Pr{(E,, EJ){ E,}: the conditional probabilities of paired events.

From the above definitions we have that:

p;€[0,1,i€8, (1
_Zpi:‘l! (2)

and €S
ifp‘-=00rpJ-zOthenp,-j=pj,-=1r‘»j=1rj'~=0, ’ (3)

reflecting the fact that the p are probabilities, and that zero probability events cannot occur in event
pairs. We impose the nontrivial restriction

Ty = w0 (W) €8%, (4)

which specifies the class of problems to be addressed: those where the probabilities of paired events
do not depend on the order of the pair. We are assuming that the joint distribution be symmetric
but that (i,j) and (j,i) be considered distinct events. Therefore, despite (4) it is possible to have
Pi; £Pj0 and this will indeed be the case in most of the situations that we shall examine.

We note the following immediate consequences of the above restrictions and definitions:

L opi;20

i TP, =1ifp#0,

. p;p;;= PP

iv. lfp,-/\pj=0 then p;, = 0.,

We then have the following representation result.

Theorem 1 Let S be the subset of S where p; # 0. For any given marginal distribution of elementary

events p, there exists an b x n symmetric matrix of constants ¢, with ¢’ij =¢;2 0, such that

RR,; oy
T =P f'—s‘;T+¢ij , (ij) € 5'x5 ()
mE m-'m
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The ¢ are constrained by R, > 0, and the first term in the bracket in (5) is taken to be zero when all the R;

are zero.
Proof Conditions (i)—(iv) constitute the axioms of Busenberg and Castillo-Chavez (1989, 1991), and
so their representation theorem (Theorem 4.4 in their 1991 paper) for the matrix (p;;: (iJ) € §'xS§')

holds, with ¢ satisfying the above hypotheses and R, given by (6). Thus

R;R.
Pt Testaln ) i

The expression (5) for 7, is obtained by using (7) and Bayes’ theorem. a

Remarks:
(a) The parameters ¢ are a measure of affinity of each kind of event for every other kind. If ¢;;=x,
x e [0,1] for all (i,j) € S', then (5) reduces to

Tij T PPy : (8)

which is the familiar result for independent events. Different choice of ¢—a total of n(n+1)/2
possibilities—produce all the possible joint distributions of events in pairs, where the probabilities of
paired events are independent of the order.
(b) Knowledge of {p;: i €5'}; the assumption x =7, that is, property (iii); and property (ii) imply
the existence of oniy n{n-1)/2 independent values in the matrix (p;-j: (iJ) e §'x5). This matrix
according to Equation (7) requires n{n+1)/2 “independent” ¢-values.
(c) The ¢-values must satisfy the conditions R; > 0 or, equivalently, the set of inequalities

0 D Pmbim <1 165 (9)
(d) Let a be a real number then if ¢;,= a'.? %51“] €S the set of inequalities given by (9) imply that a
€ [0,1]. In fact, the endpoint values are achieved when a=0 and a=1. Sets of non-negative constant
values for the elements of the ¢-matrix that include ¢-values larger than 1, for which the constraints
imposed by (9) are not violated, are possible.
(¢) Bahadur (1961) and Lazarfeld (1956) have looked at the representation of joint distributions of
responses to n dichotomous items. He has constructed representation theorems for these distributions
that are given as multiplicative perturbations of the joint distribution that would be obtained if these

variables were independent. Bahadur s representation theorem is not in terms of an affinity matrix

i - i Ot s M



but rather in terms of a polinomial expansions that take advantage of the fact that the processes that
he modeled were discrete (binomila or multinomial processes). Our representation theorem collapses
to Bahadur’s in these special situations. However, our representation theorem can also handled
continuos distributions. In addition, Bahadur’s conditions so that the pairing axioms are satisfied are
very difficult to check. Furthermore, his representation theorem does not provide a clear way of

constructing large families of parametric distributions for correlated paired events.

3 Examples and Applications
In this section we present several examples demonstrating the applicability of the above theorem. We

start with a very simple situation (we will return to this example later on).

Example 1: Color-Bias in Card Games

In a caricature of the card game patience (solitaire), 2 game consists of shuffling the deck, and dealing
out the top two cards. If these are the same color the player wins, otherwise she loses. When the
deck is fair, then two reds occur with probability 0.25, two blacks with probability 0.25, and two
mismatched cards with probability 0.5. For an unfair deck, where cards have some tendency to
remain together through the shuffle, on the basis of color alone, the outcomes will differ from the
random result. We may use the method of the previous section, the “qz&-method_,” to examine the
problem of affinities between cards of different colors.

Here we have two events: E,; = “red card”, and E, = “black card”, with p; = p, =%. If we write

_fa b
=t Y) o
and if we define )
mlé(l—b)+b -ac 1
*=q 4-(a+2b+c) ’ (1)
we obtain from (5) the following form for =:
a i-a
r= o (12)
g a

Note that = contains only one undetermined parameter & which, if known, places a restriction on the

four parameters that are present in @, but does not determine them uniquely. We have
f6=(2 Vinenre(?® 13
1f¢—(0 C)tenw_ 0 1) (13)
2

1
1), (14)
4
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if ¢ = (5 g)thenrz(l ;) (15)
2

This example gives an illustration of the value of the ¢-method. Consider the ¢ values as a measure
of color-for-color affinity among cards, brought about by the shuffling process; @5 = a a e [0,1],
implies no affinity, while ¢,—,—=26;i (6,-j the Kronecker delta) in this example implies maximum
affinity. If all affinities are equal (¢;; = a, a €[0,1]), the result is a random pattern (14). If just cards
of one color have maximum mutual affinity (that is, R;=0 for either i =1 or i=2), and there are zero
inter-color affinities, then cards of that color are always found together, so that color separation takes
place, and the result is a guaranteed win, regardless of the self-affinity of the other color (13). To get
a guaranteed loss [no same-color pairs (15)], the inter-color affinities must be maximum (that is,
R,=0 for i=1,2), and both self-affinities must be zero. This last fact is due to the required symmetry
of the ¢-matrix. Furthermore, note that we could not have ¢,;, =2V i,j € 5’

“Affinity” here really means that the shuffling process favors or disfavors like-with-like color
matches, making cards adjacent with a probability greater than random. The matrix ¢ thus
measures bias in the shuffle, and provides a way of quantifying the degree of certain kinds of non-
randomness. It is interesting to note that bias (or cheating), which causes a particular coior always to
win, involves changing the marginals, setting say p, = 0 for black to win with probability one.

It is possible to use the ¢-method in the analysis of a variety of paired event experiments,
perhaps in the sense discussed by Mielke and Siddiqui (1965), where independence is normally
“expected,” but where outside influences sometimes correlate occurrences (in their case, the presence
of atmospheric pollutants caused noarandom temporal clustering of asthmatic attacks among three

subjects}.

Example 2: Ecological Association in Plant Communities

A problem of long-standing interest in plant ecology is the degree to which species tend to be found
together in particular habitats (see Ludwig and Reynoids, 1988, the source for much of the following
background information). Legendre and Legendre (1983) refer to this kind of study as R-mode
analysis. One particular set of questions concerns inter-specific association (also referred to in the
literature as affinity), arising because (a) both species select or avoid the same kinds of habitat, (b)
both species have approximately the same requirements, or (c) there is ;. genuine affinity or disaffinity
between them (Hubalek 1973, Ludwig and Reynolds, 1988). Ludwig and Reynolds (op. cit., Chapter
11) discuss this at length, and present many practical schemes for detecting and classifying
associations. An assortment of indices, measures, and statistical tests bave been developed for
studying associations, some of which work quite effectively when tested on known, artificial data (op.

cit.). Both presence-absence indices (association) and those based on abundance (covariation) have
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been developed. Al these measures are essentially ad hec in nature. The paired event affinity
structure of (3) may provide a useful framework for investigating association. The key result which
remains to be obtained is the elaboration of precise experimental protocols for sampling. We
speculate that an experimental design capturing the essential unordered event pair characteristic of
the method would involve two linked points in an appropriate sampling unit: perhaps by looking at
the two nearest plants in each of a series of randomly chosen points from a unit, and replicating over
many units to get the multiplicity of sampled joint distributions required to specify uniquely the
elements of ¢.

If data on = can be obtained for several (say M) replicates, then we can estimate the ¢-values
directly using, for example, the method of least squares. There are n(n +1)/2 independent ¢-values,
but only n{n—1)/2 independent values in a p or ¥ matrix, so that we require at least n + 1 samples to
fit the ¢.

As a preliminary example of how the ¢-method might be applied, we choose a data set where we
can approximately (but only approximately) extract the information we need to use the method,
namely that of Krebs (1978, p. 375 et seq. ). An ecology class looked at the associa.tion.of two species
of grasses on an area of sand dunes on the southern shores of Lake Michigan, performed both
quadrant presence-absence and nearest-neighbor analyses. The species were Andropogon scoparius
{Species 1 here) and Ammophilia breviligulata (Species 2 here). The data are not ideal for our
purposes, but we can extract two rough estimates of x, one from the presence-absence data, and one
from the nearest-neighbor data. With E, = “Species 1 found” and E, = “Species 2 found” and using

the notation =(*) for the k** data matrix (with M = 2), we have

ey =( 0.3615 0.0308 ) hence (1) ___( 0.3923 ) (16a)

0.0308 0.5769 0.6077
and .
(2)y _ [ 0.3214 0.0863 (2) _ [ 0.4077
T ‘( 00863 05060 )0 bemee A% =( 3007 ). (16b)

Thus we have two estimates of 7 for the dune grasses. Now, note that in this case where n =2
only two elements in «, for each k, are independent, but that there are three independent ¢ values.
This means that we cannot uniquely specify the ¢ values from the available data; however, we can
test the fit of two contradictory hypotheses, namely, that (A): Intra-species affinity dominates, and
(B): inter-species affinity dominates. We can express these hypotheses using test matrices for ¢,

% ¢=(30), (17)
and
%g: o= D). (18)
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Of course, many other one-parameter families may be tested (e.g., all distinct combinations of 0, 1,
and a parameter); the point here is to show that it can be done, not to perform an exhaustive analysis
based on these limited data. We estimate the parameters in {17) or (18) using the obvious scheme of
minimizing
1/2
M -1 n 2
1 k
so-[4 5 S -] oo

k= 1
where #,. is the optimal value based on the data and which we try to match by using (5) and (6)
with ¢ given in (17) or (18). The outer sum is over replicates, the next over rows in 7, and the inner

1 . . .
sum over columns; there are M n(n2+ ) —1| terms, equaling the number of independent Tij Using

= (fa 1-£2ﬁ) , (20)

which follows from Theorem 1, we obtain a positive definite quadratic form Q{a, 8) = S%(¢) which
has a unique minimum when o = 0.34145 and 3 = 0.05855, yielding 5(¢) = 0.03423554 and

the two-parameter representation

. _ (0.34145 0.05855) py =04, 1)
= 10.05855 0.54145/ g = 0.6.

In order to test the two hypotheses 3o , and Jop we use the test of whether or not the corresponding ¢
can attain the optimum values of # given by (21) while remaining consistent with the restrictions of
Theoremn 1. In the case of } 4 it is easily seen from (5), (6), and (17) that this will happen only if the

parameter ¢ satisfies the quadratic equation

S E R R R R REERER

.. Pipa(l- a+p1p2a)
1= A"
1-{p? +p3)a -

This yields two positive values for a, namely a =1.420609 and a = 2.217482, the second of which is
inadmissible since it leads to a negative value for R,. Thus, 36, with a = 1.420609 satisfies the test
that we have adopted. As for Jbg, it is seen from (5), (6), and (18) that it can be admissible

according to our test only if b satisfies the quadratic equation

™= —'—1(1 zzb)b
172
which yields the values b =-1.547602 and b=2.035519. Both of these are inadmissible, the first
because it violates the positivity of ¢'-J-, and tbe second because it yields a negative value of R,.
Thus, .J6g is rejected and 3, is accepted. We can thus be reasonably sure that the species
disassociate, a conclusion that agrees with those of the standard tests described by Krebs (1978).
It is also interesting to compare hypothesis }6, with the assumption that the grasses mix

randomly, that is, ¢;,=k, ¥ ij € 8, ke {0,1}. Assuming p, to have the optimal values p, given by

& R A - &4 =
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(21), random mixing yields

"= (524 038)

and a value of S(¢) equal to 0.258827, far from the optimal value 0.03423554 attained by 3, with
the choice a = 1.420609. Of course, the fact that J , satisfies this criterion does not mean that it
gives the correct affinity matrix, since as we have discussed above, the solution for ¢ is not unique.
However, based on the available data, J6, satisfies the test criterion of yielding the optimum # in
(21) and minimizing S{¢) given by (19).

Example 3: Single-Sex Mixing Models

Example 3a. In its original form, the result of Busenberg and Castillo-Chavez (1989, 1991) deals with

sexual contacts (i.e., partners) per unit time in a population comprised of n groups, in the ith of
which there are T(t) individuals, at time t, with an average number of partners per unit time, or
“risk™ level, equal to C,{t). A valid description of the mixing process is produced by an n x n matrix
of probabilities p(t) where p,(t) is the probability that an individual in group i has. a partner in
group j, at time t (given that it paired). Constraints (i) and (ii) of Section 2 simply make p a
stochastic matrix, (iii) enforces conservation of the number of new pairings per unit time between
individuals in groups, and (iv) says that individuals in momentarily empty or inactive groups cannot
have partners.

The problem of developing deterministic p(t), functions of C(t) and T(t) only, which satisfy the
axiomatic constraints, has become one of extreme importance in modeling the epidemiology of
sexually transmitted diseases (STDs), and in particular human immunodeficiency virus HIV, the
causative agent of AIDS. Until recently, the only known solution was random or “proportionate”
mixing (e.g., Barbour, 1978; Nold, 1580; Hethcote and Yorke, 1984; Anderson and May, 1984; Dietz
and Schenzle, 1985; Anderson et al., 1987; Blythe and Anderson, 1989) where Pij =P for all i, and

with the marginals, in this context, being given by
C{t)T;{t)

p,(t) = m—"—.
kglck(t)Tk(t)

The representation theorem states that any p which is a solution to the problem specified by
constraints (i) —(iv) of Section 2 may be written in the form given by (5). The parameters ¢,;, which
may in this context be functions of elements of the matrix (pij = p;(t)), provide a measure of mutua/
preference, or affinity for sexual partners between pairs of groups (see Blythe and Castillo-Chavez,
1989; Busenberg and Castillo-Chavez, 1989, 1991; Castillo-Chavez and Blythe, 198%; and Castillo-
Chavez et al., 1991). A constant ¢-matrix implies that the preference structure in the population

remains unchanged, but it is important to note that the values of p will change with time as a result
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of the dynamics of the model changing the sizes of the mixing subpopulations, T,(t); i.e., time
dependent changes in the set of mixing probabilities p.-j(t) are not necessarily an indication of change

in behavior. Even where all of the n groups in the population are identical {i.e., all the C,(t) are

equal, and all the T;(t) are equal, so that p,(t) = 1/n for all j), the preference structure ¢ can produce
nonrandom mixing in p (¢f. Blythe et al., 1991).

Example 3b. Another area where sexual mixing models can be of some importance is population |
genetics. As a first approximation at applying the generalized mixing framework in this area,
consider the case of a recessive gene at a single locus, with no population regulation or frequency
dependence (Blythe et al, 1991). A good example (Crow, 1986, pp. 50-53) is redheadedness in a
human population. We divide the population into three groups: Group 1, homozygous (AA)
individuals who do not carry the “red” allele; Group 2, heterozygotes (Aa) who carry but do not
express the allele; and Group 3, heterozygotes {aa) who express red hair. We. assume that the
fractions of offspring born from the six possible crosses follow the standard elementary random
pattern (see op. cit.). ‘

Clearly no one can distinguish AA from Aa phenotypes, so the only reasonable form for the

A A BT E R EEESN

preference or affinity matrix is

o a f
¢=| a a £ |, (24)
B B

where 0 < a, 8, ¥ <1 are constants. Individuals in groups 1 and 2 have the same preferences for aa
versus non-aa (f versus a), and group 3 individuals have preferences § and v for non-aa and aa
individuals, respectively. Assortative mating is represented by 3 =a =0, and ¥ =r/p5(t) where r< 1;
i.e., a fixed fraction of the population of aa individuals mate among themselves, regardless of group ~
population sizes.

In Blythe et al (1991), it is shown how a simple model may be derived under the following
standard simplifying assumptions: (a) every individual in generation t has just one partner; (b) the
unit of time is the generation; (c) individuals from generation t are not counted in generation t+ 1;
and (d) all matings produce 2¢ offspring (¢ > 0). Then, C/(t) =1, for all i and t, and

T(t)

pilt) = iy = x(0) for all i, and T(t) = i'rk(t) : (25)

k=1
where T(t) is the total population, and x,(t) is the proportion of group i in the population, in
generation t. Note that x,(t) + x,(t) + x5(t) = 1 and %xz(t) +x4(t) = q{t)—the a allele frequency.

Now, for convenience write Z, = x3(t) as the proportion of aa individuals in the population in

generation t. Then we have the recurrence relation
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2
Z:+1 = f(Z,) +%§%, Zo<q, {26)
where ¢
f(Z) = aq® ~ 2(a-B)qZ + (a-26 + 7)Z°
g(Z) = (1-a)q + (a-B) 1+ q)Z —(a—28 +7)2°
and

h{Z) = (1-a) + (a-B)Z -(a-28 +7)Z%.
Blythe et al."{1991) cousider some of the properties of this map, and suggest directions in for future

work in population genetics using this formalism.

Example 4: Joint Distributions

Equation (5) seems also to be a new result in the theory of distributions. Consider X and Y, two
discrete random variables, with joint density function f x,y{*,-) and marginal density functions fx(-)
and fy( ), respectively. If the joint density function is jointly symmetric, i.e., f X,Y(“’ vi={f X,Y(V’ u)
for all (X, Y) in the appropriate space, then clearly f x{u) =fy(u), for all u, so X and Y have the same
function for their marginals. But these marginals are just p,, and 7, = fx y(u, v), 80 ‘that (5) gives
us a representation of all jointly symmetric discrete joint density functions.

In fact, there is nothing new in the use of infinite families of joint distributions: for example,
Mood et al (1974, p. 142) use one to illustrate the fact that knowing the marginals does not
necessarily mean that we know the joint distribution. Using discrete random ‘variables, and a

symmetric density function, we may write Mood et al’s (1974) example as

T = P,‘P_-,‘[l + "(T."Q)(T;“Q)] ) (27)

where -1 < v < +1 is an arbitrary parameter, ]
]
DI (28)
k=1

is the cumulative distribution of the marginals, and

Q= i PeYk (29)

m=1

(with continuous variables, Q-_-%). This example was originally due to D. Morgenstern {Plackett,
1965), and has been extended and studied by, e.g., Farlie (1960) and Gumbei (1960). Clearly, we
always have the same marginals, p, regardless of the value of v, and of course the constraints (i)~ (iv)
of Section 2 are satisfied. This means, incidentally, that the p; ; deriving from (27} could be used as a
mixing function in STD modeling, as in Example 3 above. What the new representation result says is
that all such examples may be expressed in the form of (5), it being required omly to find the
appropriate ¢. It is easy to show that in Mood et al.’s (1974) example, the choice

6. = —Y _TT. 30
%] 1+VQ2 172 ( )
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in (5) leads after some algebra to the family (27) as a special subclass of m, for 0 ¥ <1. For the
negative — and perfectly permissible —range of v, (30) leads to negative ¢,;, which is not permissible
under the representation theorem. A set of values of ¢ which are nonnegative may be obtained

however, by using
¢;; =1+ ”(Ti-Q)(Tj‘Q) r (31)

which works, with nonnegative ¢, for the full range of v. In this case, all the R, =0, and (5) reduces
10 T, = PP ;P05 The relaxation of the assumption that the ¢ are strictly constants is important only
if the marginals change with time, a point discussed in Blythe et 3l (1991).

Remark

The above example matches that of Bhadur (1961) when he formulates his representation theorem for
the joint distribution of correlated binomial variables. The above example also makes the point that
the relationship between ¢ and 7 is not unique {which was, after all, essentially the point that Mood
et al. (1974) were making). However, because (5) is a representation of all #, this nonuniqueness need
no longer be regarded as something of a béte noire, as we show in the following example.

The extension to continuous variables is trivial, regaining the original formulation of Busenberg
and Castillo-Chavez (1989, 1991). Consider X and Y, two jointly continuous random variables, with
jointly symmetric density function 7(x, y), and hence marginal density functions p(x) and p(y). Then
r is related to p by an equation exactly analogous to (5), with R(-) being now defined by an integral
rather than a summation, and the denominator likewise. For example, if p(x) = 1/hk for x € [0, h] and

zero elsewhere, i.e., uniformly distributed marginals, and say

1
¢(X, y) = E(x+y)' (X, Y) < [Oa h] f (32)
then we directly have that

T(x, ¥) = ﬁ[ﬁ+7%+(4~%)(

Y
4-5)], (x, y)elo, hj. (33)
This is a convenient way of generating joint density functions with a specified “affinity” structure
#(x, y), but the reverse process of finding #(x, y) such that a given (x, y) is obtained is‘often

difficult. For example, say m(x, y) is the bivariate normal distribution

R T -
| TR e 2wt ]

T(x, ¥) = e
211'0'2:]1 - 52 ! (34)
for (x, ¥) € (-, +o0}, with p and ¢ the mean and variance, respectively, of the marginal p(-), and ¢

the correlation coefficient of X and Y. Cleariy,
(=)’

=1 ‘ 2
p(z) = 21026 20 (35)
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To find suitable ¢(x, y) we have to equate
S(x.y) = e%309(1-62]—;;“5(—51_5—2}{&(1‘11)2“2(1-5)(1-‘-#)(5'-#)]‘ a5
with W¥(x, y), the continuous variable version of the T of (5) that is given in Theorem 4.4 of
Busenberg and Castillo-Chavez (1991), and solve for ¢é(x, y). An obvious solution is ¢(x, y)=
W(x, y) = ®(x, y), which is not very informative, but it is the only one. If we wish to generate an
alternative symmetric joint distribution with marginais f(u) such that u is proportional to N{y, o),

the normal distribution with mean pu and standard deviation o, we may easily do so by choosing

oé(x,y) with properties reflecting our assumptions about affinity. Say we choose to parameterize ¢ as

_[a20, ifx=y,
¢-{b20, fxdy, (37)

which is a pronounced version of the “like-with-like” functions studied by, e.g., Blythe and Castillo-
Chavez (1989), Castillo-Chavez and Blythe (1989), and Castillo-Chavez et al. (1991), and known as
“diagonal mixing” in the context of sexual mixing models (Blythe et al. 1992). Then we have at once

that

fx y(x ¥) = f(x)f(y)[K(l-b—(a-b)f(x))(l-b-(a—b)f(y))+a.cS(x—y) +b(1-6(x—y))], (38)

where
_ NTo
K= swei-b)-a" (39)

and 6(-) is the Dirac delta function. This joint density function is of course quite different from (34},

although the marginals are the same. For (38) we find that the correlation coefficient is given simply

by
_ (a-b)

¢= NTo (49)

which may be either positive or negative, depending on whether or not the diagonal parameter, a,
dominates. When a=b=1, (37) reduces to fy y(x, y) = {(x)f(y), i.e., independent variables, and
there is naturally zero correlation between X and Y.

In the above examples we have one or two parameters, varying over specified subranges,
describing an infinite family of distributions, all of whicin have the same marginals. In these cases,
these parameters [v in (31), € in (36), and a and b in (38)] act to parameterize the affinity function ¢
(see also Farlie, 1960; Placket, 1965; Johnson and Kotz, 1972; Castillo-Chavez et al., 1991, and the
parameterizations that we exploited in Examples 1 and 2 above). We may thus offer the
interpretation that the ¢, provide a means for describing and implementing the most general form of
correlation structure in symmetric bivariate distributions, and that their non-uniqueness with respect

to the marginals is no more a restriction than it is with the correlation coefficient £ in the bivariate
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normal case, and subject only to the issues of parameter estimation. We are at present extending the
results on symmetric joint distributions to the more general bivariate case where 7 need not be

symmetric, and examining the implications for higher-dimensional problems.

4 Discussion and Conclusions

We have presented a new result in the description of the probability of event pairs where within-pair
order is immaterial. Equation (5) sumarizes the underlying key result. Here we suggest four areas
where useful applications of (5) may be found. Under the specified conditions for event pair
processes—symmetric joined distributions—we may make use of the concept of “affinity” between pairs
of events of different types. The elements of the ¢ matrix characterize the degree to which particular
types of events appear together in pairs in a nonrandom fashion. The card-game example (Example
1) provides an illustration of how the result, and the ¢-method, may be app}ied, but perhaps
represents the least interesting area of application. The potential for the method to provide a
consistent theoretical basis for the measurement of species association (Example 2).is perhaps one of
the most interesting areas of potential application, particularly if other similar applications are
exploited. Clearly, work is required both in the general analysis of the association-measure technique,

and in the design of experimental protocols to make use of it. Applications in the areas of sexually

transmitted disease dynamics and in population genetics (Example 3) are by now appreciated and

work is under way to further develop these themes. The final application, Example 4, is particularly
interesting, indicating as it does that any symmetric bivariate joint distribution may be represented
as a member of the ¢-family. In particular, this gives us a generalization of the idea of correlation
structure, and provides a framework for the construction of bivariate distributions with specified
properties when the marginals are known.

The card game also helps illustrate the difference between static and dynamic models for paired
events. Assume that the number of red and black cards have their own population dynamics. Let
T,(t) and T,(t) denote the number of red and black cards respectively, at time t. Changes over time
are due to an unspecified stochastic or deterministic model. Let T(t) = T, (t)+T,(t) and p,(t) =
T,(t)/T(t), i=1,2. If the deck is fair, then two reds occur with probability p,(t) x p,(t), two blacks
with probability p,{t) x p,(t), and two mismatched with probability 2 x p,(t) x pg(t). Consider an
unfair deck, where cards have some tendency to remain together. We have two events: E; = “red
card”, and E, = “black card”, with py(t) = T,(t)/T(t) and po(t) = T,(t)/T(t). We can then
make the following satements:

1/py(t) O py(t) 0
if ¢ = then == (41)

0 1/pa(t) 0 pat)
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if ¢ ={% ) ael0,]] then == (42)

P17z PA(V)
The use of frequency dependent ¢-values, ¢, (t) = [f;/p,(t)] x §,; with constants f; € (0,1] and where
6;,; denotes the Kronecker delta, reduce Equation (7) to “preferred” mixing, a generalization of
Nold’s (1980) and Hethcote and Yorke's (1984) mixing (see Jacquez ¢t al. 1988):

m e s{1-Im)om(t)

pij= fib;; + (1-f) {Z S lI0 i|. (43)

where i, ] =1,2,3,...,n.

In Equation (43) f; can be interpreted as the reserved fixed (no time dependence) proportion for
within type (red or black) suffling while (1-f;)—the non-reserved proportion—which is shuffled at
random while a dynamical or stochastic model governs the dynamics of T;(t}, i=1,2.. Hence, the
selection of ¢.-j(t.) = [f;/p;(1)] xéij gives rise to the above conditional probabilities for event-pairs.
Because the ¢-matrix is symmetric, and condition (9) needs to be satisfied, a game that generates only
mismatched cards seems only possible (with frequency-dependent ¢’s) when ¢;; =0 and é,,= 1/2.
Hence the situation in which we get only mismatches does not hoid if we add dynamics. There are
some clear generalizations to multiple types and to event-pairs of event-pairs which eorrespond, in the
parlance of sexually-transmitted diseases (STD’s), to heterosexual mixing.

Finally, we must point out that the representation theorem of Busenberg and Castillo-Chavez
(1989, 1991) only provides a way of representing an infinite class of possibilities. It is impossible to
represent all possible matings with less degrees of freedom than those inherent to the problem (this is
true of all representation theorems). The value of a general representation theorem lies on its ability
to help understand complex subcases, in this case same-sex pairings. The introduction of “affinities”
in terms of our affinity matrix ¢ cappot possible make all paired events scenarios transparent.
However, as we show in this paper, these affinities capture familiar patterns of pairing. Furthermore,
these affinities provide rich ways of constructing large and flexible families of parametric distributions
of paired events. The usefulness of these parametric families cannot be predicted, however, our recent
work on “dating” (Blythe 1992, Rubin et al. 1992, Luo and Castillo-Chavez 1992, Lubkin et al
1994, Castillo-Chavez et al. 1994, Hsu Schmitz and Castillo-Chavez 1994, Hsu Schmitz 1993, Hsu
Schmitz ef al. 1993) shows that the method is indeed promising.
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