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Abstract

The goal of this article is to formulate and analyze the simplest logistic pair-formation
mode] and to contrast its dynamics to that of the corresponding Malthusian pair-formation
model, that is, the Kendall/Keyfitz and Dietz/Hadeler model. The Malthusian pair-
formation model supports a unique nontrivial stable exponential solution and we show
that the logistic pair-formation model also supports a unique stable nontrivial bounded
solution.

1. Introduction

The simplest mathematical model in demography is known as Malthus’ Law. If the
population of individuals at time ¢ is denoted by P(t), then Malthus Law is given by the
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solution to the simple differential equation

dP

I = B8P, P(0) = Py,

where 8 denotes the per capita growth rate of the population. This model was introduced
in 1789 in one of the most influential papers in demography and population dynamics.
The model assumes a constant per capita growth rate which leads either to extinction
or to population explosion (unless § = 0). The acknowledgement of existence of finite
resources (the carrying capacity of an ecosystem) requires the introduction of models that
cannot support exponential growth indefinitely. The assumption of a per-capita growth
rate 3 that depends on the size of the population led theoreticians to study the model

dP
=5 = B(P)R, P(0) = B,
where it was assumed that
dp(P)
> < 0.

The most common example is provided by the logistic equation (introduced by Verhulst
1845, 1847) in which

P
B(P)=r(1 - ?),

and which led biologists to the theory of r — K selection (see for example May 1974).

These models have played a very useful role in theoretical biclogy (see May 1974).
However, because their use is restricted to modeling the dynamics of a homogeneous single-
sex population, these models and their single-sex generalizations, such as Leslie’s model
(Leslie 1945), cannot take into account gender-related factors central to the study of the
life history of real populations.

The use of two-sex models in demography was introduced by Kendall (1949) and Key-
fitz (1949) and was further developed by Fredrickson (1971}, Pollard (1973), and McFarland
(1972). The central problem associated with the formulation of two-sex demographic mod-
els is that of modeling the nonlinear process of pairing. This modeling problem has been
the object of intense research over the last few years. A recent overview of this problems
and some of the current solutions can be found in Ca.stlllo—Cha.vez and Busenberg (1991),
Castillo-Chavez et al. (1994a, b).

Following the recent work of Dietz and Hadeler (1988), we will denote the rate of pair-
formation by #. The work of Fredrickson, MacFarland, Keyfitz, Pollard, and Kendall (cited
above) proposes various functional forms of ¢. All these forms had as independent variables
the state variables that describe the population sizes of single males and single females.
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From some of these examples that model the nonlinear process of pairing, Fredrickson
(1971) and others (see Hoppensteadt 1974 and references therein) extracted a set of basic
properties that must be satisfied by the rate of pair formation #. They include

é(m, f} 20
d(m +u, f +v) > d(m, f)
¢lam, af) = ad(m, f),
¢(m,0) =¢(0, f) = 0,

where m denotes the population of single males, f the population of single females, and
m, f, u, v and the constant a are assumed to be nonnegative. Fredrickson and oth-
ers observed that some of the pairing functions such as the harmonic mean satisfy these
properties while others did not. In 1988, Dietz and Hadeler analyzed their generaﬁzed
version of the Kendall-Keyfitz pair-formation model. Their analysis was further extended
by Waldstatter (1989). The Dietz/Hadeler model provides the simplest two-sex demo-
graphic model with general pair-formation rates. The model js nonlinear; however, it is
homogeneous of order one and hence it supports exponential solutions. Consequently, the
Dietz/Hadeler model can be thought of as the natural generalization of the Malthus model
to two-sex populations. Obviously not all populations exhibit (at least on relatively long
time scales) exponential growth and therefore we can argue as did Verhulst (1845, 1847)
or Gurtin and MacCamy (1974) that birth (and separation) rates are nonlinear functions
of the number of paired individuals.

The focus of this paper is to formulate and analyze the simplest logistic pair-formation
model and to contrast its dynamics to that of the corresponding Malthusian pair-formation
model. The Malthusian model supports a unique nontrivial stable exponential solution and
we will show that the logistic pair-formation mode] also supports a unique stable nontrivial
bounded solution. We will further specify the precise demographic conditions on which this
behavior takes place. A description of our results requires a brief but complete summary of
the results associated with the Malthusian pair-formation model, which is given in Section
2. Section 3 formulates the simplest logistic pair-formation model and states and interprets
the results of our analysis. Section 4 collects the proofs associated with the analysis of
the logistic pair-formation model, while Section 5 collects our final thoughts and outlines
future research.

(PF)

2. The Dietz/Hadeler Model

We begin by formulating Dietz/Hadeler’s model as well as providing a summary of
their results. We let m,(t) denote the population of single males at time ¢, f, (t) the popula-
tion of single females at time ¢, and p(t) the population of paired individuals (heterosexual
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pairing) at time ¢. Furthermore, we let um and py denote the per-capita death rates for
males and females, and fn, 87 the per-capita birth rates for males and females while ¢
denotes the per-pair separation rate. Using these definitions we arrive at the following

demographic pair-formation model:

m, = —fmM, + (Bm +us + J)P - ¢(m,, fs)
fo=—psfo + By + bim + 0)p — $(ms, fo) (2.1)
p=—(pm +ps+0)p+¢(ms. fi),

where ¢ denotes the pair-formation rate. It is assumed that ¢ is differentiable for (m,, f,) €
R2 \ {(0,0)} and it is assumed to satisfy properties (PF). We observe that system (2.1) is
a homogeneous system of degree one and, consequently, it supports exponential solutions.
Hadeler and collaborators have developed an extensive theory for homogeneous systems of
this type. The following results found in Dietz & Hadeler (1988) or Waldstatter (1989),

make use of this theory:

I. System (2.1) always has two exponential solutions
ma(t) = e 4, fs(t) = p(t) =0, (a)

and
fo(t) =e7#t, mu(t) =p(t) =0. (5

II. ¥f ¢,n and ¢; denote the partial derivatives of ¢ with respect to the first and the

second variable of ¢ respectively and if

Brér(1,0) ' .

< o
m S B ¥ o+ 67(1,0)

then there is no strictly positive exponential solution, and the exponential solution in
I,) is trajectorally stable (see Hadeler and collaborators), while the solution expressed
in Iy 1s trajectorally unstable. :

I X
Bm ém(0, 1)

pm + 0 + ¢m(0, 1),
then there is no strictly positive exponential solution. The exponential solution Iy
is stable while the exponential solution in I(,) is unstable.

Hf < fm —

v i Brés(1,0)
fPfLL
m > —
Hm = 0= U ¥ o+ 64(1,0)
and 8 0.1
F_f>ﬂm_ m¢m(,)

Bm + 0+ ¢m(0’ 1)
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then (2.1) has a unique strictly positive exponential solution, which is stable, while
the solutions in I{,) and I3y are both unstable.

3. The Logistic Pair-Formation Model

Because most of the demographic studies used models that exhibited exponential
solutions (Malthus and Leslie), most of the work on demographic pairing models focussed
on homogeneous systems. It is obviously important to study models that also incorporate
nonlinear birth and separation processes. This article formulates the simplest nonlinear
extension of the Dietz/Hadeler and Kendall/Keyfitz model that incorporates nonlinear
birth and separation processes. Let T = m, + f, + 2p (the total population), and assume
that the birth rate 8 = B(T') and the separation rate ¢ = o(T) depend on the total
population. Furthermore, if welet 0 < v < 1 and 1 — 5 represent the proportion of the
male and female birth rates respectively, then model (2.1) becomes

m, = —lmm, + [TB(T) + B + O'(T)]p - ‘Ib(mh f-!)
fs = —psfs + (1 = B(T) + ptm + o(T)lp — $(ma, 7s) (3.1)
p=- [F’m + py + U(T)] p+ ¢(m-’1f')’

where we assume that 8 and o satisfy the following properties:

dBs(T) .
hala StV = 0. H1
- <0, A B(T) =0 (H1)
do(T)

dT
To simplify the analysis we introduce the following change of variables:

> 0. ’ (H2)

m=m,-+p,

f=Ff+p

The system (3.1) becomes

m=—pmm+v8(T)p
f=—pf+(1=7)B(T)p | (3.2)
1-:’ = - [Ju'm + M f + J(T)]p+ ¢(m _p)f _p)s

where T = m + f. With the assumptions (H1) and (H2), the system (3.2) can be
considered as the generalization of the logistic equation. This generalization follows the
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dynamics of paired rather than single individuals. Since by definition we have m > p and
f > p, then we can focus only on solutions which belong to the set {2 defined as

Q:={(m,f,p)eRi;p<m,p=<f}.

It is not difficult to verify that Q is positively invariant under the flows generated by the
system (3.2). We now state our main results for the dynamics of System (3.2). The detailed

mathematical analysis is provided in the next section.

Theorem 3.1 If either

. [7B(0) (1—7)B(0)
mm{ . Py } <1 (3.3)
o B(0) (1 —7)8(0)
.| il
i mm{ el p } >1 | (3.4a)
‘ aad B0) . (1-~)B(0)
. gl -
~ Hm +#f+0(0)2¢(—#:*—1a—'}%——1)‘, (3.4s)

then for any given initial condition z = (mo, fo,po) € §

bl

t]:1_.11"_’1‘:. m(t,z) = t]irgo f(t,z) = tl.l..%p(t’z) =0.

- K

- A & A -

Condition (3.3) implies that either the male growth rate or the female growth rate is
negative, that is, either the total male population or the total female population vanishes
and, consequently, so does the total paired population. Under the Condition (3.4) it
is not obvious that the population goes to zero because both maximum male and female

i - 4

, exceed one. However, the second condition

reproductive numbers,

F

. Hm 25
of (3.4) implies roughly that the growth rate for the paired individuals is negative and hence
the rate of reproduction of the male and female populations is reduced.

- A

- A B B

Result 3.2 For system (3.2), if

II:u.n{'rﬁ(O) (1- *r)ﬂ(ﬂ)} 51
fm Iy ’

A BS _ ARL: :

(3.5)

JE

280, 0-160) )
Bm ’ |

#m+#f+°'(0)<¢( p

then the zero solution is unstable and there exists a unique positive equilibrium (m*, f*, p*).
Furthermore, the unique positive equilibrium is locally asymptotically stable.
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If the total population T is small, then condition (3.5) implies that the average growth
rates of male, female and paired populations are positive (not completely accurate, see the
proof of Lemma 3.2 in Section 4). Hence the total population persists, and so we expect
the existence of a positive steady state.

4. Mathematical Analysis of the Logistic Pair-Formation Model
In this section we shall give the proofs of Result 3.1 and Result 3.2.

Proof of Result 3.1 We assume that condition (3.3) is satisfied, and without loss of

generality we assume that
250 .
Bm

22D (1) — 4 B(TYim(t) — p(t)]
Fom (4.1)

N

|

i

N

]

i

’ It follows that

i m(t) = —pm(1 -

i < —tm( = Eym(t) ~ 48(T)m(t) ~ p(2))

Since m(t) — p(t) > 0, then (4.1) implies that m(#) is bounded and

| Tim m(®) — p(t)] = 0.

'. Therefore, p(t) and f(t) are bounded and consequently

- lim 6(m(®) - p(t). £(2) - p(2) = 0. @)
(From (4.2) and the last equation of (3.2) we ‘ha.ve that

' Jm p(t) = 0.

i

A

|

|

i

i

Hence
t]ixg} m(t) = tl—ifgo f(t) =0.

We now assume that condition (3.4) is satisfied and that for any z € Q we let

_ pmm(t)  urf(t)
”(”‘m{ 26(0) ’(1—7);9(0)"’“)} t20,

where m(t) = m(t, z), f(t} = f(t,2),p(t) = p(t, 2). In fact, we have that
Jm 7(t) = 0. (4.3)

7
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To establish this result, first we show that

n(t) <0 whenever 7n{t) > 0. (4.4)

_ pmm(2) -m en
If n(t) = ~B(0) > 0 and T(¢) (t) + f(¢) th

) d , pmm(t)
® =550

|
|
1
1
| = L2 [~ pmm(t) + 7B(T(2)p(2)]
I
|
|
|
|
I

R7I0)

Km
< ;E(F) [—'.U-mm(t) + 7ﬂ(0)p(t)]

<0
Using a similar argument it is easily shown that if

o usf(t)
1= 7= e > °

then
7(t) < 0.

Furthermore if
n(t) = p(t) > 0,

then
m(t) _76(0)  f() _ (1-7B0)
p(t) = pm p(t) — py
‘ and '
mt) . f(8) 18(0) . (1=7B(O) _
; ¢(p(t) b p(t) 1) S¢( fim L bf 1)'
j Finally,
5 0 = 52 |
. = — [pm + p5 + o(TE)} () + $(m(t) — p(t), F(£) — p(2))
| < = [k + 1 + (0)] p(t) + $(m(2) — p(2), F(£) — p(t))
. _ o0y — ¢ () _q £G) _
! = —p(t) [um s+ o(0)~ 4 (pm 1,40 1)]
3 < —p(t) [pm+w+a(0)—¢(3ﬁ-(7‘”—1,(i-j¥@~l)]
. <0.
: 8
< e P A S O R TR

“ T



Thus we establish condition (4.4) and condition (4.3) follows from (4.1). Therefore
Jim m(t) = lim f() = lim p(t) = 0.
The proof of Result {4.3) is completed.
To prove Result 3.2 we need following two lemmas:

Lemma 4.1 If

180) | (1=980) |
Hm Hm
and
v8(0) (1 —7)8(0)

then the zero solution of (3.2) is unstable. Moreover, (3.2) has a unique positive equilibrium
(m" f‘ ) p' )'
Proof. We first prove that the zero solution is unstable. We are not able to do this in
the customary way, that is, by linearizing the system around the origin because in general
the homogeneous function ¢ is not differentiable at the origin. However, because of the
assumptions of this lemma we can choose Ty > 0 such that
1B8(T) _, (L=7MBT) _ 1) _

Hm ’ Hf ‘
In addition, if z = (mq, fo,po) €  with mg > 0, fo > 0, pp > 0 then it is not difficult to
see that

,um-i-#f+a(To)<¢(

m(t,z} >0, f(t,z) >0, p{t,z)>0, for al t>0.

Furthermore, if mo + fo < Ty and if we define
. I—‘mm(ta z) »U'ff(taz)
(;'t=mm{ , ,p(t,z)p, t=20
© 780) - 7a0) *?
then using arguments used in the proof of Result 3.1 it can be shown that £(t) > 0 as long
as T(t) = m(t, z) + f(t,2) < To. Therefore T{t) eventually reaches T; and the zero solution

is unstable.
The non-zero equilibria of the system (3.2) is determined by the solutions of the

following nonlinear algebraic system of equations:

m = 1B(0)p
Hm
f=L=0E@p (4.5)
£y

s+ 0@ =6 (2 -1, 1) =0
p P

9
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Substitution of the first two equations into the last one leads to the following equation for

T
G(T) = pim + g +o(T) ~ ¢ (7ﬁ(T) _., 4 ‘ziﬁ(T) _ 1) —o0.
Since by assumption we have
G(0) = tom + 7 +0(0) = 6 (22 -1, & =80 1) <o, (4.6)

then hypothesis (H1) implies the existence of constants T,, > 0 and Ty > 0 such that

18(Tm) _ (1= BTy _
Hm Hrf

1.

If we let 7 = min{ T, T }, then
s ('rﬁ(T) _p, L=mAT) _ 1) —o.
HEm Hf
and consequently
G(T) = ppm + p5 + o(T) > 0. (4.7)

The fact that G(T') is strictly monotone increasing, in combination with conditions (4.6)
and (4:7), implies that G(T') = 0 has a unique positive solution T*. From the first two
equations in (4.5) we have that '

=1y (20, A=A

Hm Ly

and Teype
me= 28R e (- BT
Hm K
This concludes the proof of Lemma 4.1.

Lemma 4.2 The positive equilibrium is locally asymptotically stable.

Proof. An easy calculation shows that the linearization of (3.2) at the positive equilib-
rium (m*, f*,m*) is

i
4. where
5 —pom + BT VB(T*)p" B(T*)
‘ A= | 1-7BT")p" —ur+(1—-7)8(T*)p" (1 - 7)B(T) ,
‘ ¢u_&(T.)p- ‘tﬂt’_&(T.)P. —Hm — lf _J(T‘)_¢u — Py
10
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where 7™ = m* + f*, and where

o) 15}
¢u = “a_u'qs(us v)[(u,v):(m‘—p',f‘ —p*})s év = ‘a“‘;;é(u, v)'(u,v)::(m'—p‘,_f‘-p')'

Using
¢(m® —p*, f* —p*) = (m + ps + o(T*)) p*,

and since for o > 0,

¢(a(m” —p*),a(f* - p*)) = ag(m* — p*, f* — p*) = a(um + pf+o(T7))p*

due to the homogeneity of ¢, then we see that

Su(m™ —p*) + 6u(f* —P*) = (tim + ps + o(T*))p*.

Equivalently ‘
r;' +¢UI% =¢u+¢u+ﬂ'm +;U_f+0'(Tt)- (48)

(From (4.8} and the equalities

Pu

m'

e
= T _— —_ T* s
pr vB(T™), Hi (1=7)B(T")

Hm
we deduce that the characteristic polymonial det (Al — A) is of the form
det (AT — A) = A% 4+ a; A% + ay A + a3,
with
Arey, % 1 = *
a1 = pim + ps — B(T")p +;:(¢um + du f*),

@2 = pimp + BT O(T) + = (g o + i 1)

= B(T*) ($um” + o f*) = (tm(L = 7) %+ psy) H(T™)p",
a3 = o(T")B(T")p" (4m(1 ~7) + p57) = B (bm(1 — ¥)f* b0 + psym* o)
— (1 = BTB(T*)P* ($u + ¢3).

(4.9)

(From formula (4.9), (H1), and (H2) it follows that

a >0, a; >0, az >0,

11
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and
araz > o(T7)B(T")p" (bm + 4if)

= B(T*) (pm (1 = 7)m* du + 5 (1 = N f*bo + pmymdu + p57f"b0)
> G(TB(T*)p" (pm(1 = 7) + 1s7) = B(T*) (1s7)m™bu + pim(1 = 7)f" o)
= B(T*) (4m(1 = V)m"bu + p57f"$0)
= (T)B(T*)p* (km(1 = 7) + s7) = BT") (ur7Im*u + (1 = 7)f" bv)
— B(T")B(T*)p* (1 = 7) (¢u + bv)
= aj.
By applying the Routh Hurwitz criteria we conclude that all zeros of the characteristic

polynomial det{\] — A) have negative real parts. Hence the positive equilibrium is locally
asymptotically stable. ‘

Proof of Result 3.2 Result 3.2 is a direct consequence of Lemmas 4.1 and 4.2.

Remark We have only confirmed the local stability of the positive equilibrium. We do
not know whether or not the positive equilibrium is globally stable but our conjecture is
that it is.

5. Conclusions

Demography and population dynamics (life history theory) have been developed, at
least in spirit, along the lines of single sex-models that have as their basis the Malthus
and logistic models. The introduction of age-structured models followed a similar pattern
through the introduction of Malthusian models such as the Leslie and MacKendrick/Lotka
(also the Von Foerster) models (see Hoppensteadt 1974) and nonlinear logistic-type models
such as the Gurtin/MacCamy model. In this article we have revisited a Malthusian pair-
formation model and have introduced a logistic-type pair-formation model. Both models
have to include, in addition to the standard birth-death process, pair-formation and dis-
solution processes. If the birth-death process is linear then we obtain the Malthusian
pair-formation model of Kendall/Keifitz and Dietz/Hadeler which supports exponential
solutions despite the inclusion of a nonlinear pair-formation process. Furthermore, this
model supports a unique (trajectorally) stable exponential solution. I the birth/death
process and the dissolution rate are nonlinear then we have a logistic-type pair-formation
model that can support a unique nontrivial locally-stable bounded solution (we suspect
that it is globally stable). Despite the fact that we have now replaced single equations
by systems of equations, Malthusian and logistic two-sex models exhibit the same qualita-
tive dynamics as their associated single-sex models. If further structure is added, such as
age-structure, then several mathematical extensions are possible.

12
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