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1 Introduction

Sexually-transmitted diseeses are usually driven by a relatively small propor-
tion of the sexually-active individuals. Hetheote and Yorke (1984) introduced
the concept of core-group es a key element of disease management. Their
work wes motivated in part by their efforts to develop cost-effective meth-
ods for reducing the incidence and prevalence of gonorrhes. They found
out that disease management strategies aimed at the core were the most ef-
fective. Their "moving” endemic equilibrium provided epidemiciogists and
public health officials with a visual measure of their effectiveness.

Drastic changes in behavior were observed in some homosexually-active
populations because HIV is fatal and generally asymptomatic for very long
periods (see Baldwin and Baldwin 1988, Curran et al. 1988, Fineberg 1988,
Evans et al. 1989, Martin 1987, Saltzman et al. 1987, Shechter et al. 1988,
van Griensven et al. 1989ab, Wilkenstein 1988, McKusick et al. 1985,
Shilts 1987, and Wiktor et al. 1990). The effect of these chenges on dis-
ease prevalence and incidence is not well understood and the development of
- partially-effective drug treatments such as AZT makes it even more difficult
to forecast the timing and magnitude of an epidemic. The situation is quite
complicated because changes in behavior may influence disease dynamics by
affecting the recruitment of new susceptibles, the level of sexual activity, the
type of sexual practices, and the rete of partnership exchange. Treatment
may increase the length of the infectious period while possibly reducing the
infectivity per sexual contact. In this manuscript we explore the interaction
among behavioral changes, treatment of HIV-infected patients, and the long
term dynamics of HIV using models for homosexually-active populations.
We combine the resulta of two earlier directions. The first makes recruit-
ment into a population a function of disease levels {Blythe et al. 1992a b,
Brauer et al. 1993, Hadeler and Castillo-Chavez 1994) while the second incor-
porates treatment into HIV epidemiological models (Velasco-Herndndez and
Hsieh 1994; Haieh and Velasco-Herndndez 1994). The main model in this
manuscript integrates both approaches. Section 2 revisits and modifies an
earlier model of Velasco-Herndndez and Hsieh (1994). Section 3 introduces
the main model of this article following the approach of Hadeler and Castillo-
Chavez (1994) and begins its analysis by computing the basic reproductive
number and showing its relation to the equilfbria. Section 4 provides the
local stability analysis when treatment has no effect on transmission rates.
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Section § provides the local stability anlysis of the full modsl as well as some
numerical simulations. Section 6 provides the mathematical analysis of the
mode| introduced in Section 2 when the non-core Is not modeled explicitly.
Section 7 summarizes our results while outlining future research.

2 Basic model

We start by reformulating the model of Velesco-Herndndez and Hsieh (1994).
Let 5, U/, and I denote the numbers of susceptible, untreated infectious, and
treated infectious individuals respectively. If we denote by B the per-capita
(that is, per susceptible) incidence rate then the model equations are

% = ¢{(S,U,I)~BS—uS

di

EU = BS—(p+v)U—a-g— (1)
dl

v ,
rriie a—ﬁ-(p+u)1

where g(5, U, I} is the recruitment rate into the population; u™! is the average
length of the sexually-active life of an average individual; ¢ is the treatment
rate, and »~' and (1/)~! are the length of the infective period for treated and
untreated individuals respectively. The per-capita incidence rate is given by

choll +¢5y1
N

where N = S+ U + I, ¢ snd ¢ are the average number of pertners per unit
time for each infectious class; % and 5, are the corresponding infectivity
rates and, therefore, ¢f, and ¢’ are the net disease transmission rates from
each infective class, respectively. .

Velasco-Herndndez and Hsieh (1994) assumed that the recruitment rate
was given by a constant A. Their model here is modified. (following Blythe
et al. 1992b} by modeling the recruitment with a function (5,1, U) that
incorporates the potertial effects of infection risk in the recruitment of new
core group members. We will illustrate our results numerically using the
specific recruitment function

g(8,U, 1) = Ae—o 5

B=
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where the constant ¢ is an index of the strength of the strength that disease
prevalence has on the recruitment of core members. In section 6 we also
show some analytical results when this recruitment term is used in model
{1). This approach is besed on the work of Blythe et al. (1992b) in which
the authors analyze models of the form (1) with ¢ =0.
Blythe et al. (1992b) consider several types of recruitment functions g
including ; ;
98,1 = G(m) =G(3)
where it is assumed that
dg S I
J=Zg(=—)<o.
a1 N’G(S +1 ) s0

Biythe et al. (1992b) illustrate their results with the particular recruitment

function
§(I/N} = Aexp(—al/N).

They show the existence of stable limit cycle solutions analytically and nu-
merically, using the above recruitment function. Here we look at the effects
thet treatment and screening health policies may have on the asymptotic
long term behavior of a sexuslly-transmitted diseases (STD), particularly
AIDS. Treatment can play an impaortant role in the outcome of public health
policies, as can be seen by the direct role that it plays on the basic reproduc-
tive number of the disease. Velasco-Heméndez and Hsieh (1994) and Hsieh
and Velasco-Herndndez (1994) found that for model (1) with a constant re-
cruitment rate A, that is, where g(S, I) = A, the basic reproductive number
Ry is given by '

cfo oufA ;b

(,u+v)+n+v(p+u’dl)' @
(see Velasco-Herndndez and Hsieh, 1994). Note that o = 0 gives the standard
besic reproductive number for models without treatment. Here, we observe
that the second term could be negative, yet high trestment/screening rate o
coupled with high enough 5, can make R, > 1. Treatment may fail and even
be harmful if behavicral changes that reduce transmission in trested infec-
tives do not take place or are ineffective when a disease reaches endemic levels.
A similar model that also assumes a non-constant recruitment rate but does
not incorporate treatment may exhibit periodic behavior near the endemic
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non-core population as “behavioral-dependent reservoir” for the core group
and also by not including disease dynamics explicitly among non-core group
members. These simplifying assumptions can be easily challenged; however,
they do represent a sericus attempt to incorporate complex behavioral effscts
on the simplest possible models of HIV dynamics found in the literature. The
pa.ra.(lijgms that have been dveloped by Blythe et al. {1992b), Hadeler and
Casi.ullo-Cham (1994), and in this paper do support the unavoidsble cogn-
clusion that unless more information is svailable, the gimple and even the
complex paradigms that have been proposed in the past (see Castillo-Chavez
1989, Jewell et al. 1991, Sattenspiel and Castillo-Chavez 1990, May and
Anderson 1991, Anderson and May 1991, and references therein) oaly begin
to scratch the surface of the possible realistic scenarios for disease dynam-
ics. Further extensions are being carried out, For example, Heiderich et al.
(1994) have modified related models to take into account the effects of de-

lays in the behavioral response that governs the dynamics between core and
nen-core group mermbers. .

3 An extended model

When studying the dynamics of disease transmission within core groups one
must take into account the fact that the core-group is inserted into a larger
population which as a first step we assumed to be largely inactive in disease
l:ram‘;misaion. However, this populetion cannot be completely ignored as it
provides new recruits into the core group and hence, the size of the pool
becomes an important scaling factor. This effect hes been addressed recently
py Hadeler and Castillo-Chavez {1993) and we follow their approach and their
ideas closely in this section. We study a homogeneous version of model {1}
for which recruitment into the core population occurs at a rate g(S, U, =
r(?ﬁi). that is, it depends on the proportion of the core population infected,
This function r(z) is a decreasing function on 0 < z < 1 and satisfies r(0) >
0_‘ The treatment rate is now a function o(N). Let P, 8, U, and I denote the
sizes of the non-core, and the susceptible, untreated infectious, and treated
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infectious members of the core respectively. Following Hadeler and Castillo-
Chavez (1994} we formulate the model as a general homogeneous system
{Hadeler et al. 1988, Hadeler 1992, Busenberg et al. 1990) and then specialize
to the case of constant population size. The model equations are as follows:

U+l

dp
&E = T - E) +bE - Pr( 5 ) - uP,

& = ) -ese s ®
% = SB—o(N)U - (u+)U,

% = (N = (u+ )],

where N = 5+ U+, T is the total population; T = P+ N, E=U+1,and
b and b are the birth rates of non-infected and infected groups respectively.
Finally, the term

B = C&% + C’ﬁl'i-r's

is the rate of acquisition of infection per susceptible individual with c8; and
¢'B, defined as in model (1.

3.1 Equilibria

In this section we study the equilibria of (3) for the special case in which we
assume the same birth and death rates for treated and untreated members
and that the total population size is constant. Thus b = bhand v = &/ = 0,
The assumption v = &/ = { is obviously unrealistic; we make this assumption
to allow for the possibility of total constant population size in the presence of
infection. In order to allow for » and +/ to be positive and still have bounded
nonzero total population size it would be necessary to assume & nonlinear
birth rate in the non-core population. Under the assumption

b=E, U=V’=0:

we have

= (-ur

and, therefore, we assume p = i
. are, -—utog:vemnstanttotalpoplﬂation'.
System (3) is bomogeneous system of degree 1 and thus we look for pe:]:i:-

tent solutions (Hadelar and Castilio-Chavez, 1994)

o » that is, solutions of the

(P.5,U, I exp(At). (4)
Now we rescale (3) with the liew non-dimensional time

t= .
If we relabel the new rescaled parameters in (3) usip

before, then (3) can be rewritten with 4
rate becomes

g the same names as
= 1. The per-susceptible incidence
- U I
B=ch= -

by vt b, ¥
where
bo=bu, b=pu

Finally, system (3) is equivalent to the following system (1= %)

P = T—Pr(U;I) -P

_ U+r =
§ = Pr(-—_——N )-SB-3s, (5}
U = §B-gU - U,
I' = gU-7
Substituting (4) into (), setting ' = 0, and normalizing the totel core group

population N to ] we arrive at the following nonlinear “eigenvalue” problem:

AP = (P+1)-PrE)-P,

AS = Pr(E)-SB-s, (6)
AU = SB-U-4v,

M = gU-1.

Since A = 0 corresponds to the case where we have ¢ i
constant population size
then the steady states of system (6} are obtained by solving the system of



equations that are obtained when we set the LHS equal to zero. One steady
state is the disease-free equilibrium

(P8 U, I) = (=,1,0,0)
0

where rq = r(0). Solutions with E > 0 of the nonlinear system obtained
when the LHS of (6) equal to 0 require

r(E)= %

Therefore, they are solutions of the following system of three equations:

0 = 1-SB-3,
0 = SB-U-oU,
0 = oU-1.

From the last equation we have
I=ol,
and thus, the two remaining equations for 5 and U can be written as follows:
0 = 1-85-9580,
0 = pSU-(1+a)V, N
where
n= (ﬁ + db]d').

From the second equation in (7) we have either U = 0, leading to the disease-
free equilibrium U =0, I =0, § = l,or 7 8 =1 +o, leading to the
equilibrium

l4+e 1 1 4 4
§= n ' U_1+o n “1+e 7
with U > 0 if and only if > 1+ 0. On the average each untreated infec-

tive contributes chy new infectives and each treated infective contributes ¢'by
new infectives if introduced into a susceptible population, each with a mean
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infective period 1. From [ = oU, the proportion of untreated infectives is
?c—_'l_l—) and the fraction of treated infectives is 7 oy- This suggests

chy ok 7
= + =
Reo 1+ 140 1+¢

and in terms of Ry, we can write the endemic equilibrium population sizes
as

. _ 1 - m_l -

S =70 U'—(—;J—), r=1-§-vu, (8)
provided that Ry > 1. In addition, since ¢ > 0 we must have Ry < 5. Thus
there is an endemic equilibrium provided

1<Rp <. (9)

We now proceed to study the local stability analysis of solutions of the form
{4) of the system (3).

4 Local stability of equilibria

We begin by introducing the following re-scaled variables:

—-E s—i —E —_I. y
p_Nl '-Nn u"‘N, 1—N. e=u+i

We use these re-scaled variables plus the condition b = 1 so that the total
population size remains constant. Reformulating system (5) using these new
variables leads to the following system of equations:

= 4+ -r(epl,
B(1 - ¢} ~ u(o + pr(e)), (10)
oU - ipr(e)l

¢
P
o
&

with A

B = chou + diyi.
We first examine a simple case in which we assume that treatment has no
effect on the transmission rates of both infectious classes, that is, we assume
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chp = ¢'by = f. Now there is no distinction between treated and untreated
infectious and instead of the model (10) with u and i, we reduce (10) to the

two-dimensional system

F o= (t+p)[i—r(e)p],
4 Be(l—€) — epre}, (11)

e
with € = u + 4. Here 8 denotes the effective contact rate rescaled by the
length of the average sexually-active life of the population and is therefore a
non-dimensional quantity. For {(11), we have

n=ch+cbho=0(1+0a)

and the basic reproductive number Tri5y for (10) reduces to 4 for (11).

We shall now study the stability properties of the equilibris of system {11).
It is easy to verify that the first quadrant of the phase plane is an invariant
set and that every orbit of (11) is bounded. Thus it will follow from the
Poincaré-Bendixson Theorem that all stability properties are global.

We now look for equilibrium solutions of (11). Setting the RHS of (11)
equal to zero we obtain the unique endemic solution

. 1

P = C‘=1‘-'—,

r(e?)’ B
provided 1 < 8. If & < 1 we obtain only the disease-free equilibrium solution,
in this case, 7(0) = ro. Note that both equilibria are identical to those found

in the previous section and that in this case Ry = 5. The Jacobian matrix
of (11) is

~r{e)e B(l1—2e) - p(e% +r(e))
which when evaluated at the disease-free equilibrium gives the eigenvalues
—1—ro, 8- 1. Therefore, the disease-free equilibrium is unique and globally
asymptotically stable if and only f Rg < 1. If Ry > 1 there exists & unique
endemic equilibrium while the disease-free equilibrium is unstable (saddle
point).

[ 1 - r(e}1 +2p) -1+ pipk ] _ (12)
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A direct substitution into (12} of the values for the endemic equilibrium,
gives the Jacobian matrix J:

- -1 =21+ ]

TR —0- )R+ )+ Ro- 1

where p = gr; is evaluated at e, Ry = §, and in this simplified case 7 =
r(e*). By hypothesis, p < 0. The stability of J is determined by the roots of

1\2 + ﬂo/\ +a; = 0,
the characteristic polynomial of J where

s = r°+1+R0R:1(2R0+£)+1-R0 .
o = (r-+1)[R°R;‘(m+r—"_)-(m—u)-p(u%)(%—‘)

i

(F+H(Re-1) > 0.
Also ao > 0 if and only if (again, p < 0 by hypothesis)

Ra(r* +1) > =(Ro ~ 1){Ro + &},
From these conditions, it follows that for Ry in the interval

(-2, 00),
T
the endemic equilibrium is asymptotically stable. However, for
RO < _p/r.l

there exists numbers 1 < wy < oy < —p/r* such that for Ry € (wo,w;) the
endemic equilibrium is unstable. From (11) one can also see that the get
D={(pe: 0<p<=, O<e<l) (13)

is bounded and invariant under the flow generated by (11). Therefore, the
Poincaré-Bendixon theorem implies the existence of a periodic orbit within
L) which is the w-limit set of orbits in D. Thus, the following result has been
established:
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Theorem 1 Suppose p < 0. Then, whenever Ry < 1 the equilibrium point

- — l - —_
p - roa € —0

of (11) is unique and globally asymptotically stable. However, if Ro > 1 there
erists a second eguilibrium,

P = 1 =1 1
r(e*)’ Ry
which has the property that, for any initial conditions (pg,eq) in the set D
defined by (13), if

RO € (%vwl)

as defined above, then the equilibrium is unstable and there evists an attract-
ing periodic orbit which is the w-limit set of orbits in D. If, on the other
hand,

Ro € [—{;. +o0)

the eguilibrium is globally asymptotically stable in D,

In Figure 1 we present some numerical simulations illustrating the behavior
of the system when Ry satisfies the hypotheses of Theorem 1 which guarantee
the existence of a limit cycle.

5 Analysis of the full model

In this section we study the stability properties of the system (10) under the
assumption that treatment induces a change in sexual behavior resulting in
lowered infectivity of the treated infectious class, so that ¢y > ;. Actually,
our analysis does not make the assumption cby = c’b, used to obtain the
simple case (11) and thus requires study of the full three-dimensional system
(10). It is reasonable to assume (or at least to hope) that cho > ¢by, but this
does not enter into the analysis. We are able to treat analytically the system
{10) only in the special case o = 0 but have some numerical simulations for
o> 0.

12
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The system (10) has & disease-free equilibrium with u = 0,i = 0 and
= ;(10—), an endemic equilibrium (p*,v*,i*) given by

r o= 1/

' = 1 --E= (Ro_l)
e+l n (e+ DR

T o= ogu',

where ¢* = " + %, ™ = r(e"}, and, as before, 1 = chy + &by, Rg = ezt
The Jacobian J matrix of {10} at an equilibrium is

—(1+ pjr(e) —p(L + Tho)r’(e) —o(1 + p)r'(e)
—ur(e)  cho(l-e) =B~ (0 +pr(e)) ~upr'(e) dbi(l—e)— B~ upr'(e)
—ir(e) o —ipr'(e) —prie) — ipr'(e)

where r(e) = r{u +1), o b
% = E = T'(C) <0 -

for all u and 1.
At the disease-free equilibrium (%, 0,0), thus the matrix is

—ro—=1 ~P(O)L(1+1) —rO)E(1+1)
J= 0 Cﬁo -0=1 C’b;
0 c -1

IRy <1, that ig, if 5 < o +1, it is not dificult to verify via the Routh-
Hurwitz criteria that the eigenvalues of the matrix J have negative real parts
and thus the disease-free equilibrium is asymptotically stable.

To study the stability properties at the endemic equilibrium If Ry > 1,
we Jook at a special case. Suppose that we begin with a non-zero proportion
of treated infectious members and then cease treatment, making ¢ = 0. The
model becomes

b
|

= (1+p)l - r{e)s],
B(1 - ¢) - upr(e),
—ipr(e).

ﬁ\
]

(14)
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Now 1 = cby, Ro =7, and the endemic equilibrium is given by

Ll » - 1 e
=1/, c=1-—;, u =" =0

The Jacobian matrix J at this equilibrium is

=1+ p*)r(e”) —pH{1+p")r(e’) =p*{L+p")r(e")
—u'r{e"}
-1
The eigenvalues of this matrix are —1 and the eigenvalues of the 2 x 2 matrix
g [ —A+)E) P+ p)rE)
C=ur(e*) -t ~1—-u"p*r(e*) |’
The endemic equilibrium is asymptotically stable if and only if the determi-

nant of the matrix is positive and the trace of the matrix is negative. The
determinant is

m(l+p%)r(e’) > 0
and the trace is
=(L+p")r(e”) = mu* —u'p"r'(e”).
Since 7u" =5 — 1 and p'r(e*) = 1, the stability condition is

1y r'(e*)
) -
( n) r{e")
Thus the condition is obviously satisfied for 7 = 1and 7 — oo, but there
could be an intermediate range of = Ry for which the equilibrium is un-

stable; this depends on the form of the function r.
Therefore we have the following:

Theorem 2 Consider system (14). If

+r{e)+n>0.

Ro>w>1
then the infected state is locally asymptotically stable. If, however,
w>Ry>1

then the endemic state is unstable.

14

cho(l ="} —mu* — 1 - w'p'r(e) cbi{l —e”) ~ qu" — u'p*r(e*)
0

|

B & & & T & T S O BE B WO W WA W

We can integrate the lest equation of (14) so that
i(t) = f{t,u(t)),

where [ satisfies f(t,u(t)) — 0 as t — co. The limiting system {as ¢ — oo)
of (14) is then

P o= (1+p)l=-r{u)p,
v o= chou(l - u) - upr(u), (15)

which is exactly (11). Thus, the results of Theorem 1 hold and hence the
equilibria of (15) are isolated and finite in number, Furthermore, an appli-
cation of Theorem 1.5 in Thieme {1993a,b) for asymptotically autonomous
systems (see also Thieme 1952 and Castillo-Chavez end Thieme 1994) implies
that the following theorem holds:

Theorem 3 Let Q be the w-limit set of (14) and let

D={uwi: 0<ps=,

O<u<l, i=0)

Then
Qcbh.

Moreover, §2 equals the w-lmit sel of sysiem (15).

We have explored numerically the asymptotic behavior of the full 3-D
model for various values of the treatment parameter ¢ > 0. We were unable,
after several simulations for various ranges of ¢, to obtain periodic solutions.
Nevertheless some interesting results were observed. Figures 2 and 3 show
three dimensional plots of our simulations where we see that an increase in ¢
may generates a pronounced oscillatory approach to the endemic equilibrium.
This observation is also supported by the simulations described in Figures 4
and 5 where we show the time plots of the variables p (non-core population)
and i (the treated infectious population). Hence qualitatively different tran-
sient behavior for different values of ¢ is quite evident. For small # both p
and { approach their respective equilibrium values rather quickly; for interme-
diate values of o we observe strong overdamped oscillations before reaching
equilibrium values {these equilibrium values are reached only slightly later

than in the previous case). For large o the oscillations last for a long time

15
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and decrease in amplitude. Note however, that for intermediate and large &
values, the size of the proportion { is practically the same. However, we are
using re-scaled variables, and small differences at this level may correspond
1o large differences in terms of the original variables.

6 Analysis of a special case

To contrast our results with earlier published results as well as with the re-
gults of prior sections, we partially analyze a model that excludes the non-core
explicitly while including explicit forms for the (state-dependent) recruitment
and treatment rates. A model of this type with o = 0 has been studied by
Blythe et al. (1992b). The equations to be studied in this section are:

% = Ae~) _ Bs 48,

av U

g = BS-—(,u+U)U—oF,
U

E =N (p+2)1,

where S, U, I, and B, as well as the other parameters are defined as in (1).
For model (1) with & = 0 there are two equilibria whenever R > 1: the
disease-free and endemic states (Velasco-Hernandez and Hsieh, 1994). The
disease-free equilibrium is (A/u,0,0), and to prove the existence of the en-
demic equilibriurn we define the following re-scaled variables and quantities:
[ . B . _H
S‘-KS. U _KU‘ I -AI
and
b°=ﬂ°/“"! bl=ﬁ1/“a 4 =U/A,9z1+b’/p.,
where the new non-dimensional ‘time’, is as in Section 3

T = ut.

The re-scaled model now stands (/= £) : to.
U'=BS-0U-o}
I' = ¢’ ~ 01 ,where, as in Section 3

S =g _BsS—5,

U 7
B=¢)ﬁ+db1'ﬁ.
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For notational convenience we relabel the new state variables with their orig-
inal iabels. The Jacobian matrix of (16) at the disease-free equilibrium is

-1 -kh-a =h=-a
0 dJn-U—e db] ,
0 a -8

and expression (2) can be rewritten as

Ro= R+ok(R-1) (16)
with
=t
Alp +v)
and

R-1=1b/8, R-1=by/0.

Using the Routh-Hurwitz criteria one can easily show that whenever Ry < 1
then the disease-free equilibrium is asymptotically stable. For valuesof ¢ = 0
the model reduces to the one studied by Blythe et al. (1992b} for which
there may appear limit cycles whenever the value of the basic reproductive
number is large enough. Furthermore, the behavior of this model presents
some differences with the behavior of model (1): if o is positive and e is high
enough then cyclic behavior is also possibie.
To show the existence of an endemic equilibrium point whenever Ry > 1
we proceed as follows: Equate the LHS of (16} to zero and find
g B*5* ol/*
e Ve T an
where g* = exp(—a(I* + U*)/N"). Substitution of these expressions into the

definitions of N* and B* lead to a system of non-linear algebraic equations
whose fixed points are the equilibria of the model equations defining (16).
After some algebra we find that

.- By KA
F o= (1+B')(e+a)N-(b°+blm.)r (18)
and ‘ 19)
. _ g B cB*
N o= nE e e
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If we define
a(N) = bth
O+rc
then, since ;
.+U- _ B-g‘ o
N T TrBeroaN )
we have that

B'= %Ta(N') -1
which it implies that B* is positive only if Ro > 1 (Recall Ro > 1 is given by
(17)). Note that B* = 0 implies N* = g* = 1 and the substitution of B* = 0
into {19) renders the disease-free equilibrium which always exists.
Using the definitions of a and B given above, and dropping the super-
script * from the variables, we formulate the following equivalent system of
equations:

logg = mgm((a(m =-1}f+0)+1 +a/9),

a(N)g(1+ a/6)
(@aN)-1)#+ea)+1+0/8
System (21} can be reduced to the following single nonlinear aigebraic equa-
tion in terms of the total population N:

- a(N)(Q +0/6) ~CNY
{aN)-1)@+0o)+1+0/6

(20)

(21)
where a
G(N) = W((a(m ~1)(8+0) +1+0/8).
Equation {22) has the form
N=F(N}
where F satisfies
lim F(N}=¢"/8, lim F

N=t ' Newso dN !

dF
Moreover, — < 0, and the second derivative of F with respect to N tends
to zero es /V approaches infinity and it remains bounded when N goes to
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zerc. These properties imply the existence of a unique endemic equilibrium.
We summarize our results as follows:

Theorem 4 Let Rg > 1. There exists a unigue endemic equilibrium point
Jor (16}, nemely, the fized point of

N =F(N)
where F is given by (21).

Note that as a — oo, the solution N of the above equation goes to zero,
implying that the sizes of 5°, U* and J* also go to zero.

Simulations show the existence of periodic stable solutions. Their appear-
ance may be controlled by the size of the parameter & Large values of a,
as mentioned in the last section, lead to very small values of the coordinates
of the equilibrium, but the amplitude of the periodic orbit seems to increase
as the value of a increases. The existence of periodic orbits is also appears
to be largely independent of the treatment rate o. Figure 6 shows the re-
sults of simulations for two different values of r, one before and one after the
bifurcation that gives rise to the periodic solution.

7 Conclusions

Simple models that take into account disease level effects on the recruitment
rate of susceptible members into the core population as well as the effects
of the treatment rates on disease dynamics exhibit more complex dynamics
then those that exclude these eflects (but see Heiderich et al. 1994). It is
therefore important to try to sort out the time scales at which behavioral
changes and treatment effects begin to impact disease dynamics and public
policy. Obviously our models are toc simple to be taken as generic of real
world dynamics. However, their study provide an important warning against
ignoring behavioral factors in the study of disease dynamics as well a5 on the
evolution of STDs.

In this article, the recruitment rate which it is assumed to be a function of
the prevalence of the disease within the core group can trigger the appearance
of periodic solutions through Hopf bifurcation. Models that exclude explic-
itly the time evolution of the non-core population {which implicitly provides
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new recruits into the core group) may or may not be capable of exhibiting
periodic outbreaks as we vary the treatment rate. Qur limited numerical
simulations suggest that sustained periodic behavior may in fact not be pos-
sible. However, when we take into account the population dynamics of the
non-core populations then the treatment rate plays a more important role.
I fact, variations on the treatment rate lead to at least drastic changes in
the transient behavior of solutions. In fact, high or intermediate treatment
rates may induce damped oscillatory approaches to the endemic equilibrium
with slowly decreasing amplitudes. The appearance of forward and backward
bifurcation phenomena as the magnitude of the basic reproductive number
increases is illustrated in the model of section 4.1. Similar phenomena have
been explored by Hadeler and Castillo-Chavez (1994) and Feng and Thieme
(personal communication). Qur conjecture is that our full 3-D model ex-
hibits similar behavior, but we have no formal proof of it. Our numerical
simulations are inconclusive but suggestive.

The results presented in this paper are an attempt to explore the dynam-
ics of infectious diseases in non-isolated core groups. We have emphasized
the qualitative properties of models that incorporate into their Famework
state-dependent recruitment and core-specific treatment rates. Obviously
the models studied are too simple to be used in the ‘real’ world. However,
we believe that their study will continue to provide deeper paradigms that
may help us understand the dynatnics of diseases such as HIV/AIDS that
exdst and evolve in complex social environments.
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Figure captions

» Figure 1 Limit cycle of equation (17) for the parameter values 3 = 2 1
and r{e) = exp(—xe), with x = 5.0.

e Figure 2 Three-dimensional plot of system (16) with the parameter
values B = 2.0, §; = 0.1, r(i + u) = exp(x{i + u) with x = 3.0 and
¢ =05

» Figure 3 Same as before but with 5, = 1.8, k =8 and ¢ = 0.7.

¢ Figure 4 Time plot of solutions for the total popuiation in system (16)
with parameters §y = 2.0, f) = 0.1, x = 8.0 and & range of values of o.

o Figure 5 Same as before but now plots are shown for the infectious
compartment..

* Figure 6 Simulation of equation 3 with the parameter values 8, = 33,
S =32,6=43,0=05and r =9 (top graph) and r = 8.8 (bottom
graph). The equations were simulated using an equivalent system for
the variables T' (total population), § and I.
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