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heterogeneously mixing contact structures
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1991 Mathematics Subject Classification: 92D30.

O .

1. Introduction

McFarland (1972), Parlett (1972), and Pollard (1973) two decades ago but with very limited impact. The
HIV/AIDS epidemic attracted theoreticians® attention to the study of the effects of social dynamics on the
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2 C. Castillo-Chavez, S. Fridman, S.-F. Hsu Schmitz

approach is flexible and can be applied to the study of disease dynamics, frequency-dependent predation in
heterogeneously mixing populations, the transimission dynamics of cultural traits, and general demographic
processes (Castillo-Chavez et al 1993b). In addition, we have made serious efforts to connect these models
to data (Hsu Schmitz and Castillo-Chavez 1993).

In this paper we present a framework of stochastic pair-formation models that incorporate general con-
tact/social structures. Simulations are conducted using two sets of partnership preferences to begin to address
better their effects on variability of average behavior of the models. We organize this paper as follows: Section
2 introduces the approach to modeling contact/social structures; Section 3 outlines the implementation of
this approach in an stochastic model; Section ¢ presents the results of extensive simulations of a demographic
two-sex stochastic model and compares the dynamics obtained from random mating with those obtained

from non-random mating; Section 5 summarizes our results and outlines future work in this area.

2. The role of contact/social structures °

The contact or social structure of a populstion plays a fundamental role in the transmission dynamics of

diseases, cultural traits, genetic traits, etc. It has been modeled by assuming that the rate of transmission

of the trait in consideration is directly proportional to those that have the trait and to those that do not

(Anderson 1982; Anderson and May 1991; Bailey 1975; and references therein). The assumption that the

rate of new “cases” (the incidence} is proportional to the product of “susceptibles” and “converts® (those -
infected), that is, the mass-action law, is usefu] but only in very limited circumstances. It is not very useful,

for example, for the modeling of sexyally transmxtted diseases (STD's) if the interacting subpopulations vary

in gize over time. Atﬁomughmnlynisdmmpﬁon;indqdmgthmimphcdyimolvedhthemmwtbn
lawinepidemiologyhubmcarriedoutinauystemaﬁcfashion (Busenberg and Castillo-Chavez 1989,

1991). ' :

The importance of the contact process on frequency dependent systems was recog;nzed by Ross as early
as 1911 in his work on malaria. The contact/social structure of the population must respond to demo-
graphic/epidemiological changes in the population. A flexible framework for the.‘x'nodeling of population
interactions is being developed because several questions of theoretical and practical importance can not be
properly studied under the existing framework. Some successful applications include those to food web dy-
namics (Velasco-Hernandez and Castillo-Chavez 1993), and those to cultural dynamics (Lubkin and Castillo-

Chavez 1993).
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Stochastic models with contact structure 3

Busenberg and Castillo-Chavez (19889, 1991) defined the contact/social structures through mixing/pair-

formation matricies. In addition, they have provided a useful characterization of these matrices, which

constitutes the basis of our further analysis, Consequently, we must introduce this framework. We begin
with some needed notation and definitions: -

Pi;(t) = probability that a male in group i mixed with a female in group j at time ¢
given that he mixed with somebody;
.@5i(t) = probability that a female in group 7 mixed with a male in group ¢ at time ¢
given that she mixed with somebody;
T7{t) = number of males in group i at time ¢;

I;-f (t} = number of females in group j at time t;

b = average (assumed constant) number of female partners per group-i male per time unit,
= per capita pair-formation rate for group-i males;
b{ = average (assumed constant) number of male partners per group-j female per time unit,

= per capila pair-formation rate for group-;j females.

Definition. (pis(t), ¢;i(t)) is called a mixing/pair-formation matrix if and only if it satisfies the following
properties at ai] times:
(A) 0<p;(t) <1, 0<gu(t)<1.
(A2) Elp,-,-(t) =1 for all {, and Z:lq_,-;(t) =1 for all 5.
(A) BT 06) = T () for a5, 5.
(A4) If for some i and/or some j, we have b:"bff;’"(t)fl}’ (t)=0 forsomet, then we define
Pyy(t) = gu(t) = 0.

. The only separable solution to (A1)~(Ad) is the Ross solution given by (®;(2), Tu(t)), where

| HTI) e
pj(‘t) = E%;W' g:(t) = W.

Moreover, all solutions to (A1)-(A4) can be represented as multiplicative perturbations to the Ross solution.
Explicitly,

RI(t)R (1)

m(t)R(t)
Pij(t) = By(t) REOR, +¢,’..-J .

RO CRAC) N [W
k

=1

l=x]
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4 C. Castillo-Chavez, S. Fridman, S.-F. Hsu Schmitz v

where ¢]} denotes the degree of preference that males in group i have for females in group j, ¢§‘- denotes the

degree of preference that females in group 7 have for males in group i. In addition, the following relationships

must be satisfied:
0<RP()=1- gﬁk(t)m <1,
o< Rit) =1~ @), <1,
and -
m ! m 1 1 1
5=0u+ KOO ISTHR0 ™ T a0

iml kw1
We observe that if ¢7; = ¢ (constant) and ¢Jf-‘- = d (constant) for all 7 and j, then the general solution reduces
to the Ross solution which corresponds to random heterosexual mixing. )
Based on the above definitions and characterization, in the next section we introduce a stochastic analog
to the dete:minisgc epidemic model presented by Blythe et al (1991). The applications of the mixing/pair‘-‘
formation approach of Busenberg and Castillo-Chavez to stochastic models for sexually transmitted diseases

that follow pairs are also discussed.

3. Stochastic pair-formation models

In this section, we formulate & stochastic pair-formation epidemiological model by using the approach that
is common to interacting particle systems (for details, see Luo and Castillo-Chavez 1993; Luo et al 1991).
Extensions to model more complex scenarios should be quite evident from the following description.
‘We define
X = {0,100 L}{0,11{0, 1, cos Nx{0, 1N{0}x{0, 1}x {0} {0, 1},

and consider the explicit stochastic process

£:X —{0,1,2,..}, t20.

,.\

Let = (i,u;j,v) € X, where i and j denote the groups of males and females, u and v denote the epidemi-

ological statuses of males and females, respectively. If we consider a STD that does not have a long latent

period, does not provide permanent immunity, and does not cause significant mortality (e.g., gonorrhes, see
Hethcote and Yorke 1984), then the possible values of 1 and v are either 0 (susceptible} ur 1 (infected). For
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i > 0 and 7 > 0, r gives the type of pair, that is, the male is from group i with epidemiological status u
and the female is from group 7 with epidemiological status v. If i = 0 but j > 0, then z represents a single
female in group j with epidemiological status v {the valus of u is not relevant) and therefore we can define
z = (0;7,v) = (0,0; j,v) = (0,1;4,v). Similarly, if j = 0 but i > 0, then z represents a single male in group
i with epdemiological status © and again we can define z = (4, u;0) = (1,1;0,0) = (i,1;0,1). Note that the
case of i = 0 and j = 0 is not included in the domain X. Consequently, the stochastic process £(x) gives
the number of pairs of type z at time ¢ if i > 0 and j > 0; it gives the number of single males of type T at
time tA if i > 0 and j = 0; and it gives the number of single females of type z at time t if i = 0 and 7 > 0.
To complete the characterization of £,(z), we define S = {0,1,2,.. J¥ andlet c: S x5 — (0,00) be a
real-valued function that models the flip rate. We view {{, : ¢ > 0} as an S-valued Markov process with flip

rate ¢(.,.), i.e., if & = £ for some ¢ > 0, then c(€, ) denotes the instantaneous rate at which £ may change

to state 5. Explicitly,
© Prob(¢en = 7lée = €) = c(6,mh+o(h), VE20. a’

The more specific definition of fiip rates is as follows: for £ € S, AC X, BC X, and ANDB =0, we define
£A(z) € S as ’
Ez)+1 fzeA

£p(z) = {E(z)—l fre B;
&) otherwise.

Thus, the system {¢;} consists of a series of changing elements in the set S, which is the set of all functions
on X. The dynamics of the system is described by the rates {c{¢,7) : £ #9, £,7 € S} at which the system
changes. '

We assume the existence of an underlying mbxing/pair-formation matrix (pis(£:), gsi(€)) as described in
Section 2. Since £ is a function of ¢, the mixing matrix is also s funtion of ¢. We further assume that paired
individua.lsdonotboi:férothupmbefomtheywhtheﬁmetmmmym
pairs, pairs may dissolve, the disease may be transmitted within pairs from an infective to a susceptible, the
infectives may be cured, etc.

We use the indices m and f to identify the parameters associated with males a.nci females regardless of
their epidemiological status, and use M and F to characterize those parameters only associated with infected
males and females, respectively. Then the flip rate ¢(.,.) is calculated as follows:

a) Pair formation

Py Y
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Fori>0,j >0,
Luiiv . E( .r ) 0)
o6 € uo) = Y30 g 5 - ;(1-, )
= p™E(T ue " §(0;5,v) :
=G wOrs s + €@ a1 =

b) Pair dissolution (¢ denotes the constant pair dissolution rate)

Fori>0,7>0,

C(f, 6((i'u:0)’(o;jOU)) = Uﬁjf(i! u; g, U);

Luisv)
c¢) Transmission (6 denotes the constant transmission rate)

Fori>0,7>0,

e(6 o) = 6p€(,0;0,1),  el€, €t Ta)) = 6arE (i, 1;5,0)

d) Recovery (7 denotes the constant recovery rate)
For i > 0, 5 > 0, the recovery flip rates for one paired individual are

o6, €500 = 7€, 0;5,1), (€ Elra o)) = Tak (i, 1:4,0),

(& E1IN) = 1r(i, 155,1), (& €T ID) = Tm€(i, 1:5,2);
and the 8ip rate for both individuals in pairs is
o€, 65100 = Trm€ (i 15, 2);
while for single infected individuals (j = 0 or § = 0) we have |
e, 65EToN) = €6, 1;0), o€, EDID) = ypE(0: 5, 1);
¢) Removal (u denotes the constant removal rate from sexual activity)
Fori>0,j>0,

o€, € = BrE(b B3 5,0), el o)) = B (i 5 5,0);

while for single individuals (j = 0 or i = 0) we have
(£, e(i,u;o)) = pm€{i,4;0), c(§, 5(05.&)) = pJE(oijrv); )
f) Recruitment (A denotes the constant recruitment rate for susceptible singles)
Fori>0,j=0,

(6, €409 = AT,

O
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and fori=0,35 >0,
0;5.00y _ At
c(6, €7 = Aj;

g) Other

For any other 1 # £, we assume c(£,7) = 0.

h) (&, &) = - %C(E.n)-
n

This concludes the characterization of our stochastic epidemiological model with pairs. In the next section
we outline the simulation procedure of a general stochastic process which includes the stochastics process
described in this section. In addition, for illustrative purposes, we provide the results of several simulations

of a particular case—the case when there is no infection.

N o

4. Simulation of the stochastic process {£¢ : ¢ = 0}

We first describe the general approach to simulating jump Markov processes. From the construction of the
flip rates we know that

(€)=Y clé,n) < 0.

ki3
If we let the sequence 0 = pp < p1 < ... denote the jump times of the process, then 7 = pn — pn-1 has an

exponential distribution with rate ¢({,,_, ). Thus, the process can be simulated as follows:

1) First, set the initial state & and assume that a sequence of n jump times 0 = po < ;1 <...< pnand
their corresponding states £,,, 1 < i< n, have been determined.

2) Get Tp41 from exp{§,, ) and let pnyy = pn + Tt

3) Set £,,,, = 1 with probability c({a.,1)/e{(,.)

4) Define §; = £, for pp €t < pnt1-

We procsed to simlate the stochastic model described in Section 3 in a very special situation. We assume
that the infection rates §, and 5 are equal to zero or, equivalently, that there are no infected individuals in
the populat.ion. Hence, the recovery rates vy, and <z have no meaning to us and are also excluded from the
purely demographic model: individuals form and dissolve pairs. In addition, there is constant recruitment

into single groups and constant removal from all groups.

£ .‘7_Mc!”_‘»?’t_’wrﬂ_?_pv:ﬂ-, i o S a4 - e i ot o 4 e e vt e e Yt e L AR
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Table 1. Initial group sizes and parameters for single males and femnales used in stochastic simulations

Singie Group Recruitment Pair Formation Removal
Group Size Rate Rate Rate
m 10000 1000 3.50 0.1
ma 8000 900 3.00 0.1
m3 8000 800 2.50 0.1
my 27000 2700 3.50 : .01
h 20000 2000 2.50 0.1
Iz 10000 1000 2.45 0.1
fa 5000 500 2.30 0.1
fa 35000 3500 2.59 0.1

Simulations were carried out using four groups of single males {m;, ma, M3, my) and four groups of
single females (f1, f2, fa, fa), which result in 16 possible péiring types (m1f1, mifa, ... maf1, m2f2, . .,
mafs). The initial sizes, rates of recruitment, pair formation and removal of single male snd female groups
are presented in Table 1. The preference matrices are assumed to be {47} = {¢"} =diag{d, d,d,d}, where
d=00r1.'I'he1mtialnumbaofpursmconstrmnedtowofornllposslblepurmgtype&Ramovalm
for paired individuals—just as those for singles—were held constant at 0.1. For this investigation, the pair
dissolution rate, o, is fixed at 5. A set of runs with 500 realizations each was allowed to gimulate the process
up to time ¢ = 6.2

We first describe the results for singles. For d = 0, the mean population sizes of 500 realizations stabilize
at t == 0.6 (Figure 1, left panel). For d = 1, the mean population sizes also stabilize at about the same time,
but the stable mean population sizes are smaller than that for d = 0, especially for m4 and f4 (Figure 1,

right panel). Thestandnrddevmhonsmaeasewithtimebrangmupsinanmﬂuwayforbothnlmuofd
meptthatthmhmomﬂmmemdj4whend=0 (Figure 2). “Thus, the coefficients of variation
dminmwithtimemdthmefordnﬂmmﬂlexthmthueﬁord:l.

The mean number of pairs of 500 realizations also stabilize at t = 0.6 (Figure 3). Compared with those for
d = 0, the stable mean numbers of pairs of disgonal types, i.e., m1f1, m2f2, m3f3, and mAf4, are larger,
and those of other types are smaller for d = 1. Thmmultoonﬁmsthatnon—wodmthehypothmed
diagonal preference matrix provides & like-with-like mixing pattern, but its :mpact depends on &. The

1 All simulations were conducted on Quadra 950 and Quadre 700 Macintosh computers. We used & custom-
developed Pascal program optimized for the specific design analyzed here (with four single male groups, fow
single female groups, and 16 pairing types). [ypical simulations took about 4 hours to complete.

il T lot Mok it berbatudc il ST E R
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standard deviations behave in a similar way except that the difference between d = 0 and d = 1 for those
non-diagonal types are very small (Figure 4). Unlike singies, the standard deviations for pairs don't change
so much with time after ¢ = 0.6 except for the type m4f4. Hence, the coefficients of variation fluctuate within
8 narrow range after t = 0.6. When d = 1, the diagonal types have smaller coefficients of variation, especially
for m1f1, m2f2, and m3f3; but the non-diagonal types have slightly larger coefficients of variation. Figure
5 shows the patterns of mean number of pairs, standard deviations and coefﬁcients of variation at timet =6
for d = 0 and d = 1. It is evident that the value of d plays an important role in the contact structure.

The initial distribution in proportions of groﬁp sizes for single males is (19%, 17%, 15%, 50%) correspond-
ing to the four groups, and for single females is (20%, 14%, 7%, 50%). When d = 0, the final distributions
of single males and females are equal to the initial distributions. In addition, for paired individuals, the final -
distribution of female partners within each male group is the same as the initial distribution of singie females;
and the final distribution of male partners for each female group is the same as the initial distribution of sin-
gle males (Figure 6, top panel). This is because d = 0 represents random mixing. Hence, if individuals choose
their partners at random, then the final distribution in proportions of who-paired-with-whom is not only
random but identical to the initial distribution (the Ross solution). When d = 1, we see a different picture
(Figure 6, bottom panel) as expected: the diagonal proportmns increase a.nd other proportions decrease.

According to properties (A2) and (A3) in Section 2, at all times, E pii(t) = 1, E gu(t) = 1, and
BT ()pis () = b T (£)aji(t) for 4, § = 1,2,3.4, where T (¢) and 7Y (t) are the pumber ofsingle males in
group i and single females in group j at time ¢, respectively. Hence, summing over i and j on both sides of
the last equation yields

):M"‘(z) = ZD’"T‘“(t)m(t) ZZ: T Baslt) = ):b’:r“ ®-

fa=] jml jm] ful Jmi
4 4
However, for both values of d, the simulation results show that 3 py(t) and 3 gsi(t) are not exactly equal
Jm=1 =]
4 - 4
to 1 (but not too far off), and that }:b;"ﬂ}"‘(t) and zb;zg(t)mnocequuwhg»o.m.iso,m

ratio of }: HTf(t) to }; B T™(t) sharply increases with time before ¢ ~ 0.5, then fuctuates between 1.18
md120 mdﬁnallymbdmesatnboutllg ford=1, therntmalnoinmamthhumebeforetsso.ﬁ then
fBuctuates between 1.20 and 1.24, and finally stabilizes at about 1.22 (Figure 7). One posaible reason for this
inequality is that the jump Markov process used for our simulation counts events by integers. Thus, there
is never a fraction of any event occurring during the time penod between two consecutive events, which is
not true for processes in which there is continuous change. Thus, it appears that the biases introduced by
the jump Markov process during the initié.l'stages of the simulation are preserved for all future times.
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5. Conclusions

In this article we have revisited a general stochastic framework for the modeling of contact structures
in biology and epidemiology. An application .to demographic models that follow the dynamics of pairs is
provided. This framework is so flexible that further applications to other areas of biology, sociology, and
demography are possible (Cestillo-Chavez et al 1993b}.

This research represents our initial efforts in understanding the role of social structures in demography
and disease dynamics where stochasticity and partnership preferences play a major role. In the past, most
deterministic models assumed & fixed social/behavicral structure, while most stochastic models used the
mass-action law. The study of the transmission dynamics of HIV highlighted the limitations of some of
these aﬁproach&s. ‘We have observed a large number of theoretical advances over the last few years (Castillo-
Chavez 1089; Jewell et al 1991; Anderson and May 1991; and Hethcote and Van Ark 1992). However, we have
just begun to understand the effects of changing preference parameters in contact structures in population
dynamics. .

The simulation results confirm that non-zero diagonal elements in the preference matrix are associated
with like-with-like mixing patterns. If random mixing is assumed, then the final mixing proportions are
the same as the initial proportions of singles in different -groups, i.c., the Ross solut.ion. Simulation results
obtained from using different initial conditions and parcmeters are provided by Castillo-Chavez et al. (1993a)
for d = 0. The effect of other types of preference matrices (non-disgonal) will be explored in further studies.
To reveal the relationship between stochastic and deterministic pair-formation processes, the simulation of
an snalogous deterministic model is being conducted. In addition, we are also trying to understand the
underlying relationship between the male and female preference matrices, {¢7} and {#4), in 2 two-sex

mixing population.
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Figure 1. Number of Singles, by Sex and Class. Simulations with ¢ = 5.0,
‘ t <= 6.0, 500 Reallzations, and d = 0.0 (Left) or d = 1.0 (Right).
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