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Asymptotically autonomous epidemic models

1. Introduction

Sometimes mathematical models in epidemiology can be formulated as systems of
autonomous differential equations that can be rewritten as smaller asymptotically au-
tonomous systems with a limit system that is considerably easier to handle than the orig-
inal one. Under which conditions do the solutions of the original complicated system have
the same asymptotic behavior as those of the easy limit system?

A model of the sort above has been considered by Blythe, Cooke, Castillo-Chavez
(preprint), for the spread of a sexually transmitted disease. As they assume that indi-
viduals may change their behavior according to their perceived risk of being infected, the
incidence in their model is an unspecific function of the numbers of susceptible, infective,
and recovered individuals. They conjecture that, under a quite general assumption for
the incidence function, the disease dynamics converge towards an equilibrium. Their con-
jecture is based on the fact that their three-dimensional system of autonomous ordinary
differential equations has a two-dimensional limit system for which periodic orbits can be
ruled out. The theory available so far (in particular Markus, 1956) 'was not sufficient to
provide a rigorous proof, however, because their assumption (unless replacefl by a much
more restrictive one) does not imply the existence of a unique endemic equilibrium that,
in addition, is locally asymptotically stable. This state of affairs (which also occurs in
ecologic models) motivated us to revisit the theory of asymptotically autonomous differen-
tial equations and, more generally, semifiows. Thieme (1992, to appear) presents sufficient
conditions for the large-time behavior of solutions of asymptotically autonomous systems
to be the same as the large-time behavior of solutions of their limit systems. (See Section
3 for a summary.) Examples illustrate that this is not necessarily the case in general.
In particular, a Poincaré-Bendixson type trichotomy holds for planar asymptotically au-
tonomous ordinary differential equations which we will use in Section 3 of this paper to
prove the above-mentioned conjecture in Blythe et al: (preprint). To illustrate the range of
application, in Section 4 we incorporate multiple strains of infectious agents which induce
total cross-immunity (see Saunders, 1981, and Bremermann, Thieme, 1989). In Section
5 we show convergence towards equilibrium for an epidemic model where the incidence
depends on the number of susceptibles and infectives in a more standard way, but where
the immunity period is arbitrarily distributed leading to an asymptotically autonomous
integro-differential equation. The limit equation has been considered by Stech and Williams
(1981) and is quite peculiar because convergence towards an equilibrium does neither follow
from planar ODE theory (it is an infinite-dimensional problem), neither via a Lyapunov
function, nor via monotonicity methods, but via a transformation to an integro-differential
equation that is handled by frequency domain methods (see Londen, 1975, and Gripenberg,
Londen, Staffans, 1990, Chapter 17). Asymptotically autonomous differential equations
where the limit system has a Lyapunov function have been considered by Artstein (1976)
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in the case of ordinary, and by Ball (1978) in the case of partial differential equations.

The reader who is just interested in the epidemiological contents may skip Section 2
and read Sections 3, 4 and § up to the formulation of the main results.

2. Asymptotically autonomous differential equations and semi-
flows

L. Markus (1956) published an often quoted (and sometimes misquoted) paper on
asymptotically autonomous differential systems where he considers ordinary differential
equations

(2.1) z = f(t,z),
(2.2) v=g®),
in R™. Equation (2.1) is called asymptotically autonomous — with kimit equation (2.2) —
if
flit,z) - g(z), t— oo, locally uniformly in z € R™,
ie., for z in any compact subset of R®. For simplicity we assume that f(¢, ), g(z) are

continuous  functions and locally Lipschitz in x. The w-limit set w(to,zo) of a forward -
bounded solution z to (2.1), satisfying z(ts) = zq, is defined in the usual way:

y € w(to,zo) <= y = lim z(t;) for some sequence t; — oo (j — o0).
j—voo

Thieme (1992, to appear) extends the Poincaré-Bendixson type dichotomy proved by
Markus (1956, Theorem 7) to the following Poincaré-Bendixson type trichotomy:

Theorem 2.1. Let n = 2 and w be the w-limit set of a forward bounded solution = of the

asymptotically autonomous equation (2.1). Assume that there exists a neighborhood of w

" which contains at most finitely many equilibria of (2.2). Then the foHowjng trichotomy

holds:

(i) w consists of an equilibrium of (2.2).
(ii) w is the union of periodic orbits of (2.2) and possibly of centers of (2.2) that are
surrounded by periodic orbits of (2.2) lying in w.
(iii) w contains equilibria of (2.2) that are cyclically chained to each other in w by orbits
of (2.2).
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In the third possibility, the w-limit set contains homoclinic orbits (phase unigons)
connecting one equilibrium to itself and/or phase polygons with finitely many sides (con-
necting equilibria) all of which are traversed in the same direction. More precisely we have
finitely many equilibria ey, ..., e, of (2.2) in w and functions y; : R — w,j=1,...,m,
that solve (2.2) for all ¢t € R such that the following holds:

Forj=1,...,m, yj(t) = e; for t — —occ.

Forj=1,...,m—1, yj(t) = ej41 for t — 0.

ym(t) — €, for t — co.

If m = 1, then y:1(t) — €1 for t — oo (homoclinic orbit).

Under the assumption that the solution z of (2.1) does not intersect itself and under
a slightly different assumption of asymptotic autonomy, Klebanov (preprint, Theorem 3.1)
gives a more precise description of the w-limit set of z than the one in Theorem 2.1. Firstly,
centers do not occur in possibility (ii) and, in possibility (iii), every point in w that is not
an equilibrium of (2.2) lies on an orbit connecting two equilibria of (2.2). ‘

In the applications to come, we have not been able to show that the respective solutions
to (2.1) do not intersect themselves. The existence of cyclic orbit connections of equilibria
in possibility (iii) is crucial for the Dulac (or divergence) criterion to rule out possibilities
(ii) and (iii) such that convergence towards an equilibrium follows (see Hahn, 1967, e.g.):

Corollary 2.2. Let X be a subset of R? such that any equilibrium of (2.2) in X is the
only equilibrium in a sufficiently small neighborhood. Further assume that there exist a
subset Y of R? and an open simply connected subset D of R?with the following properties:

e Every bounded forward orbit of (2.1) in X has its w-limit set in Y.

e All possible periodic orbits of (2.2) in Y and the closures of all possible orbits of (2.2)
that chain equilibria of (2.2) cyclically in Y are contained in D.

e g is continuously differentiable on D and there is & real-valued continuously differen-
tiable function p on D such that the divergence of pg,

V - (pg)(z1,22) = 5%(;091)(-'31,3?2) + 52'—2‘(992)(31,32),

is either strictly positive almost everywhere on D or strictly negative almost every-
where on D.

Then every bounded forward solution of (2.2} in X and every bounded forward solution
of (2.1) in X converges towards an equilibrium of (2.2) as time tends to infinity.

If the solution z(t) to (2.1) satisfying z(¢o) = z¢ is denoted by ®(t,to,Zo) and the
solution y(s) of (2.2) satisfying y(0) = yo is denoted by Q(s,y0), then & is an asymptotically
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autonomous semiflow with autonomous limit semifiow © in the following sense:
(2.3) ®(t; + 35,t5,75) — 6(5,z), j — oo,

for any three sequences t; — 0o, s; — s,z; — = with elements Z,z; ER™,0< 5,85 < o0,

We now consider abstract continuous semiflows, i.e., continuous mappings ® : Ax X —
X, where A = {(t,3);t0 < 5 <t < oo} and X, d is a metric space, such that

®(t,s,8(s,7,2)) = B(t,rx), t>s5>r > tg,
®(s,8,1) =z, s2ty, 7€ X.

Further we consider continuous autonomous semiflows, i.e., continuous mappings O :
[0,00) X X — X satisfying

6(t,8(s,z)) =O(t +s,2), t,s>0
8(0,z) =z, z € X.

For simplicity we have implicitly assumed that the semiflows are defined for all forward
times.

In the following we assume that & is an asymptotically autonomous semiflow with
limit semiflow 8, i.e., that (2.3) holds. :

We recall that a subset M of X is called forward invariant under ¢ (or forward &-
invariant) if and only if $(¢,s,z) € M whenever t > s 2 to,z € M. Forward O-invariance
is defined analogously. M is called 8-invariant if and only if M is forward ©-invariant and
for any z € M,t > 0, there is some y € M such that £ = e(t,y).

Let a point (s,2), to < s < 00,z € X, have a pre-compact (forward) orbit
{®(t, 5,2);t > s).

Then the w-®-limit set of (s,z), we(s,z), is defined by

wa(s,z) = n {®(@, s,2);t 2 7}).

T2s

In other words, y is an element of ws(s,z) if there is a sequence 8 < t; — oo, j — o,
such that ®(¢;,s,2) — y, § — o0. We have shown in Thieme (1992, Theorem 2.5) that
the w-®-limit set of a pre-compact forward orbit is non-empty, compact, connected and
attracts the orbit and, most importantly, is invariant under the limit semiflow B,

We recall that a ©-equilibrium (or fized point) is an element e € X such that B(t,e) =¢
forallt > 0.
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If we(s,z) = {e}, then e is a ©-equilibrium and &(¢,s,z) — € for t — oo, and we say
that the (forward) ®-orbit of (s, ) converges to e.
The basin of attraction (or stable set) of a ©-equilibrium e is denoted by

W.(e) = {x € X;O(t,z) — e,t — 00}

Thieme (1992, Theorem 4.1) shows the following infinite-dimensional version of Markus’s
Theorem 2 (1956).

Theorem 2.3. Let e € X be a locally asymptotically stable equilibrium of 6. Then every
pre-compact forward ®-orbit whose w-®-limit set intersects its basin of attraction W,(e)

converges to €.

We mention that Thieme (1992, Corollary 4.3) also considers the situation where
all forward orbits of the limit semiflow are attracted by more than one equilibrium. A
condition is given under which the same holds for all forward orbits of the asymptotically
autonomous semiflow. In order not to introduce too much terminology we only mentjon a

special case.

Theorem 2.4. Let e1,ez € X be two different equilibria of ©. Assume that X is the
disjoint union of two sets X1, X, which are both forward invariant under ©. Further
assume that, for j = 1,2, e; € X; and that every pre-compact forward ©-orbit starting in

. X; converges towards e; and that ez is locally stable for © and that e, is locally stable for
the restriction of © to X,. Then every pre-compact forward ®-orbit converges to either e;
or es.

Proofr We first show that, for j = 1,2, €; is an isolated compact ©-invariant set. See
Thieme (1992), for the terminology. It is sufficient to show it for ;. Assume that {e1} is
not an isolated compact ©-invariant set, i.e., that any open neighborhood U of e; contains
a compact ©-invariant set My that is different from {e;}. Choosing U small enough we
can assume that e; ¢ U. Hence My C Xj. Otherwise there would be an orbit starting in
My that converges towards ez. This orbit would leave U and in particular My violating
the invariance of My. Let x € My,z # e1. As My is compact, there is a full orbit
through z in My whose o-limit set & is compact, non-empty, invariant and contained in
My C X;. As e, is locally stable for the restriction of 6 to X, e; € a. As o is non-empty
and invariant and is contained in X}, there is an element in X; whose forward orbit is not
attracted to e, a contradiction.

Secondly the two equilibria cannot be chained to each other in a cyclic way because ez |
is locally stable such that there is no orbit connecting e; to e1. Hence the assumptions of
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Corollary 4.3 in Thieme (1992) are satisfied and any pre-compact forward ®-orbit converges
towards a ©-equilibrium, i.e., towards either €1 or es.

Theorem 2.4 does not specify the domains of attraction of the equilibria e; and ez
for the asymptotically autonomous semifiow. We add a condition that trivially guarantees
that they are the same as for the limit semiflow.

Theorem 2.5. Let e1,e3 € X be two different equilibria of ©. Assume that X is the
disjoint union of a closed set X 1 and an open set X, which are both forward invariant
under © and ®. Further assume that, for j = 1,2, ¢; € X; and that every pre-compact
©-orbit starting in X; converges towards ¢; and that e; is locally stable for © and that e,
is locally stable for the restriction of © to X1. Further assume that e; is a weak repeller for
the semiflow &, i.e., no forward $-orbit starting in X converges to e3. Then, forj=1,2,
every pre-compact forward ®-orbit starting in X, converges to €.

Proof: By Theorem 2.4, pre-compact forward orbits of & converge towa.rds either e; or e;.
As X is closed and forward invariant under ¢, any orbit starting in X converges towards
e1- As e is a weak repeller for X, any orbit starting in X, converges towards es.

The proofs in Thieme (1992, to appear) rely on proving Butler-McGehee type lemmas
for asymptotically autonomous semi-flows. We mention that the Butler-McGehee lemma
has been used earlier in as similar way for a chemostat model by Butler and Wolkowitz
(1985). We further mention that Theorem 2.4 and 2.5 also hold when, instead of equilibria,
isolated compact 6-invariant sets are considered.

3. A model for sexually transmitted diseases with risk-behavior
change

Following Blythe et al. (preprint), we consider an S— I — R — S model with a general .
nonlinear incidence:

ds
E-A—J-—pS-i-pR,
dl

. dR
5 == (p+ )R,
J=G(S1,R N)I,
N=S+TIT+R

7
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N denotes the size of the epidemiologically relevant part of the population, i.e., for sexually

transmitted diseases, the sexually active population. As usually, S, I, R denote the numbers
of susceptible, infective, and recovered individuals respectively in the relevant part of
the population. J denotes the incidence, i.e., the temporal rate of new infections. For
simplicity we assume that the function G, which describes the dependence of the incidence
on the number of susceptible, infective, and recovered individuals and on the total size
of the relevant population, is a continuously differentiable and non-negative function of
(S,I,R,N) for non-negative S,I, R and strictly positive N. The function G has been
chosen to have a general form because we assume that individuals have knowledge about the
epidemiological state of the population and adjust their behavior according to the perceived
risk of being infected. This may lead to quite 2 complicated functional relationship. See
Blythe et al. (preprint) for more epidemiological background. There seems to be some
redundancy in the function G because one variable could be replaced by the others. The
purpose of this redundancy will become apparent later. We require that there are no
infections if there are no susceptible, ie., '

3.2) _ G(O,I,R,N)=0.

A is the rate at which individuals are recruited into the epidemiologically relevant
part of the population; they enter the susceptible class. ﬁ is the average sojourn time of
- individuals in the relevant part. Here we assume that both the recruitment rate and the
mean sojourn time are not affected by the disease. 2 is the mean length of the infectious
period under the condition that the relevant part of the population is not left. .‘1; is the
mean length of the immunity period of recovered individuals under the condition that
the relevant part of the population is not left. All parameters are assumed to be strictly
positive except p that may also be 0.

Adding the differential equations in (3.1) we realize that

dN
E——A—pN.

Standard arguments provide that solutions starting from non-negative initial data, |

N(0) > 0, are defined and non-negative for all forward times. N is bounded, strictly
positive, and bounded away from 0. Further the set ;

(3.3) N=S+I+R=%=:N'

is forward invariant and attracts all non-negative solutions in forward time.
The system (3.1) always has the disease-free equilibrium

(3.4) S§°=N"I°=0,R° =0.
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Any endemic equilibrium §*, I*, R* (where I is strictly positive) satisfies

G(S-,I',R‘,N*)z”f'*'#, S-+I-+R*=N., R‘=I‘_‘T"'"

p+u
Hence I* satisfies
(3.5) G(~ - +q)I', " qI" N*) =v+p, 0<I' <N,
with
y
3.6 N
(3.6) =7

The autonomous system (3.1) can be rewritten as an asymptotically autonomous planar

system:
. %:I(G(N—I—R,I,R,N)—‘Y’#)’
(3.7) dR
E=‘7I“'(P+#)R-
where

N({t)=N*+(N(0) - N*)e~#,
(3.7) has the planar limit system

a =I(G(N' —I—R,I,R,N") —v—u),
dt
(3-8)
dR
E=7I-(P+#)R-

We make the following assumption

8¢  8G ) .
(3.9) (E'E-—w) (S,I,R,N*)20, S5I,R>0,S+I+R=N".

Theorem 3.1. Let (3.2), (3.9) and G(N*,0,0, N*) # v+ u bold and G(S,I, R, N*) be an
analytic function of (S,I,R) with0 < §,I, R < N*. Then any solution to (3.1) starting
from non-negative initial data with N(0) = S5(0) + I(0) + R(0) > 0 converges towards the

disease-free equilibrium (0,0) or towards an endemic equilibrium. *

The exclusion of G(N*,0,0, N*) = v+ u is somewhat annoying. This case can also be
handled, but requires some additional technical conditions we do not want to go into here,

e e vt Loa
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the more so as, for specific G, it can often be dealt with by simple ad hoc considerations.
The analyticity assumption for G is to guarantee that (3.5) has only finitely many solutions
I*,0 < I* < N*, and can be replaced by assuming just the latter. The rest of this section
is devoted to the

Proof of Theorem 3.1: We want to apply Corollary 2.2.

We first notice that any w-limit set of a solution to (3.7) in X = {(I,R);I,R>0}is
contained in the region

Y ={(,R);0<I,RI+R<N"}.

Equilibria of (3.8) in Y either coincide with the disease-free equilibrium (0,0) or are con-
tained in the region
¥ ={UR;I,R>0,I+R<N"}

Recall G(0, I, R, N) = 0. By the analyticity assumption for G, the left hand side of (3.5)
is an analytic function of 0 < I* < N*. Hence (3.5) has either only finitely many solutions
with 0 < I* < N*, or every I* between 0 and N* is a solution. The second contradicts
G(0,I,R,N) = 0. Hence there are only finitely many equilibria of (3.8) in Y and, since
V is open, they are also isolated among all equilibria of (3.8) in R%. Tt follows from
G(N*,0,0, N*) 5 ~ + u that (0,0) is also isolated among the equilibria of (3.8) in R2.

Next we realize that any non-trivial periodic orbit of (3.8) in Y liesin
D={(,R);0<I,R<N"}.

This follows from the fact that the axis I = 0 is invariant under (3.8) and cannot contain
a non-trivial periodic orbit. It follows from the R equation in (3.8), that R is strictly
positive, once I is strictly positive. As I+ R< N*, wehave I, R < N".

Equally, any cyclic chain in X must lie in D. First of all, we notice that the disease-
free equilibrium (0,0) cannot be part of a cyclic chain of (3.8). Any homoclinic orbit
connecting (0, 0) to itself in X would lie in D. This orbit would tend to (0,0) for ¢ — £oo
which is ruled out.by G(N",0,0, N*) # v+ u. If (0,0) were part of a cyclic chain in X,
but not connected to itself by a homoclinic orbit, there would be two orbits converging to
(0, 0), one for t —— —oo, the other for t — oo. Both orbits would connect {0, 0) to equilibria
of (3.8) in D. By a similar reasoning as for periodic orbits, the connecting orbits lie in D
as well. Again, this cannot happen because G(N=*,0,0,N*) # v+ p.

We now choose 1

10
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on the open simply connected bounded set D. If g denotes the right hand side of (3.8), we
have

18
V- {pg)(I,R) =55;6(N"-I-R LR+ '5%%
1/ 8 ., 8 v
== (_E-S.G(N -I-R,LB)+ 52G(S,1, R),S_N__,_R) - 27
<0.

Our claim now follows from Corollary 2.2.

Blythe et al. (preprint) conjecture that the assumptions of Theorem 3.1 are compat-
ible with the existence of multiple endemic equilibria. An (mathematically, though not
epidemiologically satisfying) example is given by

G(S,1,R,N) = BRS/N*. .

(If one absolutely want so, one can give the interpretation that a large proportion of recov-
ered individuals may encourage contacts because it creates the impression that contacts
may be relatively safe under the present circumstances and that the disease may be easily

cured.) Obviously G satisfies the assumptions of Theorem 3.1. The equation for endemic
equilibria takes the form

R* (N" ~R'(1+ ﬁiﬂ)) /N2 = I
¥ B
Setting x = £= (l + %E) we have

K(1—K) = (7+#)($B+7+u) —

The left hand side has the maximum 1/4 , so we can conclude that there is no endemic
equilibrium if & > 1/4, exactly one endemic equilibrium if ¢ = 1/4 and exactly two endemic
equilibria if o < 1/4.

4. Incorporating multiple infective strains with cross-immunity

We now assume that there are different strains of the infective agent which induce (per-
manent or temporary) complete cross-immunity, i.e., somebody that is infected by one
strain cannot be super-infected by another strain and somebody that is immune to one

11
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strain is also immune to all the others. (Compare Saunders, 1981, and Bremermann,
Thieme, 1989.) For other models with complete or partial cross-immunity we refer to
Castillo-Chavez et al. (1989), Dwyer, Levin, Butiel (1990), and the literature mentioned
there.)

Let the number of different strains be n and I; denote the number of individuals
infected with strain number j and R; be the individuals that have recovered from infection
with strain j and are now (temporarily or permanently) immune to all strains. The model
(3.1) is modified as follows:

ds = =
— = A-#5- kY Bili+Y_piR;,
j=1 =1
al.
— = &8l ~ (v + )l
dR;
(4.1) jﬁ’— =7;1; - (p; + WR,

ﬁzK(S:II!"-1I1'HR11---R7;,N),

N=5+) (I +Ry).
i=1

We have now made explicit the constant rates §; at which the contact of a susceptible
< dividual with & strain-j-infective individual actually leads to an infection. & gives the
number of contacts of all susceptible individuals at a given time. The assumption that « is
independent of j means that contacts do not discriminate between strains. The dependence
of xon I,..., I, and Ri,..., R means that the contact numbers may depend on how
people adjust their contact behavior according to information on the strain distribution.

Adding the differential equations in (4.1) we again find that

dN '
o ~ATHN
and A
N{t) = N*:=~—, t—c0.
U
Set
s+
(4.2) O‘j=-—'ﬂ.—".
i

If the number of contacts x is constant, then x/g; is the replacement ratio of strain j, ie.,
the total number of secondary cases produced by one individual infected by strain j. We
assume that the difference of the strains is manifested in

gjF ok, JFE

12
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Without loss of generality we assume

(4.3) O'1<0'2<"'<ans

ie., the first strain is the one with the highest replacement ratio. Following Saunders

(1981), we set
1 I
u; = ln T (0) + ojt,
provided that I;(¢) > 0. Notice that ; (t) > 0 or = 0 respectively, whenever the same holds
for 7;(0). 1t follows from the definition of u; and from (4.1) that (d/dt)us = &, 2;(0) = 0.

Then u; = u; follows for all times. Using the definition of u; this implies

()™ ()"

in case that I;(0) > 0, 1;(0) > 0. Asal<a_,for39é1andI1<Nisbounded we have
that

Ij(t) — 0,t — oo, >1,
with the convergence to 0 being exponentially fast, provided that J;(0) > O-
Hence strains that have a lower basic replacement ratio than other straios die out.

We now trace the fate of the first strain assuming I;(0) > 0:

-

dr
= =wbily = (n + w1y,

4.4 dR ,

(44) —+ =mhL- (o +uR, -

k=KN-L—-Ry-¢,11,... . I.,Ry,... Ras N),

with N(t) — N, ¢(t) — 0,I;(t) — 0, Rj(t) — O for t — o0, j = 2,...,n. Hence (4.4) is a
planar asymptotically autonomous system that has (3.8) as limit system with

(4.5) G(S,I1,R,N) = $1K(S,1,,0,...,0,R,,0,...,0,N),
and v = 71, p = p1. The same proof as in Section 3 now provides the following result.

Theorem 4.1. Let G be defined by (4.5) and let (3.2), (3.9), (4.3), and G(N®,0,0,N*) #
M + p hold. Further let G(S,I,R,N*) be an analytic function of (5.1, R) with 0 <
S,1,R < N*. Then any solution to (4.1) with I1(0) > O converges to an equilibrium.
Moreover I;(t) — 0, R;(t) =0 fort — o0,7=2,..
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Asymptotically autonomous epidemic models

5. An model with arbitrarily distributed removal period

We consider an epidemic model of S — I — R — S type with a distributed length of
the removal period. As usually, S,I, R denote the numbers of susceptible, infective, and
removed individuals. We assume that the probability P at which a removed individual
returns into the susceptible class is described by a non-increasing function P(c) of the
individual’s class age ¢, i.e., of the time c that has passed since the moment it was removed
from the infective class. In order to take this feature into account we stratify the removed
part of the population along its class age, i.e.,

R(t) = fo ~ it c)de.

We further assume that the per capita rate of effective contacts C (contacts that lead to
an infection in case that they occur between a susceptible and an infective individual)
depends on the population size N, N = S+ I + R. The incidence (rate of new infections)
is then given by C(IN)S4 with 4 giving the chance that a random contact actually occurs
with an infective individual. Moreover we suppose some vital dynamics in the form that
there is an influx of fresh susceptibles into the populations and individuals die at a fixed
per capita rate.

5.1. The model. Main result

Let coo € (0, 00] be the maximum time span individuals can stay in the removed class,
in particular

P(c)>0,0<c<ce; Ple) =0, c>Ceo.
Let ¢ be the pei' capita death rate and
(5.1) Q(c) = e™#P(c)

be the probability to be still in the removed class and alive, provided one has entered this
class ¢ time units before. After these preliminaries we can formulate our model as follows:
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Asymptotically qutonomous epidemic models

N=S+TI+R,
dN
ZT = A-aN,

al I
% =CMNS% ~ (y+ w1,

(5.2) R(t) = /0 - m(t, c)de,

YR} (t — ¢) yt—to>c
r(t,c) = {

m%.,%yro(c——t-#tg) ,e>t—tp

for t > ¢, and

}, 0<e< Coo,

N{to) = N, I(to) = Iy, 7(to, ¢) = rg(c) for 0 <€ < Coo.

A > 0 denotes a constant influx rate of fresh susceptibles, whereas 4 represents the
per capita mortality rate and ;,1- the mean length of the infective period. The equation
can be explained as follows: If ¢ — to > ¢, removed individuals with class age ¢ at time ¢
are individuals that have been removed from the infective class at time ¢ — c, at rate +;
they are still in the removed class (and alive), with probability Q(c). If t—¢y < ¢, removed
individuals with class age c at time ¢ were already in the removed class before time ¢p;
at time ¢y they had a class age ¢ —~t + 2o. They are still in the removed class with the

conditional probability m{%&%.
N can be expressed in terms of A and the initial data:

N(t) = N(tg)e~#(t—to) 4 p= (1 - e"‘““"’) ,

5.3
(5.3) o
L

Further the first equation in (5.2) can be used to eliminate S:

15
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Asymptotically autonomous epidemic models

d_cang (v-1- [~ r(t,dc) = (r+ 1,

YR()I(t - o) yt—to>¢
r(t,c)= ’ 0 <¢< Coos

m%ro(c—t-l—tn) ,e>t—1o

(5.4)

for t > to, and
I(to) = lo, T(to,c) = ro{c).

Substituting the expression for r into the equation for I, (5.4) can be reduced to an
integro-differential equation in I: .

65 L-CN(n-1-q] Q- e+ Ro) I- (r+ i, 1>,
with | ' : |
%= Qc+t — to)

--——'——Q(c) ro(c)dc.

Ro(t) gives the number of removed individuals at time t that have stayed in this class since

(5.6) I(to) = Ip, Ro(t) =

time to. Notice that Rp is a non-increasing function of t as Q(¢) is decreasing in c. It

follows from a standard contraction principle argument that (5.5), (5.6) — and so (5.4) —
has unique non-negative solutions I, with r(t,-) € LL[0,coo) for initial data Jo 2> 0,10 €
L1[0,co0)- L% [0,cc0) denotes the cone of non-negative integrable functions on [0, coo)-
Using the Gronwall inequality, one can show that the solutions depend continuously on
Io, 7o Further, by (5.3),

. A
(5.7) N(i@)— N = t — oo.
This guarantees that the solutions exist for all positive times and are bounded. Moreover
there is a constant N > 0 such that, for any solution of (5.5), we have

(5.8) It) + [0 - rt,c)dc < N
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.l for sufficiently large times ¢. For later use we notice that
Coo
(5.9) [Ro(t)| < e‘“(‘—“’)/ ro(c)dc — 0, t— oo,
' Q

for ro € L1 [0, co0). After these preparations we formulate our main result.
-‘ Theorem 5.1. Let C(N") > v + 4 and let the frequency condition

.1 (5.10) 1+ 'y/ cos(vs)Q(s)ds >0 forallv >0
0

be satisfied. Then the following hold for solutions of (5.2):
i a) If I(ts) = 0, then I(t),R(t) = 0 for t — oo.
' b) IfI(to) > O, then I(t) — I*,R(t) — 5*,5(t) — 8 fort — oo, where

.I = Y+ M - - N* - G~ * e - /%
; 5.11 S'=FG=SNY, M=o Rt = de.
. Part a) also holds without C(N*) > v+ p and (5.10). The rest of this section is
‘] devoted to the proof of Theorem 5.1.
-] 5.2. Representation as an asymptotically autonomous semiflow
Uniqueness of solutions and their continuous dependence on initial data imply that the
.' - solutions I, r to (5.4) induce a (non-autonomous) semifiow ® on X = [0, 00) x L]0, coo),
f!. é(t? to, (I07 TO)) = (I(t)a r(t'l ))
.J Standard differential inequalities imply that & is continuous and asymptotically autono-
mous with the limit-semiflow © being given by 6(z, (Io, o)) = (I(t), r(t, -)) with I solving

J .§=-C_§.VA.?_)(N"-—I—'y'/o.tQ(c)I(t-c)dc+Rg)I—(’)’+#)I:

Ro(t) = 0°°° Q—gfj)—”ro(g_)dc,

(5.12)

. 1R I(t—¢c) ,t>c¢
ru,d:{z%f%ro(c—t) ,c>t}, >0

|

_

|

I(O) = Io,T(O, ) =T0.
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5.3. Compactness properties of the semiflow

Let B € X, be a bounded set such that, for all b = (I,7o) € B, the solutions I to
(5.5) are bounded on {tg, o0) uniformly for b € B. It follows from (5.5) that

dly

—2|<N on [to, 00)

with a constant N € (0, 00) that can be chosen independently of b. Consider the family
ft,» of integrable functions defined by

fenle) = {‘7Q(c)f(!)»(t —c) :z;ttojt: } , t>to.

The usual criterion for compactness of sets in L! (see Yosida 1968, X.1, e.g.) implies that
{fep;t > to,b € B} is a pre-compact set in L}[0, coo). Recall that Q(c+h) < Q(c)e~+» by
(5.1). This implies that, for any measure of non-compactness, I, we have

Coo
L{®(t, to,b);t > s,b € B}) < e #%) gup f ro(c)de
{Io,ro)EB JO

for all s > ty. This implies that the w-®-limit set of {to} x B,

wa({to} x B) = [ ] {®(t t0,b);t 2 5,b € B}
82tg

is non-empty and compact. Estimate (5.8) implies that all forward orbits are bounded and
thus have compact closure by the preceeding consideration. Since, by (5.8), there exists a
bounded set B to which all solutions are attracted, the compact set wa({to} x B) attracts
all ®-orbits. Similar we find a compact attractor for all 8-orbits.

5.4. Analysis of the limit-equation

Apparently (5.12) has an endemic equilibrium S*, I*,7*(c) with I* > 0 if and only if

.g.(ﬁ.-_).>]_,
Y+B

where S*, I* are given by (5.11) and
(¢} =yQ(o)I".
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The asymptotic behavior of solutions to (5.12) can be studied following Stech& Williams
(1981). We introduce

2(t) =lnI(t) —InI*
and obtain the following Stieltjes integral equation for =z:

gti = - /0 g(z(t — s)d(s) + zo(t)

with
9(z)=e"~1, $(0)=0,

wo) = G (144 [ e@a),

C Nt o0
2ft) = S0 (Ro(t) +or f Q(c)dc) .
t
The same analysis as in Stech® Williams (1981) — based on Londen (1975) — provides
convergence of solutions towards the endemic equilibrium provided the frequency condition

(5.10) holds. Note that the moment condition Jo= cQ(c)de < o is automatically satisfied
by (5.1) and the fact that P is non-increasing.

Theorem 5.2. Let C(N*) > v+ p and (5.10) hold and I(0) > 0. Then, for any solution
to (5.12), I(t) = I*, R(t) — R* for t — co. Moreover the endemic equilibrium is locally
asymptotically stable.

The local asymptotic stability under the assumptions of Theorem 5.2 does not follow
immediately from Stech, Williams (1981). They (Stech, Willigms, 1981, Section 4) rather
show that the endemic equilibrium is locally asymptotically stable if

(5.13) A+ .C_'(NT“)_I_ (1 +y f - e-*cQ(c)dc) #£0 VAeC,RA>0.
0

Actually (5.10) implies (5.13) by a continuation argument adopted from Hethcote, Thieme
(1985). Define

Qele) =£Q(c) + (1 -€)e™®, ¢>0,0< §<1,
and set

30 =2+ TEL 1 446 (a))

with C:?e denoting the Laplace transform of Qe. Recall that Q(c) =0, ¢ > coo. Apparently

1 142

Go(r) = 1+2 [1+AR

19

ey — e v e



Asymptotically autonomous epidemic models

In particular ¢o()) # 0 if RA > 0. Assume that (5.13) is violated, i.e. ¢1(A) =0 for some
A with ®A > 0. If RA = 0, (5.10) is violated as well, so we can assume that ®A > 0.

By Rouché’s theorem, the zeros A of ¢ depend continuously on £ at least as long as

their real parts are larger than —u. Observe that [Q¢(A)] — 0 uniformly in £ € [0,1), if
R + |SA| — 0, by the Riemann&Lebesgue Lemma. So, as ¢1 has a zero A with positive
real part, but ¢o has no zero with non-negative real part, there must exist some £ € (0, 1]
such that ¢¢(\) = 0 for some A with A =0. This implies

with v = . As 0 < £ < 1, this contradicts (5.10).
5.5. Convergence towards the endemic equilibrium

The autonomous convergence result stated in Theorem 5.2 is inherited by the asymp-
totically autonomous system (5.4), as Theorem 5.1 follows from the subsequent

Theorem 5.3. Let C(N*) > v + p and Q satisfy the frequency condition (5.10). Then,
for any solution to (5.4), the following hold: ' . '

a) If I{to) > O, then I(t) — I*, R(t) — R*, for t — co.

b) If I(to) = O, then I(t) — 0, R(t} — 0 for t — co.

Proof: b) is immediate. In order to see a) we want to apply Corollary 2.5. Let X =
[0, 00) x L1[0, 00), X1 = {0} x L}[0,0), and Xz = (0, 00) x L}[0,00). Then X; and X»
are forward invariant under © and ®, X, is closed and X is open in X. By the results
by Stech, Williams (1981), see Theorem 5.2, the equilibrium e; = (I*,r") attracts every
©-orbit starting in X2 and e; = (0,0) attracts every ©-orbit starting in Xi. Moreover
eo is locally stable and e, is locally stable for the restriction of © to X;. Recall that,
for I(0) = 0, R(t) = Ro(t) is non-increasing. Further every @-orbit is pre-compact in X
by the compactness considerations in Subsection 5.3. Finally e; is a weak repeller for X»:
Assume that there is a solution starting in X, that converges to e1. As I1(0) > 0, I1(t) > 0
for all t > 0. It follows from (5.5) and C(N*) > v+ u that

.. . d
lxggg}falnfl(t) >0,

which implies that I;(t) finally exhibits exponential increase, a contradiction. Thus all
assumptions of Corollary 2.5 are satisfied and our assertion follows.
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