

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.I.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

SMR.780 - 62

FOURTH AUTUMN COURSE ON MATHEMATICAL ECOLOGY

(24 October - 11 November 1994)

"Rationale for Modelling Bioaccumulation of Chemicals in Aquatic Food Webs"

Robert V. Thomann

Environmental Engineering & Science Program

Manhattan College

Riverdale, NY 10471

U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

RATIONALE FOR MODELING BIOACCUMULATION OF CHEMICALS IN AQUATIC FOOD WEBS

HUMAN OR AQUATIC

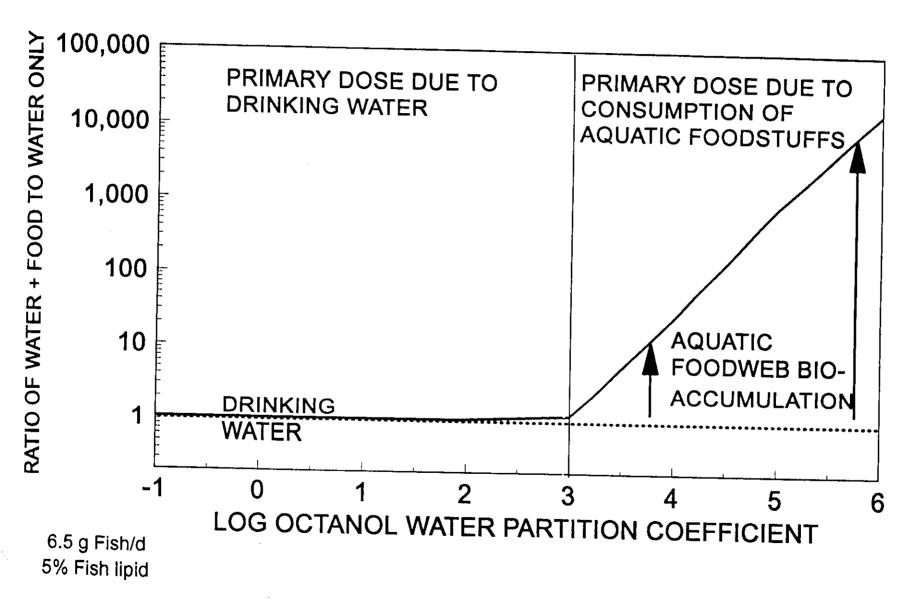
WILDLIFE

ALLOWABLE DOSE (mg/d) = WATER INTAKE (L/d) * WATER CONC(mg/L)

+ FISH CONSUMP. (kg/d)* FISH CHEMICAL CONC. (mg chem./kg)

BIOACCUMULATION FACTOR-BAF(I/kg) = C(fish)/C(water) or

C(fish) = BAF * C(water)


and the required water concentration is then

REQUIRED C(water) [ALLOWABLE DOSE]

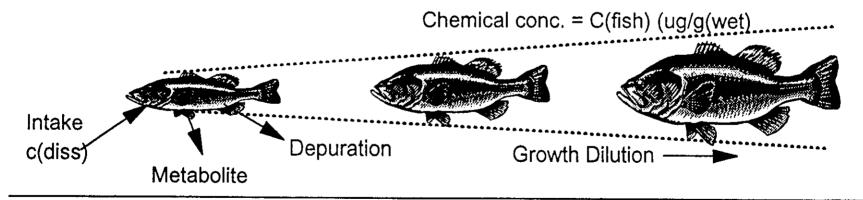
{Water Intake + (Fish Consump. * BAF)}

IS THE WATER ROUTE OR THE FOOD ROUTE MORE IMPORTANT? DOES THE BAF MATTER?

RELATIVE CHEMICAL DOSE TO HUMANS DUE TO DRINKING WATER AND CONSUMPTION OF CONTAMINATED AQUATIC FOODSTUFFS

BASIC STRUCTURE OF BIOACCUMULATION MODELING IN AQUATIC SYSTEMS

ROUTES OF CHEMICAL EXPOSURE:


- 1. UPTAKE OF "AVAILABLE" CHEMICAL IN WATER COLUMN OR SEDIMENT PORE WATER
- 2. UPTAKE OF CHEMICAL FROM INGESTION OF CONTAMINATED PREY
- 3. UPTAKE OF CHEMICAL FROM INGESTION OF CONTAMINATED SEDIMENT

UPTAKE FROM WATER **ONLY**

BIOCONCENTRATION

CHEMICAL CONCENTRATION IN ORGANISM DUE TO EXPOSURE TO WATER COLUMN, SEDIMENT PORE WATER OR BOTH

DETERMINED BY EXPERIMENT:
NO CONTAMINATED FOOD
CONSTANT WATER CONCENTRATION
ASSUME UPTAKE LINEAR TO WATER CONC.

ug chem/g(wet) per day = Intake - Depuration - Metabolism - Growth dilutio dC(fish)/dt = k c(diss) - KC(fish) - (Km)C(fish) - GC(fish)

Continue lab exposure until steady state is reached. Then, intake = losses and

$$C(fish) = kc(diss)/K'$$

Define a <u>BIOCONCENTRATION FACTOR (BCF)</u> as ratio fish conc./diss. water conc. for exposure to water only:

$$BCF = C(fish)/c(diss)$$

NOTE:

- 1. BCF is an equilibrium ratio for exposure to water only
- 2. In the field, the organism experiences all routes of exposure. Therefore, not possible to measure BCF in the field. BCF is a laboratory determined number.

UP IANE FRUIVI WAIER + FUUU

BIOACCUMULATION

CHEMICAL CONCENTRATION IN ORGANISM DUE TO EXPOSURE TO WATER+CONTAMINATED PREY AND/OR SEDIMENT

GENERALLY A FIELD DETERMINED QUANTITY
CHEMICAL FROM FOOD ADDITIVE TO WATER ROUTE

Chemical assimilation efficiency = e ug chem. absorbed/ug chem. ingested

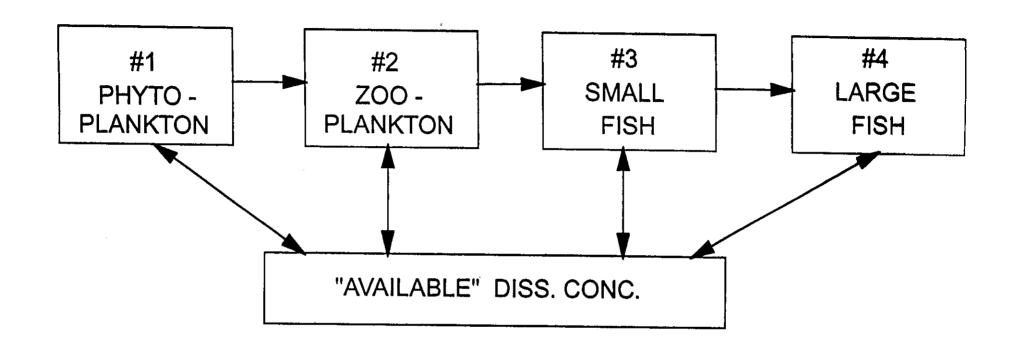
Chemical conc. in food = C(food) (ug/g(wet)

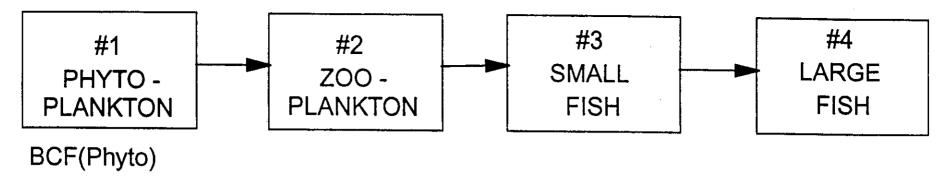
Food ingestion rate = I (g(prey)/g(predator) per day

ug chem/g(wet) per day = Intake - Loss + Net chemical from food dC(fish)/dt = kc(diss) - K'C(fish) + e I C(food)

At steady state:

$$C(fish) = BCFc(diss) + gC(food)$$


Define a BIOACCUMULATION FACTOR (BAF) as ratio fish conc./diss. water conc. where all routes are included:


$$BAF(fish) = C(fish)/c(diss) = BCF + g BAF(food)$$

NOTE:

- 1. Accumulation due to food depends on biomagnification ratio: g (a function of chemical assimialtion eff., ingestion rate and loss rate)
- 2. If g "large"(e.g. >1), food route important. If g "small", (e.g. <<1), food route not important.

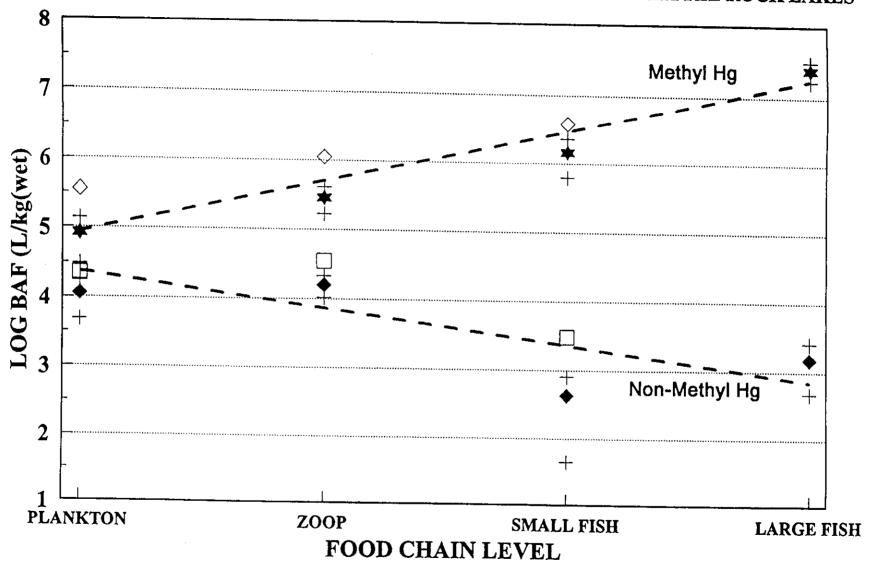
A SIMPLE FOUR LEVEL PELAGIC FOOD CHAIN

BAF(Zoop) = BCF(Zoop) + g(21)BCF(Phyto)

$$BAF(SmF) = BCF(SmF) + g(32)BAF(Zoop)$$

$$BAF(LgF) = BCF(LgF) + g(43)BAF(SmF)$$

FOR ILLUSTRATION OF CLARITY, SUPPOSE ALL BCF'S ARE EQUAL AND ALL BIOMAGNIFICATION RATIOS ARE EQUAL. THEN,


$$BAF(Zoop) = [1 + g]BCF$$

$$BAF(SmF) = [1 + g + g*g]BCF$$

$$BAF(LgF) = [1 + g + g*g + g*g*g]BCF$$

NOTE: FOOD CHAIN BIOACCUMULATION

VARIATION OF MERCURY BAF WITH TROPHIC LEVEL: CLEAR & LITTLE ROCK LAKES

Clear Lk: Suchanek et al, 1993, Star, Diamond +/- StD. Little Rock Lk: Watras and Bloom, 1992