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Using both analytic and numerical methods, we elucidate the dynamical properties of a class of
metapopulation models in which many different species/strains contend for persistence, with local
extinction of subpopulations being balanced by colonization of other patches. The species/strains have
a strict competitive hierarchy with a given species/strain “taking over” any patch occupied by a
lower-ranking species/strain; competitively inferior species/strains compensate by having higher colo-
nization rates and/or lower patch death rates. New species/strains keep appearing, so that we can follow
the evolution of the system. Such models may be metaphors for multispecies metapopulations, or for
the evolution of virulence (where the patches are hosts, who are infected with various strains of a
pathogen, and then die or recover at strain-dependent rates}.

Our emphasis is on a set of questions relating to the evolution of diversity. How many species/strains
are present after a long time, 1?7 Asymptotically, this number continues to increase very slowly, as In .
What are the relative abundances of the species/strains? Under a broad range of assumptions about
the mutations which produce new species/strains, the rank-abundance distribution is roughly geometric
(as is commonly observed in early succession and other “ecologically one-dimensional™ situations),
some of our analysis here is based in part on an interesting but unproved mathematical conjecture about
a new kind of probabilistic/combinatorial problem. If the number of patches/hosts is permanently
reduced—by habitat destruction or vaccination—what happens? Charactenistically, there is an initial
sharp loss of species/strains (with selective removal of the competitive dominants), with subsequent slow
recovery as new mutanis continue to partition the now-diminished “niche space” (but the pristine levels
of virulence are not regained).

1. Introduction virulence. But things are clearly more complicated if

Recently we have developed a model (Nowak & May,
1994) which enables us to explore the evolution of
virulence in host-parasite associations, in those situ-
ations where superinfection can occur. Most of the
rising tide of publications on the evolution of viru-
lence is restricted to circumstances in which individual
hosts can be infected with only one strain, so that,
overall, the strain with the highest intrinsic reproduc-
tive rate, R,, will eventually exclude all others; the
emphasis is then on the constraining relations be-
tween virulence (which we define as mortality due to
infection) and transmissibility, and on the consequent
implications for long-term patterns in the evolution of
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many different strains—with different virulences and
transmissibilities—can ‘‘co-infect” a single host. Su-
perinfection represents an intermediate level of com-
plexity: here a more virulent strain of infection can
“take over” a host that is already infected with a less
virulent strain, but the host will, in effect, harbour
only one strain of infection at any one time. Thus
superinfection models go beyond single infection ones
in allowing for intra-host competition among strains,
but they stop short of the full complexity of co-infec-
tion by assuming a form of competitive dominance
hierarchy among strains within hosts. We pian a more
comprehensive study of general models of co-infec-
tion (Nowak & May, in preparation).

© 1994 Academic Press Limited



96 R. M. MAY AND M. A, NOWAK

Bremermann & Pickering (1983) looked at compe-
tition among parasite strains within a host, conclud-
ing that selection will always favour the most virulent
strain. Levin & Pimentel (1981) studied superinfection
in a two-strain model. finding conditions under which
co-existence was possible. Anderson & May (1986)
extended the analysis of this two-strain model, with
explicit attention to the results of invasion of a
pathogen-host system by a more virulent strain
capable of superinfection: these authors also dis-
cussed the history of Dutch elm disease (the fungus
Ceratocystis uimi) in the UK. and of myxoma virus
among Australian rabbits, in the light of their model.
Nowak & May (1994) used analytic methods coupled
with extensive numerical simulations to examine su-
perinfection in models with an arbitrarily large num-
ber of strains. and also with new strains continually
appearing by mutation. They concluded, broadly,
that the effects of superinfection are: (i} an increase
in the average level of virulence (above that which
maximises Ry; the strain with the highest R, may even
become extinct); (ii) polymorphism of parasite strains,
with many different levels of virulence, within a
well-defined range; (iii) possible maintenance of
strains with levels of virulence so high that they could
not persist alone in an otherwise uninfected host
population (i.e. strains with R, < b); and (iv) very
comphcated dynamics, possibly including heteroclinic
cycles and sudden large changes in the average level
of virulence. The focus of all this earlier work is on
patterns in the evolution of virulence. For a more full
discussion and review, see Nowak & May (1994),

Independently, Tilman (1994) has studied the dy-
namics of multispecies metapopulation models. in
which there is a hierarchy of competitive dominance
among the species. Such metapopulation models con-
sider species whose overall populations persist by
virtue of a shifting balance of local extinctions and
recolonizations of subpopulations among a large
number of habitat patches. Tilman's work builds on
Hastings' (1980) and Nee & May’s (1992) examin-
ations of a two-species such metapopulation model, in
which the competitively dominant species always
“took over” any patch in which both species oc-
curred, but where the inferior competitor had a
compensating advantage of a larger colonization rate
and/or a lower patch death-rate.

Nee & May (1992) were interested in the effects of
destroying some fraction of the original number of
patches, and they showed that such “habitat destruc-
tion” favoured the inferior competitor, whose overall
abundance could even be increased by weak-to-
intermediate levels of disturbance. Tilman (1994) has
extended this analysis to multispecies situations, ex-

ploring how total species numbers and relative abun-
dances are influenced by patch removal. Tilman also
has made the important observation that there are, in
effect. “limits to similarity” among species who co-
exist in such muitispecies metapopulations: a species
can invade and persist oniy if its colonization and
patch death rates lie in a narrowly defined range.
determined by its place in the hierarchy of competitive
dominance and by the parameters characterizing the
other species in the ensemble. We also refer to Metz
& Dieckman (1986) for models on metapopulations.

Our earlier work (Nowak & May, 1994) and
Tilman's (1994) multispecies metapopulation models
have an identical mathematical structure. This is not
surpnising. Like Tilman's metapopulation models, the
superinfection models are derived from simplifying
more general “co-infection™ models, by assuming a
strict hierarchy of competitive dominance {measured
by ability 1o “‘take over” a host or patch). [n the
superinfection models we have many different strains
of infection, which occupy or infect different hosts:
hosts die (at rates which combine a background rate
with infection-specific effects), and newly infected
hosts are produced at rates which depend on the
transmission efficiency of the infection in an infected
host. Each aspect has its analogue in the multispecies
metapopulation models, where many species are dis-
tributed among habitat patches, which revert to
emptiness (at rates which depend on background
effects and possibly on species-specific effects), and
which send out new colonizers at rates which differ
from species to species. Against these structural and
formal equivalences, there are differences of detail
which derive from differences in biological details and
emphases. Our superinfection models tend to empha-
size differences in virulence (i.e. disease-induced host
death rate); for simplicity, we often assume that
all strains are equally transmissible (Nowak & May,
1994). In contrast, Tilman’s (1994) metapopulation
studies tend to emphasize differences in colonizing
ability (with the inferior competitors having higher
“transmission rates™); for simplicity, Tilman often
assumes a constant patch-death rate, independent of
which species occupies the patch.

In the present paper, we extend our earlier analysis
of superinfection, and also explicitly relate it to
multispecies metapopulation models. The emphasis in
Nowak & May (1994) was mainly on the evolution of
virulence. In the present paper, our emphasis is more
on a set of questions related to the evolution of
diversity. Regardless of whether the mathematical
models are oriented towards superinfection or
towards metapopulations, we ask questions such as:
How many strains/species are present? How does this

nun
Wh
Spe
duc
wh
eluc
cal

atic
Cast

Sec



- -

A Il A . B8 s -8

4AA =

A RS . RiSa I _ % Aa .

a

EVOLUTION OF DIVERSITY 97

number change, over time, as new mutations arise?
What are the relative abundances of the strains/
species? If the total number of hosts/patches is re-
duced—by vaccination or by habitat destruction—
what are the likely consequences? As before, we
elucidate the dynamical behaviour of our mathemati-
cal models by a combination of numerical simul-
ations and analytic results for representative special
cases.

Specifically, the paper is organized as follows. 1n
Section 2, we set out the basic set of equations for the
dynamics of our n-species system. Section 3 gives an
explicit and general solution for the equilibrium abun-
dances of the n-strains/species, for the interesting
special case where the superinfection coefficient is
unity (s =1). In particular, explicit expressions for
the equilibnum abundances, y;, are given for the
limiting cases when all strains/species have the same
transmission or colonization coefficient (case I,
b, = b = constant), and when ail have the same viru-
lence or patch death rate (case II, ¢, = to = constant).
Section 4 widens the discussion, to investigate new
strains/species arising by mutation or otherwise, and
consequently to study the average abundance of any
one strain/species, y(v), as a function of virulence, v
(or other relevant parameters); the average number of
strains/species, p{v) d, betweenz and v + dr; and the
average total abundance of all strains/species in the
neighbourhood of ¢, x(v) = y(r)p(v). In Section 5, we
give explicit expressions for the average total abun-
dance, x(), for the interesting limiting cases I and II
(defined above and in Section 3}. Section 6 derives a
general analytic expression for the asymptotic (n 3 1)
density of strains/species, p(v). as a function of the
probability that a new mulant strain:species will
appear at r; this expression is partly based on a
plausibie, but unproven, conjecture about the dynam-
ics of these systems (specifically, about the probabihity
that invasion by a new strain at ¢ will lead to
extinction of an alrecady-existing strain at ). Spectfic
expressions are then given for interesting special cases
(e.g. new mutants appearing uniformly randomly
along the v-axis). By integrating p(r). we can calcu-
late the total number of strains/species, and from the
relation x(v) = y(r)p(r) we can calculate the average
abundances of individual strains, y(r), once x(v) and
p(v) are known (Section 7). Section 8 compares these
analytic results for x(v), p(t) and y(r) with extensive
numerical simulations, for both cases I and I, and
for various assumptions about the probability distri-
bution of new mutant strains/species.

Focusing more on the biological implications of the
results, Section 9 discusses briefly the kinds of pat-
terns of species’ relative abundance that are implied

by the results of Sections 6, 7 and 8. Section 10
assumes that new strains/spectes continue 1o appear,
at some uniform rate, and investigates the number of
species, n(z), expected 1o be found in total in these
systems, after time ¢ has elapsed (remember, not all
mutants will establish themselves, and those that do
will cause some “reshuffiing” and loss of existing
species). Section 11 studies the effects of vaccination
(which effectively reduces the total number of hosts)
or habitat destruction (which reduces the total num-
ber of available patches). Finally, Section 12 summar-
izes the main conclusions.

Throughout, the emphasis in the present paper is
on mathematical results. We plan a shorter and more
biologically oriented review and discussion of the
main conclusions, directed toward a broader audience
(May, R. M., Nowak, M. A. and Tiiman, D., in
preparation).

2. The Basic Superinfection or Metapopulation Model

As set out by Nowak & May [1994: eqn (9)], and
in different notation by Tilman (1994), our basic
model is

i—1 "
%Ji =y,-|:b,)-'0 —u—v+sh Y y—s % b),y}]. (1)
! =1 jeid
Here y, is the proportion of hosts infected with the
strain labelled i, or, equivalently, is the fraction of all
patches which contain species i{(i=1,2,3,..., n).
Uninfected hosts or empty patches constitute a frac-
tion y,. We assume the total number of hosts or
patches, K, is a fixed constant. so that £, = 1. The
parameter b, represents the transmission efficiency of
strain/species i, so that—assuming homogeneous mix-
ing among the ensemble of hosts or patches—the
probability (per unit time) that an empty patch will be
colonized by species | is proportional to b, and to the
fraction of patches occupied by i (and thus producing
colonizing propagules), y,; hence the net rate at which
new infections with strain/species { appear is b,y ¥o-
By the same token, new infections with species i
appear by superinfection at a rate sby, ZiZiy,, as
enpcounters arise at a rate &y, with hosts infected by
strains/species lower in the dominance hierarchy (y;
with j <i}. The “superinfection coefficient”, s, de-
scribes the relative probability of superinfection aris-
ing, compared with the infection of uninfected hosts
(see Nowak & May, 1994, for fuller discussion). For
example, if s =1 then superinfection of an aiready
infected host occurs at the same rate {with the same
probability) as infecting an uninfected host. If s < 1
then superinfection is slower. If s = 0 then superinfec-
tion is impossible. If s > 1 then atready infected hosts
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will acquire a second infection more easily. The term
—syi L7, b,y represents the rate of loss of hosts
infected with strain /, as a result of superinfection by
“competitively superior” strains, j > . Finally, v, rep-
resents the “virulence”, or host/patch death rate as a
result of infection/occupancy by strain/species {; u is
the death rate from all other causes.

Nowak & May (1994) give an extended discussion
of eqn (1) for general values of s, combining analytic
results with numerica!l studies of particular s-values.
To keep things managable, in this paper we hencefor-
ward put s =1. That is, we have a hierarchy of
competitively dominant strains/species, such that a
strain/species “‘takes over” a host/patch occupied
by an inferior “strain/species” exactly as if that
host/patch were uninfected/empty. Furthermore,
from now on we will write “‘species”, whether re-
fering to an infecting strain or a metapopulation
species.

Putting 5 =1 in eqn (1), and using I7_,y, =1 to
write yo=1—Z7_, 5, we can re-express eqn (1) as

d n
d_}: =y,[(b,— u—n)=by— Y yib+ b,)} (2)

j=i+1

This is our basic equation.

3. Equilibrium Solutions of the Basic Model

Equilibrium solutions of eqn (2) are found by
putting dy,/dr =0, for all ;. These equilibrium sol-
utions, y*, are clearly [see also Tilman (1994)]

yr=1l—(u+v)b— 5 yr(L+0bb] ()

J=i+ |

if p*>0, and
yi=0, 4)

otherwise.

In Nowak & May (1994), we gave a rigorous and
general proof (valid for all 5, not just s = 1) that eqns
(3) and (4) give 2 unique, stable equilibrium solution
to the system of equations (2), in the special case
where all b, are equal, b, = b = constant. More gener-
ally, for arbitrary b,, eqns (3) and (4) can be seen still
to represent the unique, stable solution to eqns (2} in
the particular case s = |, to which our attention is
restricted in the present paper. This result is estab-
lished by noting that all the sub-diagonal elements of
the matrix A defined by equation (11) in Nowak &
May (1994) are zero when s = L. In the general case
when s # 1, we have no such proof of stability and
uniqueness, and the dynamics can indeed be quite
wild (see Nowak & May, 1994 for further discussion).

In eqn (3}, notice that there are no solutions for
v, > b, —u. Let i =n represent the first (i.e. largest) v,
with v, < b, —u. Then

yr=1—=(u+u,)b, &)

It is now straightforward to compute successive val-
ues of y* in terms of the {y*} lying above them on
the »-axis. It is, however, useful to get a more explicit
solution, as follows, Define

S=3 y* (6)
p=k
and
Jo=3 v¥b, (N

)
=

!

Equation (3) can now be rewritten as

by*=a,—-bS8 . ,—-J,. 3)
Here, for notational convenience, we have defined
og=5b—u—uv. (9

By analogy with egn (8), we could also write
b, . y* =0a,_,—b_ 8 -J. (10)

Subtracting eqn {10) from eqn (8) we have
by*¥—b_yr =0 -0 _,
—b S +b_S+byr. (1)
Rearranging this eqn (11). we end up with
b_8_ ,~-bS. =0_, —0a. (12)

This is an explicit equation. which gives S,—and
thence y*—by trivial iteration,

Before proceeding to focus on the special cases
when b, = constant (case [) and v, = constant (case II),
we make two further simplifications in our notation.
First, since all of what follows is focused on equi-
librium, we henceforth omit the asterisks: y; means the
equilibrium solution (y * above). Second, and without
loss of generality, we put ¥ =0

3.1. CASE I: EQUAL COLONIZING ABILITY

This limiting case, b, = b = constant, for all i, was
used by Nowak & May (1994). In the superinfection
models, it corresponds to all species being equally
transmissible; the competitively dominant strains are
more virulent (v, increases as / increases), but all have
the same 5,-value. In a metapopulation context, this
is a less reasonable limit; it corresponds to all species
being equally mobile (so that the inferior competitiors
must compensate by, on average, having their patches
“live longer™).
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If all b, are the same, we can without loss of
generality put b, = i, and eqn (12) reduces to

yl+yf—l=vt-_l’.#-l' (l3)

This can be seen to be equivalent to Tilman's (1994)
equation (12). Alternatively, we define

Av,=v,— U, (14)
to write
yl—l=Al:r*y:- (15)

We see that a newly arising mutant species, with a
virulence v, _,, will find it impossible to establish itself
if Av, <y, That is, invasion and establishment 1s
possible onty if the “virulence gap”, 4t,, between the
new species and the existing once above it In the
“virulence spectrum’” or v-axis is big enough. v, > ).
This echos Tilman’s (1994) theme of “Iimiting simi-
lanty’.

Equation (15) 1s the algebraic form of the illuminat-
ing geometrical construction for equilibrium abun-
dances, {y,}, illustrated in Fig. 1. This figure again
makes it clear that new species cannot establish
themselves unless 4, is sufficiently large (in relation

to yl)
3.2. CASE II: EQUAL DEATH RATES

This limiting case, t, = t, = constant, for all i, was
used by Tilman (1994). In his multispecies metapopu-

e

{a)
* *
>
o2 04 o6 08 10
(b)
-
- 0-2 04 06 0.8 1.0

FiG. l. A simple geometric method is illustrated for constructing
the equilibrium configuration, cqns (3) and (4). for the special case
1, when all strains/specics have the same dispersal ability
(b, = constant = 1, see £qn (15)}. (a) The starting configuration of
eight specics is shown, located at specific places on the r-axis
©<e <) (b) The equilibrium configuration, is found by cor-
structing a (dashed) line running upwards at 45° to the left from
¢ = 1 until it meets the line projected vertically upwards from the
location of the strain with the highest v value: v, =1 -7, We then
complete the isosceles triangle by projecting 2 line downwards
toward the left from y,; no species can persist or invade in this
“shadow™ of y, [i.e. eqn (15} would give y,_, <0in this region}].
The process is then repeated, as iflustrated, to find the abundances
of the six species which constitute the equilibrium assembly: two of
the initial species [marked with an asterisk in (a)] are eliminatec.

lation context, it corresponds to the reasonable as-
sumption that all patches have the same probability
of reverting to empty, per unit time, regardiess of the
species occupying them; that is, the patch death-rate
is set by external, environmental effects. The inferior
competitors. must compensate by being more mobile
(b, decreases as i increases). In a superinfection con-
text, this assumption is unattractive: it implies that
all strains affect host lifespan equaily, and so the
inferior competitors must compensate by being more
transmissible. .

If all v, =ty = constant, we write eqn (9) for g, as
6,= b, — ty. and the general eqn {12} reduces to

bﬂ—l ___[1 - Sl’+1]
e . (16)

-5
Notice that the r.h.s. of eqn (15) necessarily exceeds
unity, which again underlines the requirement for b,
to increase as { decreases.

Tilman's (1994) work makes various assumptions
about the relative abundances of species (i.e. about
{y,}), and then deduces the consequent expressions
for {b,}. Equation (16) facilitates such calculations.
We, however, are more interested in assuming values
for the migration/transmission paramelers, {b},
and thence deducing the abundances, { y:}, from eqn
{16).

For an explicit solution of eqn (16), first define

Crzblu-lbk-rlbk—rs' ’ [lvbn]

¢ bkbhzbku"'{lsbn]
Here, {l. 4,] means whichever of 1 or b, fits the odd
or even sequence in the numerator and denominator
of eqn (17). Notice that we have b, > by ., for all k,

so that {, < }. With this definition. we can now write
the solution of egn (16):

a7

= e 1 v r
Y, =517 S lf 5|+l>L.uH

v,=0:

The simplest proof of eqn (18) is by substitution.
From eqn (18), S, =X/}, = | —¢,. Thus the r.hs.
of eqn (16) is {,.,/¢,—.. But from the definition
(17), &, #C = b, /b, This is the Lh.s. of eqn (16).
QED.

The condition that a newly arising species, with b,
be able to invade is that {,,, > ¢ But, from eqn (17),
o= H(b{ L)) So the criterion 1s

b,> (V- (19}

If eqn {19)is not satisfied, y, = 0. This result, eqn (19,
can be seen to be equivalent to Tilman's (1994) eqn
(10). This criterion does not have any simple intuitive

interpretation (in contrast with Fig. 1 for case I).

otherwise. (18)
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4. Results About Average Densities and Distributions

So far, we have shown how the equilibrium abun-
dances of the various species, {y,;}, can be calculated,
once the spectra of values of v, and b, are specified. In
particular, for case I (constant b;; &, = 1, say), for a
given set of v,-values we can find {y,} from eqn (15).
Likewise, for case II (constant v,; v, = 1,, say), we can
find {y,} for a given set of 5 -values from eqn (18). To
bring case I and case II into closer formal correspon-
dence, in case I we define the variable v, =0,/b,.
Then, for both case [ and case [I, the set of possible
strains/species are given by a set of v,-values, which
lie along a continuum of possible values, 0 < v, < |,

Suppose, however, that new species are continually
generated by random mutations {or migration, or
other mechanisms), with v -values in the interval
(0,1). Over time, this will generate some average
distribution of species, along the v, -axis; we will be
interested both in the average number of species, and
in their average abundances, at different places along
the v-axis from v =0 tov = |. These distributions will
depend both on the probability of a mutant appearing
between v and v + dv, and on the probability of such
a mutant successfully invading.

(i) We define p(r)dv to be average number of
discrete states, v, between v and v + dv.

Note that eqn (14) defined 4v,=v,—v,_,. The
average value of this quantity, which we call 4o,
measures the average spacing between strains/species
around v, = v. [t follows that

pe)=1/4v. (20)

(il) We define y(v) as the average abundance of any
one strain/species in the neighbourhood of v, = v. (It
would be interesting to know the distribution of
y-values of which y(v) is the mean; for case I, we
guess this distribution is Poisson, but we have no
proof).

(i}) Finally, we define x(v)dv to be the average
total abundance of all the discrete species which have
v, between v and v + do, Clearly,

x(v)=p(v)piv). 2h

5. Average Total Abundance, x(v)
5.1. CASE I: EQUAL COLONIZING ABILITIES
OR TRANSMISSIBILITY
Here, eqn (13) gives y, + y,_, = dv,. On average,
this leads to the relation

2y(v) = Av. (22)
But from eqn (20), dv = 1/p(v), whence we have:
ylplv)=1)2. (23a)

That s, for case | we have
() =12 (23b)

5.2. CASE II! EQUAL PATCH DEATH RATES OR VIRULENCES

This limiting case requires a little more work,
Equation (18) gives us y, = cer = =L
But, in this form, it is difficult to see if v, < (¢, ,)?, and
$o on. Therefore we look at

yl+y|—~1=;l+ihgn—l=;l+l[l~Ul-»!t/vl]‘ (24)
Hence, because «¢,_,,v,<1, we know that
_V{+y,_|>0-

Using average values in eqn (24), we get the
asymplotic expression

2p(v) = () [do/v]. (25)

And again using eqn (20) to relate ¢ and plv), we
arrive at

x(v)={(v)/ 2. (26)

{t remains to calculate the average value of { (v}, in
the limit of many strains (# » 1). From the definition
of {;, eqn {17), we have

G=lviv 1K, 27

(Remember, we are formally writing v, = u,/b, for case
IL.) On average, eqn (27) can be re-expressed as

Clv = 2dv) = {{2)[1 — (dvjv)]. (28)

That is, Taylor-expanding the L.h.s. and canceiling out
the dv factor on both sides.

L 4i{) _s)

> — (29)
Integrating, and noting that J(1) =1, we arrive at
Infl(v)] = {In(v). {30)

That is, {(v) =v'" Substituting into eqn (26), we
arnive at the result for x(¢) in case II:

x(2) = 1/(2v'). (31

3.3, COMPARISON WITH CONTINUOQUS LIMITS

It is interesting to compare these results feqns (23)
and (31)] which are obtained directly from the discrete
set of equations for the individual {,} [eqn (2)] with
results obtained from a continuous version of eqn (2).

Nowak & May (1994) discuss the continuous limit
of eqn (2} in the special case when b, = constant (i.e.
case I). More generally, we have from eqn (2):

d |
yd_(t") =y(v)[b(v) —v - j y(s)o(s)b(v)+b{s)} ds].

(32)
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Here, as earlier, ¥ = 0. An equilibrium solution can be
found by putting dy/dr =0, to get

;
b(v)—u=j x(s)[b(r) + b(s)]ds. (33)

For case I, we put b(v)=1, to get the solution
x(v) = 1/2. This is the solution obtained this way by
Nowak & May (1994}, and it is the same as that found
directly from analysing the discrete species distri-
bution, egn (23), above.

For case I, we have the formal changes of variables
v—v, and b(v)-+vy/v, which changes egn (33) into

l—p= J” x(s)[1 + (v/s)] ds. (34)

This equation can be seen to have the solution
x(v) = 1/(2¢'?). This is the result, eqn (31}, derived
above by more direct methods.

By deriving the continuous results in this way, and
comparing them with the appropriate limits from the
fully discrete approach (which are known to be the
uniquely stable solutions), we have established that
these continuous solutions are indeed the (unique)
stable ones. There are no stable solutions, in the
continuous limit, where finite pieces of the v-axis
between t,,, and ¢y, have y(v) = 0and x(v) = 0. This
retrospectively ties up some loose ends in Section 6 of
Nowak & May (1994).

6. Density of States, p(v)

This section presents heuristic arguments. on the basis
of which we derive a conjectured analytic expression
for p(v) dr, the number of species with ¢, {(or, for case
II, /b, =1t,) between ¢ and v + de.

Our underlying assumption is that new mutant
strains (for superinfection models, as typified by case
I) or new species (for multispecies metapopulation
models, as typified by case II} are continuously ap-
pearing at some uniform rate. I/7, such that t is the
average time interval between the appearance of
successive new mutant strains/species. We assume
that the probability for any one such mutant to
appear with v, between ¢ and v +dv is given by the
probability distribution 7 (v) dv, with ¢ in the interval
0, 1).

We now outline a general, but approximate, argu-
ment which derives an expression for p(v) in terms of
a quasi-equilibrium between “births” and “‘deaths” of
strains/species. Explicit analytic results are derived in
the limiting cases I and II, for a varnety of specific
probability distributions for new mutations as func-
tions of ¢ (namely, m(r) uniform, exponentially de-
clining, and harmonic, for 0 <¢ < 1). Without loss of

generality, we put 7 = 1, so that time can be equiva-
lently measured in terms of the total number of
mutants, N, which have appeared up to that point.

These heuristic results for p(v) have not been
derived in a fully rigorous manner, as will be seen.
But, as will be shown in Section 8, they agree very well
with extensive numerical simulations. We are encour-
aged to believe our analytic results are indeed correct,
and we hope that some readers will be motivated to
provide rigorous proofs of our conjectured results for
““death rates”, below.

6.1. A “BORN-~OPPENHEIMER" QUASI-EQUILIBRIUM
APPROXIMATION

As t —cc, an infinite number of mutations will have
appeared (N —o0), and presumably an infinite num-
ber of species will have established themselves.

But at any finite time, we assume the distribution
of species will be in rough equilibrium, appropriate to
the number of species which are established at time f,
n(z). As t increases, we expect n(?) also to increase,
but we expect these changes to be slow for very large
{. so that for any given total number of species, n(f),
the density p,(v) will exist as a quasi-equilibrium
(just as electron probability distributions are calcu-
lated at quasi-equilibrium, for specified values of the
slower-changing configurations of atomic nuclei, in
Born—Oppenheimer approximations, and other such
“two time scale” approximations).

This quasi-equilibrium is set by the balance be-
tween new mutant species appearing and becoming
established (“*births™), and the consequent reshuffi-
ings and removals as newly established species cause
the y* of eqn (3) to be rearranged, and some existing
species to disappear (“deaths”).

6.2. BIRTHS

We have defined the probability for any one new
species to appear with v, between v and v +dr as
7(r)de. But, as the general eqns (3), (4), and the
particular expressions for cases | and II [egn (15) and
Fig. 1, and eqns (18) and (19), respectively], make
plain, a mutant appearing at v, =v will not always
invade and establish itseif; that is, a new mutant will
not always have dy;(v)/d¢ > 0 in eqn (2). So we write
¢(v) as the probability that, on average, a new mutant
appearing at v will be established. Thus the “birth
rate”, at which new species appear and establish
themselves with ¢, between v and v + dv, is ¢(v n(v) dp
(per unit time, measured with T = b.

For case I, we see from Fig. 1 that a newly
appearing mutant will not persist if it falls within the
leftward “shadow” of an existing species, but will
succeed otherwise. Thus, on average, ¢(v)=0-5 for
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case I, independent of 1. Equivalently, for case [ we
¢an see from eqn (15) that the “gaps” into which new
mutants can invade scale linearly with Ap (e
vi—;_,) along the v-axis, so that the density of
successful invasions is, on average, scaled as [rate of
change of v] = constant. For case [ in the limit of
large n(r), the “gaps’ can be seen, from eqns (18) and
(30), 1o scale on average as dv'” (ie. {, — 5._ ) there
1s, in a sense, relatively more *'gap space” for small ¢
(by virtue of the scaling v'), For case II, the asymp-
totic density of successful invasions is thus. on aver-
age, scaled as [rate of change of e l=1p"12 apd
c(r) = constant/p' 2.

6.3, DEATHS

Per unit time, the number of species “dying”
between v and v + dv depends on: (i) the number of
species that are there, () de; and (ii) the probability
that any successfully-established new species  will
Cause the disappearance of a strain at t,x(v). We saw
carlier that new introductions affect only species with
tower v-values, and not those with higher v-values
(because stable states are constructed, as discussed in
Section 3 and in Nowak & May 1994, by working
“down from the top™). Therefore k(v) will depend on
successful establishment of new mutants in the inter-
val v <, < |,

We now make a conjecture, which we have not
succeeded in proving. The conjecture is that the
asymptotic probability for any newly-established
species to cause a species with v, = v to disappear,
k(v), Is proportional to the integrated probability
of successful invasion anywhere on the v-interval
above vu:

1
x(v)=xf “births™, (33)
That is,

|
K(U)-—"—&J. c(s)mis)ds. {36)

Here « is a proportionality constant, x < |, which
specifically measures the average probability that a
NEW mutant appearing somewhere in the interval
(v, 1) will extinguish a species at .

For case I and with new mutants equally likely to
appear anywhere between v, and Umg, (that is, a
uniform probability distribution ), n(v)=1 on
(0, 1)), we have made direct analytic calculations—
based on Fig. 1—of k(v), looking up to the next 15
or 50 species with v, > o; this suggests eqn (36) is valid,
with « around 0-10. More generally, the extensive
numerical simulations reported in Section 8 below,
suggests that eqn (36) is indeed accurate, particularly

for uniform distributions of new mutations (where we
find x =0'114 for both cases I and II in the limit
n»1).

This being said, eqn {36) remains an unproved
conjecture. We hope others will be motivated to work
on it. Accepting this conjecture, we have that the
average rate at which species are being removed,
between v and v + dv, is p(ehe(v)de.

6.4. QUASI-EQUILIBRIUM APPROXIMATION FOR plv)

Under the Born-Oppenheimer style of approxi-
mation outlined above, we now estimate the quasi-
equilibrium value of p () by setting the rate at which
the new mutants successfully establish themselves at
v equal to the rate at which existing strains are lost.
This birth—death equilibrium is

c(v)r(v) = pv)e(r). (37)
Or. using eqn (36) for K{v),
o) = tC(v)fr(v) (38)

% f c{s)n{s)ds

Because ¢(v) appears in both numerator and denomi-
nator in eqn (38), it is only the functional dependence
of £(v) on v that matters. We put c(v) =1 for case I
{constant &,), and ¢(v) = v ' for case I (constant p,;
thence v, =u,/b,), as discussed under Section 6.2
above.

Equation (38) can be written by defining g(v) as

g(v) =f c{s)mis)ds. 39
Then
. _lding)
plv)= i (40

The total number of strains/species with v, < v may
be called /(v). Clearly I(v) = §6p(s)ds, and so, from

eqn (40),
I(v) =EI 1n(§3—;). (41)

Here g(v) is defined by eqn (39). The overall total
number of strains/species is then n = (v, ); we will
return to this in Section {0.

We conclude Section 6 by deriving explicit ex-
pressions for p(v) for some particular distributions
n(v), first for case I and then for case II.

6.5. SPECIFIC FORMULAE FOR p(v): CASE |:
“SUPERINFECTION™
Here, for a constant transmission rate b;, we put
¢(v) = constant throughout (the value of the constant
is immaterial, as it cancels out of our calculations).
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6.5.1. Uniform distribution

[f new mutations are equally likely 1o appear
anywhere on the v-axis, in the interval (0, 1), then
n(v) = 1. Consequently g{v)}=1—1r, and p(v) is
given simply by

p)=1la(l — )], (42)

6.5.2. Exponential distribution

Here we assume that new mutants are more likely
to arise with relatively small values of ¢. as described
by an exponential distribution, n{vy= /e " Here
g(v)=ile ™ —e" "), and eqn {(38) gives

plv)=ifle(l —exp{—a{l — )} (43)

" In the limit 4 =0, we recover the uniform distribution,
‘and eqn (43} reduces to egn (42).

6.5.3. Harmonic distribution

For reasons which will be discussed under Section
6.6.3 for case II, below, it i1s also of interest to ask
what happens if mutants arise with ¢,-values such that
l/v, is uniformly distributed between 1 and some
maximum value, 1/§ » !|. This gives a harmonic dis-
tribution for n(v) in the interval (4,1), and
e{v)n(r)dv = a dv/r’, where a is a normalization
constant [which cancels out of eqn (38). We get
gw)=al(l/v) - 1], and

plr)y=1/ar(l —v)]. (44)

6.6. SPECIFIC FORMULAE FOR p(r): CASE II:
**“METAPOPULATIONS"

For case 11, as discussed under Section 6.2 above,
we put c(v) proportional to r ~"? (agam. the propor-
tionality constant cancels out}.

6.6.1. LUniform distribution
For n(z) = |, we now have g(r} = 2(1 —¢'7). From
eqn (38), p(r) is
plr) = 1/[2a' {1 — ' 7). (45)

6.6.2. Exponential distribution

1l

For case II, we have g(v)=/ [ s e ~ds
(ri)'? ferf(i')y—erf(2'e'?),  with  erf(z)
272 [fexp(—x7) dx. It follows that

p(r) = (1/a)(i/m) e [erf (5’ 7) —erf (A" "))
(46)

H

6.6.3. Harmonic distribution

Remember that case II is motivated by the multi-
species metapopulation models. and in particular by
the special case when all patch death-rates are equal

(v;=1,), but with differing dispersal rates, b, for
different species. To enable us to keep “v™ as the basic
parameter for this metapopulation “case II”, we
formally defined v, = v,/b,. But this suggests we ought
to consider the case when mutant species arise with
values of &, chosen uniformly on some interval (say,
vy to uy/é, with 8 < 1), which corresponds to a har-
monic distribution for v-values on the interval (4, 1).
As above, we have n(v)dv =a dvjv?, and thence
g(0) =(2/3)ai(v~** - 1). It follows that p(v) is given
by

plv) = (32e) (1 — ¥ 7" (47)

7. Population Abundance of Individual
Strains/Species

In Section 5 we provided exact derivations for the
asymptotic total abundances of all species between v
and v + dov. Specifically, we found x(v)=1/2 [eqn
(23)] for case I, and x{(z) = 1/(2v'?) for case II [eqn
(31)]. And in Section 6 we have given heuristic
arguments, leading to explicit expressions for the
asymptotic average number of species between v and
v + dv, p(v)dv; see eqns (42)H47).

The average population size or abundance of any
one species, y(v}), is now simply given by eqn (21),
repeated for convenience:

yv)=x{®)ip). (48)

Thus, for example, if new mutants arise with
v-values that are uniformly distributed along the
v-axis, w{r}= i, then for case [ we have from egns
{23) and (42)

yiv) = (2.2)(1 —v). (49)

The corresponding expression for case Il is, from eqns
{31) and (43).

)= a(l —¢'), (50)

and so on.

8. Numerical Simulations

We have also made extensive numerical studies of
eqn (2), starting with a few species (with p;-values
drawn from a specified distribution), and letting one
randomly chosen mutant appear at each time step (i.e.
constant mutation rate, with the average time be-
tween mutations being 1, with t = 1). In effect, we
assume the “reshuffling dynamics™ are very fast com-
pared to new mutants appearing, because we use the
stable equilibrium solutions [eqns (3) and (4)] for
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successive ensembles of species, rather than actually
following the transient dynamics.

Qur procedure is thus as follows. At each time step,
a randomly chosen mutant arises (with the v,-values
specified by the probability distribution ().
Equations (3) and {4} tell us whether this new murant
will persist. If it does, existing species may be extin-
guished, as described by eqns (3) and (4). Time 1s
measured by the total number of mutants that have
arisen, N{r): = tN(s). The total number of species
present increases slowly, as discussed in Section 10; at
any one time, we have an ensemble of n(r) species,
characterized by their population sizes {1} and lo-
cations on the v-axis {r,} (for case I, v, measures
virulence or patch death-rate; for case I, v, is a formal
varnable, inversely proportional to transmissibility or
dispersal rate).

Figures 2 and 3 are for case I, with n{r) = 1. That
15, they correspond to all species/strains having the
same transmissibility, and to new mutants having
virulence, v,, equally likely to have any value between
Ve @0d v, (normalized to be 0 and 1, respectively);
species with higher or lower v, cannot persist.

Specifically, in Fig. 2 we start with one arbitrarily
chosen species, and let the system run until a total of
10° mutations have arisen. Starting from the time
point when 10* mutations have arisen, we sample this
system at every 100th time step (after every 100 new
mutations). Aggregating all species in bands of v-val-
ues of width 0-005 (i.e. in 200 intervals along the
v-axis) at each sample point, we compute the average
values of p(v), y(¢) and x{v), as defined above. In
Fig. 3 we proceed similarly, but now the system is run
for longer, until a total of 10" mutations have arisen.

In both Fig. 2 and 3, the dashed lines correspond
to the theoretical results: eqn (23) for x(v), eqn (42)
for p(v), and eqn (49) for y(v). The phenomenological
parameter « is estimated from the numerical results
for y(v) as a function of v, and this value of a is then
used to plot the theoretical curve for p(v). Theory and
numerical results are in excellent agreement. This is
not surprising for x(v), where our theoretical result,
x(v) = 1/2, 1s asymptotically exact. But the theoretical
curves for y(v) and p(v) rest on the heuristic argu-
ments about “death rates” in Section 6.3, and we are
surprised that the agreement with numerical results is
so good.

We have shown results for both ¥ = 10° (Fig. 2)
and N =10" (Fig. 3), to give some idea how
the stochastic fluctuations depend on the size of
the sample, and thence on how long the system is
run.

Figure 4 is for case II, again with the uniform
distribution of mutants along the v-axis, #(v) = 1. In
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FiG. 2. Theoretical (dashed curves) and numerical {solid curves)
results are shown for {a} the average number of strains/species,
p(v); (b) the average abundance of individual strains/species, y(v);
and {c) the total abundance, x(r), respectively, as functions of the
variable v which is & measure of virulence, ot an inverse measure
of dispersal ability). Specifically, these numerical results are ob-
lained by running the system of eqn (2) until a total of 10° mutants
have appeared (¥ = 10%), with v-values uniformly distributed along
the v-axis and with all strains/species having the same dispersal
values (1.e. case [ with =(¢) = |); this corresponds to the “superin-
fection™ metaphor. After (0 mutants have appeared, the system is
sampled at time intervais corresponding to 100 mutations, and the
average values of p(v), y{v), and x(v) are computed for each of 200
intervals along the v-axis, spaced 0-005 apart. The theoretical
curves come from eqns (42), (49) and (23), respectively. The
agreement between the asymptotic theoretical results and the
stochastic numerical simulations is good: for y(v}, the theoretical
parameter o of eqn (36) is set at 2 = 0-1159 by fitting the numericat
results; (&) and (¢) for p and x, respectively, then have no adjustabie
parameters.

these figures, we have used the intuitive shorthand of
calling case I “superinfection”, and case II “metapop-
ulation”, to reflect the underlying motivation dis-
cussed in Section 3. In Fig. 4, the numerical results are
obtained exactly along the lines followed for Fig. 3,
with again ¥ = 10". We display x(v), y(v) and p(v)
as functions of v'?, rather than o, to facilitate com-
parison with the theoretical results in eqns (31), {50)
and (45), respectively.

Although the theoretical expressions for x(v), y(v)
and p(v) in the “metapopulation’ case IT are very

e,
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Fic. 3. Exactly as for Fig. 2. except now the system in this
superinfection metaphor is run until 10”7 mutants (N) have ap-
peared. Again. the numerical results are obtained by sampling the
system at time intervals spaced 100 mutations apart. beginning at
the point when 10* mutants have appeared, and averaging. The
agreemen! between asymptotic theoretical results and numerical
simulations is even betier than in Fig. 2. because the stochastic
fluctuations are now less noticeable (being reduced by roughly a
factor 10. as the number of mutations has increased by a factor 106,
compared with Fig. 2). Here 2 = 0.1147.

different from those for the “superinfection” case L,
theory and numerical results are again in excellent
agreement. As before, this may be expecied for our
asymptotically exact egn (31), x{v) = 1/(2r'?), but the
agreement with the heuristically based formulae for
y(r) and p(r}is remarkable. Even more remarkable
is the fact that, for the uniform mutant distribution
{(n(r)=1), case I and case I! give the same value for
the phenomenological parameter @ & = 0-115 from
Fig. 3 and « = 0-113 from Fig. 4.

For the other mutant distributions, such as the
exponential and harmonic distributions discussed in
Section 6. the agreement between theory and numeri-
cal simulations is well within the limits of the numeri-
cal Auctuations, and thus looks good. if the system is
run up to N = 10° or so, as in Fig. 2. But, as shown
in Figs 5-8, if the system is run long enough for most
of the fiuctuations to be smoothed out, N =107 or

more, the agreement is not as good as it is for the
uniform mutant distribution.

Explicitly, Figs 5 and 6 are for the exponential
distribution of mutant v-values, for the “superinfec-
tion” case [ and the “metapopulation”™ case II, re-
spectively [hence eqns (43) and (46) for p(v),
respectively]. Figures 7 and 8 are likewise for the
harmonic distribution of mutant v-values for cases [
and 11 {eqns (44) and (47) for p(v)], respectively. In
all four cases, the agreement between theoretical and
numerical results is nmot bad—and it is excellent
for x(v}—but not as good as in Figs 3 and 4. As in
Fig. 4, the horizontal axis in Figs 6 and 8 is scaled as
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FiG. 4. The numerical resuits here are obtained exactly as in Fig.
3. by running the system until 10° mutations have appeared. The
mutation distribution is again umiform along the p-axis {(={r) = 1).
but now we assume the “multispecies metapopulation” metaphor
of case I (all species have equal virulence or patch death rates, but
different transmissibility or dispersal ability; v is defined formally
as v = ty/h,). The asymptotic thearetical expressions for p(v), y{v)
and x(v) arc here given by eqns (45), (50) and (31), respectively. The
one parameter is determined by fitting the theoretical expression for
p(r) to the numerical results (z = 0.1127), so that the top and
bottom figures have no adjustable parameters. Notice that the
honzontal axis has been rescaled 1o be r'? (not v), as suggested by
the theoretical results, egns (45), (50} and (31). This has the
consequence of effectively expanding the v-axis around the origin,
so that the stochastic effects seem larger; for very smali values of
2, we have essentially no strains/species. Overall, the agreement
between theoretical and numerical results is again excellent, as in
the different case illustrated by Fig. 3.
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FiG. 5. As for Fig. 3 for "supennfection”, case I, but now with
the mutation distribution being exponential (n{v) =4 e ", with
i =135 in this example); as in Fig. 3, the system is run unti 107
mutations have appeared. The asymptotic theoretical resuits for
plv) [eqn (43)], y{v) [from eqn (48)] and x(v) [eqn {23)] are
indicated by dashed lines. The phenomenclogical parameter a is
estimated by fiting the theoretical expression for v{v} to the
numerical results (@ = 0.1836); the compansons for p(v) and x(v)
thus contain no adjustable parameters. Because fewer mutations
appear for larger v-values with an exponentiai distnibution, the
results are more noisy as v—1. As discussed more fully in the text,
the agreement between theoretical and numernical results is not bad.
but not as good as in Figs 2-4.

v'?, rather than v, to facilitate comparison with the
theoretical results; this means the leftwards parts of
Figs 6 and 8 are “stretched™ relative to Figs 5 and 7,
which should be kept in mind when comparing them.
In all cases, the parameter « is estimated from the
fit between theory and numerical results for y(v)
versus v, so that the theoretical curves for p(v) have
no free parameters. In summary, these extensive
numerical results suggest that our asymptotic analytic
results are reasonably reliabie, especiaily when the
distribution of mutant v-values is uniform.

9. Relative Abundances of Species

Having established the dynamical properties of
these models for superinfection or multispecies meta-

populations, and their evolution over time, we now
turn to sketch the implications for species relative
abundance (SRA), for total species numbers over
time, and for the effects of reducing the number of
hosts or patches.

In Tilman's (1994) studies of these systems, an
equilibrium distribution of SRA—which was geo-
metric or uniform—was assumed and then the under-
lying distribution of dispersal/transmission rates,
{b,}, which would give such an SRA (assuming
constant patch death rates, v, = v,;) was deduced.

Here, we deduce the SRA from the basic set of eqns
(2), under specified assumptions about the distri-
butions of values of ¢, and b, of the continually
appearing mutations. Specifically, for the quasi-equi-
librium situation described in Section 6.1, we have
information about members of species and about
thetr abundances, as functtons of v, contained in p(r)
and y(v), respectively. From this, we can construct
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FiG. 6. As for Fig. 5, but now for the “metapopulation™
metaphor, case II (again with an exponential distribution of
mutations and 4 = 5). The theoretical estimates for p(v) [egn (46)],
y{v) [from eqn (48)] and x(v) [egn (31)] are again represented by
dashed iines, and, as in Fig. 4, the horizontal axis is plotted as v'?,
as suggested by these theoretical results, The parameter a is
estimated from (b} (2 =0-0791), and (a) and {(c) thus contain no
adjustable parameters. The fit between rumerical results is excellent
for x(v), and reasonable for p(v) and y(v).
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Fic. 7. As for Figs 3 and 5 for the “superinfection” metaphor.
case I, run for 107 mutations taken from a harmonic distribution
{r{z) such that 1 is uniformly distributed between land 1/6 » I,
here & = 0-01). The dashed lines represent the theoretica} results for
p(r) [egn (44)], y(v) [from eqn (48)] and x(r) [eqn (23)}. As before
2 is estimated from (b) {z = 0-1705), with no adjustable parameters
in {a) and (c). With this harmonic distribution, there is a minimum
r-value. v = é = 0-01, as shown. The agreement between theoretical
and numerical resuits is, as before. exceilent for x(r). and not bad
for p and ¥

“rank-abundance” plots. where species are ranked
(along the horizontal axis) in descending order
of their abundance, while the abundances them-
selves are plotted on the vertical axes {usually logar-
ithmically). This is a standard way of displaying
information about SRA (see. for example, May,
1975).

For our models. things are simpler when y(r) is a
monotonic function of ¢. as it is for both the opposite
limiting cases I and II, for most forms of the mutant
distributions. m(r). Thus. as is seen from Figs 2-8,
y(v) decreases monotonically with increasing v for
the uniform and exponential distributions (Figs 2-6),
although things are more complicated if the distri-
bution of mutant z-values is harmonic (Figs 7
and 8).

In what follows, we mainly restrict attention to
the case of a uniform mutant distnibution, but
considering both of the opposite limits of case I

(constant transmissibility) and case IF (constant viru-
lence).

If the abundance of individual species, y(v), indeed
decreases as b increases, then the corresponding
“rank” is measured simply by the number of species
having v-values below v. But this is the quantity /(v)
defined by eqn (41). That is, for monotonically de-
creasing abundance y(v), rank is measured by F{(r).
For the more general case where y(v) is a unimodal
function of v in the interval 0 < v < 1 (as in Figs 7 and
8), we compute the rank abundance reiation as fol-
lows: for any given abundance, y(v), iess than that of
the most abundant Species, ¥n.,. calculate (from y{v)
as a function of v) the two corresponding v-values, v_
and v, , below and above the value, v, which gives
Vmax» TESPectively; the total number of species with
abundance greater than y(v)—the “rank” of y(v J—is
then I = [i* p(s)ds.
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Fic. 8. This sequence of Figs 3-8 is complcted by showing the
analogue of Figs 4 and 6 for the metapopulation” metaphor, case
1L, but now with a tota! of 107 mutations gencrated by the harmonic
distribution defined in Fig. 7. Dashed lines show theoretical
estimates for p{v) [eqn (47)), y(v) [from eqn (48)] and x(v) [eqn
(31)]. For the same reasons as in Figs 4 and 6, the horizontal axis
is scaled as v, rather than v. Because of this scaling, the minimum
value of pir =0-0l, pi2=01) is more obtrusive. From (b), we
estimate a = 0-1741, leaving no adjustable parameters in (a) and
{c). As before, theoretical and numerical results are in cxcellent
agreement for x(¢). and are reasonable for p and y.
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CASE [, WITH UNIFORM MUTANT DISTRIBUTION (r({z)}=1)

In this limit, the g(r) of eqn (39) is g(v) =1 — v,
and so the rank-function, /{r), is given by eqn (41) as

Iry= (/i — o). (51)

The corresponding expression for y(v) is given by
eqn (49), y(r) = («/2)(1 —v). We can eliminate the
“dummy” variable, r. to get an explicit relation
between rank, /, and abundance. y, for this example:

= (1) Infxi(2y)). (52)

That is, in this basic example, we get a straight line
{(with negative slope, —x) if we plot in(abundance)
against rank.

Figure 9 gives the SRA generated by our numerical
simulations of the system of egqns (2), for case [ and
a uniform mutant distnibution, It confirms the ana-
lytic result. showing a linear relation between
In(abundance) and rank. Such a relation corresponds
to a geometric distribution of SRA.

CASE 11, WITH UNIFORM MUTANT DISTRIBUTION
(n(v)=1)
Here we have c(v) =v'?, so that, from eqn (39),
g(®)=2(1 —¢'?), and so, from eqn (41),

H) = (1)1l — ")) (53}

From eqn (50), y(v) = 2(! —v'?). Again eliminating
the dummy variable v, we have the rank-abundance
relation for this exampie:

I =(l/x)In(x/y).

This 1s essentially identical with the corresponding
result for case I, as illustrated by Fig. 9.

(54)
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Fi1G. 9. The rank-abundance relation generated by the ““superin-
fection” metaphor, case |, with mutations arising uniformly along
the v-axis. As suggested by the asymptotic theoretical eqn (52),
there is a roughly linear relation between the logarithm of abun-
dance (vertical axis) and species rank (i.c. position in the abundance
hierarchy, as piotted along the horizontal axis). For a more full
discussion, see the text.
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Broadly simitar patterns are found for exponential
distribution of mutants, where the results for y(¢) and
p (v )—and thence /{r}—are indicated by the theoreti-
cal and numerical curves in Figs 5 and 6. For a
harmonic distribution of mutants, the theoretical and
numerical expressions for ¥(¢) as a function of ¢ are
unimodal on (0, 1), rather than monotone decreasing;
see Figs 7 and 8. The corresponding rank-abundance
relation is calculated along the lines sketched above.
For example, for Case [ with a harmonic probability
distribution of mutants [see eqn (44) and preceding
discussion], we have v =(a/2%(l —¢), and hence
vov =D £ = piye ) with  y =28,
The rank-function. /. is then /= p(s)ds =
(1/a)in(vs :e7). That is. for this example. the rank
abundance relation s

[ =) nd{{l+(f — vy )Y
{l *(l _,V.'ﬂymax)l:]}'

For y noticably less than y,,,, eqn (55) reduces to the
approximate expression

(55)

= (200 nfx/(2»)). (56)

Apart from a handful of the most abundant species,
eqn (55) thus also implies a geometric distribution of
SRA, similar to eqns (52) and (54) (but with double
the slope when In(y) is plotted against I, essentially
because species abundance falls away on two sides of
the peak for a humped y(v) vs. v curve, as in Figs 7
and 8, in contrast to the single side of the peak for the
monotene y(v) vs. ¢ curves of Figs 3-6).

We conclude that, in general (and especially if the
spectrum of mutations is uniform or close to it along
the v-axis), dynamical models of the kind studied here
tend, over time, to produce roughly geometric pat-
terns of SRA. Of course, our models emphasize
an essentially one-dimensional trade-off, namely, en-
hanced competitive ability (as reflected by position in
the dominance or superinfection hierarchy) versus
superior transmissibility and/or lower induced death
rate of hosts or patches. A more richly textured set of
factors would, other things being equal, tend to
compound such geometric distributions, eventually
producing a lognormal distribution of SRA once
things were sufficiently multifactorial.

10. Total Number of Species as a Function
of Time

As our systems of eqn (2) evolve, with new mutant
species/strains appearing and sometimes establishing
themselves and displacing earlier ones, how many
species do we expect to have at time ¢ after the start?

"
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The answer to this question follows immediately
from eqn (41) for the asymptotic value of I{v), the
number of species with v, < v. The 1otal number of
species at time 7, n(t), is simply J(t,,. )

n(1) = (1/2)In{g(0)/g (vma)]. (57)

Here v,,, is the v-value of the species closest to the
upper limit of unity, and g(v) is defined by eqn (39).
For n(r) » 1, we can write v, = | — ¢(t}, with ¢ < 1.
Then glog, )= _,c(sm(s)ds ~ec(l)n(l}, and we
can write

n{t)={/a)in{a/e). (58)

The constant a is defined as a = [jc(s)n(s)ds/
c(Da(l).

It remains to find an explicit expression for ¢(1). We
first note that, for any single mutation, the probability
of being within a small distance ¢ of ¢, =1, p(¢), is
given by

]
p(e)zj n(s)ds. (59)
[

Here we can ignore the complications of establish-
ment, encapsulated in the factor ¢(v), because—by
assumption—such a mutant will be the closest one to
v, = 1, and will therefore automaticalty establish itself.
Thus, for ¢ < I, eqn (59) gives

plc) = en(l). (60)

The corresponding probability that any one mutation
will not fall between ¢ =1 —cande = 1is | — p. After
¢ trials or mutations, this probability of no mutation
faliing between v =1 —¢and ¢ =1 is {1 — p}’, which
fore <1 and r» | is e We may thus define (),
the expected difference between ¢, and | after a long
time (, as the value of ¢ such that the probability of
no mutant having arisen between | — ¢ and 1 is 50%:
e~? = (-5, Then, using eqn {60) for p(¢) in the general
case of a mutant probability distribution m(r), we
have

c(t) = (In 2)/[rm(D)]. (61)
Substituting eqn (61) in eqn (58). we have the result
n(ty = (a)Ingye). (62)

Here 7y is some constant, which depends on the mutant
probability distribution, n(v), and the asymptotic
establishment probability, c{v) v =L‘>c(s)1z(s)ds/
[c(1)In 2]. This result, egqn (62), has been derived
under quite general assumptions. It says that the
asymptotic total number of species increases as In1,
with time r measured in units of the average interval
between mutations, 1 (so that we can alternatively

simply count numbers of mutations, = N(f)1;
usually we put 7 = 1).

Figures 10 and 11 give numerical results which
confirm the theoretical eqn (62). Figure 10 is for case
I (c(v)=1) with a uniform mutation distribution
(nr{v)=1, and so y = 1/in2), and it shows—apart
from initial transients—a linear relation between total
number of species, n{7), and time or, equivalently,
number of mutants to have appeared, plotted logar-
ithmically (the figure is based on a very long run,
extending to N = 10'* mutants).

Figure 11 illustrates some of the underlying fea-
tures of eqn (62) and Fig. 10, by showing the numbers
of species, and their abundances and locations on the
p-axis, for snapshots of a representative run {of case
I with n(r) = 1) at ¢ = 10°, 10*, and 10°. As is clear
from eqn (41) for I(v), the total number of species
with v-values up to, say. v = 0-5 does not increase
with time, once it has reached the long-term average
value given by eqn (41). There is reshuffling and
fluctuation in the exact locations and abundances of
the strains, but J(0-5) remains at around its average
value of 6-3. What happens as time, ¢ (and mutations,
N), increases is that v,,, gets closer and closer to
v = 1, thus adding new species (with low abundances)
at the upper end of the r-spectrum; such new ad-
ditions accumulate slowly, as In 1.

The result of eqn (62), that n(t) scales as In¢, is a
robust and interesting one for models of the general
kind explored here. We will look at it further in
Section 12.

100 —- - N, e
i _./
80 - -
' . _f'
| ’,-
60 - -
4
13 /
40+ o
: . o
20 L. ’.',ww’
| — ’."‘..-;‘
. 2L 4 6 8 10 12 14
Logt

F1G. 10. The number of strains/species arising in the sysiem of
eqn (2), n{1), as a function of time, I, or equivalently of the total
number of mutations to have appeared (N = i, under the normal-
ization that the average time interval between successive mutations,
1, is given by t = 1). Specifically. this figure is for the *'superinfec-
tion™ case I, with mutations generated uniformly along the v-axis
(r{r)=1). The extensive numerical simulations follow the system
until a total of 10° mutants have appeared. The figure shows
average values of 100 independent runs. The linear regression
is done for the S0 larger values of N. These numerical results
are in excellent agreement with the asymptotic expression,
n(r) = (lja)In(r}, of eqn (60): here & = 0114,
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FiG. 11. Here the features underlying Fig. [0 are further am-

piified. The abundance of the species present, and their location
along the v-axis, are shown for the same numerical simulations
illustrated in Fig. 10, at the particular times {a) 1 = 10% (b) 10*; and
(c) 10°. The propertics illustrated by Fig. | [ are discussed at length
in the text.

11. Effects of Reducing the Numbers of Hosts or
Habitat Patches

Suppose that in egn (1) or (2) the total number of
hosts, or of available habitat patches, is reduced (by
environmental catastrophe, human activities, immi-
gration, or whatever) from the original total of X to
some smaller fraction, AK, with A < 1. The parameter
h thus measures the remaining fraction of hosts or
paiches. How will such a change affect the total
number of strains/species, the average “virulence”,
and so on?

To answer these questions, we return to our basic
eqn (1), and remember that the variables y,
(i=90,1,2,...,n) represent the total number of
hosts/patches that are susceptible/empty (i =0) or
infected/occupied by strain/species i (i =1,2,...,n),
divided by the total number of hosts/patches, K.
Thus, in the original state, £/_,y,=1. But if a
proportion 1 —h are vaccinated/destroyed, then
Zf_o ¥, = h; under our assumption that transmission/
dispersal is homogeneously distributed among all

hosts/patches, the “removed” fraction | - A of the
originai hosts/patches are no longer candidates for
viable infection or colonization—propagules arriving
at these sites “‘fall on stony ground”. For a more
extended discussion of this formalism, in the context
of vaccination programmes, along with supporting
data, see Anderson & May (1991, ch. 5). Nee et al.
{1994) discuss how this analysis can be extended,
mutatis mutandis. 10 metapopulation models.

Returning to our basic eqn (2). we now have
vo=Hh —ZX7'_, »,, and thence

"

dr _ _u[{h& e

. (b +b) | (63)
d: ;:H-IJ’( J)} (

The stable solutions are thus given by

yr=h—(u )b — 3 yF+(hh)

j=t=1

(64)

if v*>0, and by

v* =0,

R

(65)

otherwise. These equilibrium solutions are exactly as
in eqns (3) and (4), except that the first term on the
r.h.s. of eqn (64) is now A, not 1.

This implies that the maximum virulence is now
reduced, with [(« + 0,)/8lmax < h. Essentially all our
previous results remain valid, with the simple change
that ““1"—the renormalized limit to the range of
v-vaiues in Figs 2-8 and so on (with ¥ =0 and
b = 1}—is replaced by "h".

Specifically, for case [ (the ‘*‘supennfection”
metaphor, with &, = constant = 1) and with a uniform
distribution of mutants (z(r) =1 on (0, 1)), we can
again run through the arguments in Section 3, 6 and
7, to get expressions for x(h,v), p(h,v) and y(h,v),
respectively. Clearly the total abundance of species
between » and v + dv, x(h, v)dp, is exactly as before,
for0<v < h:

x(h,v)=1/2. (66)
The density of species at v, =v is now
plh,v) = lf[a(h —0)] (67)

And the average abundance of an individual species
at v is

yih,v)=(2/2)(h ~v).

The species-rank function, I{(v) =jgp(s)ds, is then
given explicitly by

(68)

f(v) = (Ya)In[h/(h —D)]. (69)

/6 .
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Combining eqns (68) and (69), the rank-abundance
relationship is seen to be

I = (Va)In[hx/(2y)). (70)

This differs from the earlier eqn (52) only by the
constant factor h in the logarithm. That is, we get a
linear relation between rank, J, and ln{abundance),
with the same slope as before, but with the intercept
with the vertical axis (the maximum value of in y)
being lower (by the amount In A).

In general, if the host/patch removal takes place at
t =0, then the asymptotic expression for the total
number of species, n(h, t), a long time, £, later is again
obtained by the arguments given in Section 10 (with
“h™ consistently replacing *'1” as the upper limit to
v-values). This gives

nih, 1) = (1a)in[y ()] (71)

Here, as before, r is measured 1n units of the average
interval between mutations, t (usually, we put 7 =1,
and so (=N, the total number of mutations).
Equation (71) is identical with the earlier eqn (62),
except that the constant y(#) now has the somewhat
smaller value y(h) = [} c(s)n(s) ds/[c(h}In 2]. In par-
ticular, for case I, with a uniform mutation distri-
bution (c(v}=1 and n(v) =1}, y(h) = h/(In2).

Thus the most interesting properties of n(r) are
asymptotically affected only slightly by removal of
hosts or patches: the total number of strains or
species, after a sufficiently long time has elapsed,
depend logarithmically on ¢ (or, equivalently, on
the number of mutations that have appeared). On
the other hand, the immediate effect of removing
a fraction (1 — A) of all hosts or patches is to cause
a marked reduction in the total number of
strains/species. Suppose the pristine system has been
running for a time 7,, accumulating a total number of
species n(h = 1,1,) given by eqn (62). If a fraction
1 — h of all patches are then removed at 1 =, the
number of species remaining will be given by integrat-
ing the pristine expression for the number of states at
v, p(h = 1,r), from v =0 to the new upper hmit at
r=h:

h
n(h, t,)=j p(h =1,r)de, (72a)

0
h
=(|m)J’ dei(l —v). (72b)
0

That is, immediately after the patches are removed,
the remaining total number of species is

n(hot)) = (1) In[1(1 = A)]. (73)

Then, as time goes on, the total number of species
{with v-values in the interval (0, #)) slowly grows—as
described by eqn (71) with “” =t —f,—and new
species crowd in close to the upper limit at v = 4, in
the manner indicated by Fig. 11.

Figure 12(a) illustrates these processes. The figure
shows the results of numerical simulations for case I
with a uniform mutation distribution. {c(v) =1 and
7n{v) = 1). After a time ¢ = 3000 (i.e. after 3000 mu-
tations have appeared), 50% of all hosts/patches are
removed. The result is seen initially to be a marked
reduction in the total number of species present,
followed by this total then recovering to something
close to the previous levels (at equivalent times, or
after an equivalent number of mutations). At time
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Fic. 12. (a) The number of species present, n{r), as a function
of time. 1 (or. equivalently, number of mutations that have arisen,
N =1), 15 shown flor the “supeninfection” case I, with mutations
arising uniformly along the r-axis (x(v) = 1). At = 3000, the total
number of hosts/patches is decreased by 50% (k =05); n(1)
subsequently increases, uniil again reduced by removal of 90% of
all hosts/patches at ¢ = 6000 (h =0-1). Subsequently, n(s) again
increases; the somewhat different fiuctuation character for ¢ > 6000
is because mutations are still arising uniformly along 0 < v < 1, but
only 1/10 of these (0 < v < 0-1) now have the possibility of persist-
ing (M, =01 for A =0-1). (b) Corresponding average values of
the virulence, (¥, as a function of time, 1. Removal of 50% and
then 90% of al! hosts/paiches permanently reduces (V') to 0-5 and
then 0-1 of its ongina} value. See text for a fuller discussion.
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t =6000 {(i.c. after a further 3000 mutations have
occurred), there is a further reduction in the number
of hosts/patches, 10 10% of the original total. Once
again, there is an immediate marked reduction in the
total number of species present, followed by a recov-
ery back toward a higher species total. As described
by the theoretical result, egn (71), this TECOVery goes
as n(h, t) = (1ja)[In(y(1)z) + In{A)); after equal inter-
vals of time have elapsed, the species totals with
h =0-5and & = 0-| will be lower than the correspond-
ing totals for & = | by 6 and 20 species respectively
{remember, x = (0-114 here). Figure 12(a} accords
with these theoretical expectations.

Finally, we emphasize that the effects of host/patch
removal are significantly to reduce the average levels
of virulence. For the “superinfection™ metaphor, this
means that the effects of vaccination are to remove
the most virulent strains, even though vaccination
levels may be insufficient to eradicate infection. For
the “multispecies metapopulation™ metaphor, the
corresponding phenomenon is that the inferior com-
petitors, with their compensating greater mobility
and/or lower patch death-rates, are favoured by
patch removal; this conclusion was previously empha-
sized by Nee & May (1992) for the two-species case,
and extended to multispecies settings by Tilman
(1994).

Specificaily, the average virulence, (v}, is given
generally by the definition

(:;)-——-j ™ vx(v) dv iff(m)c(u)dv. {74)
0 P40

That is, we compute the average value of v, weighted
according to the total abundance of species between
vand v + dr, x(v)dv. For case [ (constant 5,) we have
x{v)=1/2, regardless of the mutation distribution,
and so

vh)) =hj2. (75)

Thus the effect of removing a fraction | - 4 of all
hosts/patches is to reduce the average virulence of the
remaining strains from 1/2 to A/2. Figure 12(b)
illustrates this, applying the results of the numerical
simulations shown in Fig. 12(a) to calculate average
virulence as a function of time. For case II (constant
v, = vy, and then v defined formally as v = vy/b,), eqn
(74) gives (v{h)) = h/3, with again a reduction lin-
early proportional to A.

In summary, removing a fraction of all hosts or
patches has relatively little long-term effect on the
total numbers of species in these systems, although it
does have significant short-term effects. There are,
however, persisting implications for the average viru-
lence, or in other contexts, for the average competitive

abilities and, or mobility of the species which make up
the post-removal community.

12. Conclusions

The bulk of this puper has dealt with analytic and
numerical expioration of the dynamical properties of
the system of equations (2}, as metaphors for superin-
fection processes among hosts exposed to many
different strains of an infectious agent or for the
behaviour of multispecies metapopulations. In these
models. we huave an ensemble of strains or species,
with a strict luerarchy of competitive dominance.
Inferior competitors possess off-setting advantages in
having higher transmission or dispersal rates and/or
having lower virulences or patch death-rates. Our
emtphasis 1s on the evolution of such systems over
ume. as new mutants keep appearing. How many
species are there? What is their relative abundance?
What are the effects of reducing the number of hosts
or habitat patches?

Our main conclusions are as follows.

(i) The numerical and analytic results shown in
Figs 2-11 suggest that we have built up a good
understanding of how the system described by eqn (2)
evolves. But the heuristically justified eqn (35), which
describes the asvmptotic probability that a newly
established mutant with r, > v will cause the disap-
pearance of a species at «, remains a loose end. It is
clear from Figs 2. 3 and 4 that eqn (35) is asymptot-
ically accurate when the mutant distribution is uni-
form (m{r) = 1). for both the limiting cases I and II,
but it would be nice to have a rigorous proof and, if
possible. an a priori derivation of the phenomenolog-
ical parameter x (x = 0114 here). For more general
mutant distributions, n(r) # 1, Figs 5-8 suggest that
eqn (35) is a good first approximation, although a
fully accurate trextment is likely to show that 2
depends (weakly) on ¢. In short, it would be helpful
to have a deeper understanding of the issues summar-
ized in eqn (33).

(il As previousiy emphasized by Tilman (1994),
the specics whose dynamical interactions are de-
scribed by equations of the general form of eqn (2)
exhibit what an earlier generation of researchers
would have called “limits to similarity”. A newly
arising mutant will not necessarily be able to invade
the existing community of species; rather, its values of
v, and b, need to lie in particular ranges, and not in
others, if invasion is to be possible. These allowed
ranges depend on the species already present, and are
specified by expressions such as eqns (15) and (19) for
cases I and II, respectively; Fig. 1 gives a more
pictorial version of eqn (15). As time goes on, more
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species are slowly accumulated (increasing as In ),
but essentially all of these additions are achieved
by increasingly finc division—increasingly close
“niche overlap”-—among vr-values near the upper
boundary of the allowed range, Fig. 11 illustrates this
point.

Earlier work on “limits to similarity’” among com-
peting species tended to deal with questions such as
the average separation between species’ “‘utilization
functions” along SOMe resource axis, in relation to the
intraspecific variance (as reflected in the widths. w,, of
individual such utilization functions; see, for exampile,
May & MacArthur, 1972). But such studies left open
the question of what determined w,, and so—quite
apart from other problems—the conclusions did not
really provide any basic understanding of how many
species we might expect 10 find packed along such a
resource continuum. The models explored in the
present paper are diflerent; no limits to similarity are
built in. Rather, effective limits emerge, Over time,
from the evolutionary dynamics of the system. We
could start with a stable equilibrium in which an
arbitrarily large number of species were evenly (and
very closely) spaced along the v-axis, but this initial
state would be disrupted by mutations, and would be
reshuffied (losing many species in the process) into
some configuration more like those illustrated in
Fig. 11; even after extremely long times have elapsed
(and huge numbers of mutants have come and gone),
the species with relatively low t-values (or high
b-values: low virulence and;or high transmissibility)
will be relatively widely spaced. In these models,
moreover., pasl success ts no predictor of persistence,
as even the relatively highly abundant and widely
spaced species at the low end of the r-spectrum come
and go. as a result of reshufftiing caused by new
mutants invading at high v-values.

Obviously. we recogmze that these properties of
eqn (2) represent a very abstract metaphor for evol-
utionary processes, But it seems 1o be a new kind of
such mathematical metaphor. and one with suggestive
features.

(iit) One robust conclusion from our models is
that. asymptotically, the total number of species
increases logarithmically with time [or, equivalently,
total number of mutants that have appeared; eqn
(62)). This result holds for both the limiting cases |
and 1. and is essentially independent of the form of
the probability distribution, n{r). The result is illus-
trated in Fig. 10. Disturbance, in the form of a
{permanent) reduction in the number of hosts or
available habitat patches, causes an immediate
marked reduction in the species total. but this total
recovers. over time. as illustrated in Fig. 12.

Such an asymptotically logarithmic dependence of
the total number of species on time, n(t)~ (1ja)inze,
could, in practice, be hard 10 distinguish from n(z)
saturating to a constant value. Many trends in fossil
records—some of which are read as saturation—
could be seen as consistent with species totals tending
to rise as In ¢,

{iv) Our models evolve toward patterns of species
relative abundance that are geometric distributions
(i.e. linear relations between rank and In(abun-
dance)); these results are asymptotically exact if the
mutant probability distribution is uniform, n(v) =1,
and roughly true for more general n(v), for both of
the opposite limiting cases I and II. As reviewed
elsewhere (May, 1975; Begon el al., 1986), such
geometric SRA distributions are commonly observed
in early succession or in environmentally disturbed
situations, arguably because such settings tend to be
“ecologically one-dimensional” (in the sense that one
set of ecological factors tend to predominate). In our
models, there is indeed a one-dimensional character
to the trade-offs between competitive dominance and
virulence or transmissibility, along our y-axis, but the
emergence of a geometric SRA distribution is not
trivial or a priori obvious.

(v} Reducing the number of hosts {in the superin-
fection metaphor) or the number of habitat patches
(in the multispecies metapopulation metaphor) fa-
vours those species which are lower in the hierarchy
of competitive dominance, but which have compen-
sating advantages in greater transmissibility/mobility
or in lower virulence;patch death rate. This is intu-
itively understandable: if there are fewer hosts, then
the overall incidence of infection will be lower, and
fewer hosts will be multiply infected (*superin-
fected™'). consequently there will usually be less ad-
vantage to those strains with intrinsically lower
reproductive values. R,. but which persist because
they win in multiply infected hosts.

This observation has implications both for the
evolution of virulence in the presence of superinfec-
tion, and more generally. First, it suggests that for
infections which have many strains with different
virulences, and where superinfection occurs, a vacci-
nation programme which has insufficient coverage
1o eradicate the infection can nevertheless have
significant benefits in removing the most virulent
strains, and lowering the average virulence [see Fig.
12(b)]. Second, it provides explicit support, in a
superinfection context, for the ideas developed
by Herre (1993)—and supported by data for ne-
matode parasites of fig wasps-—that average virulence
is likely to be greater when host density is higher.
Third, in the more general context of multispecies
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metapopulauons, our results suggest that, other
things being equal. the species which survive extinc-
tion episedes caused by loss of habttat (as in Fig. 12)
will be those with better dispersal ability. and not the
superior competitors. We are pushing our metaphor
much too far in stating that such trends may indeed
be seen in some fossil records (e.g. Jablonski, 1994),
but we cannot resist it.

We are gratetul to David Tilman tor stimulating ex-
changes. This work was supported in part by the Roval
Society (RMM). the Wellcome Trust and Keble College
(MAN).
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Superinfection and the evolution of parasite virulence

MARTIN A, NOWAK avp ROBERT M. MAY
Department of Zoology. University of Oxford, South Parks Road. Oxford. O.X1 3PS { K.

SUMMARY

Earlier ideas that parasites evolve toward becoming harmiess 10 their hosts have. in recent years, given
wav to more analvtic studies. focused on the “basic reproductive rate’, R, of individual parasites. In

general. the biology of the parasite life cvele will lead 1o constraining relations between virulence
parasite-associated host death or reduction in fertility and transmissibility: the maximum £, may then
be attained bv virulence being high. or low. or at some intermediate level, depending on the details of the

constraining relations.

- Such studies have not generally included superinfection where an alreadv-intected host is infected by
another parasite-. Here we propose a general. but simple, model of superinfection. which is amenable 10
analvtical treatment. In such models selection does not simplyv act to maximize R,: superinlection leads
to selection for higher levels of virulence. highly polymaorphic parasite populations and verv complicated
dvnamics. We calculate the equilibrium distribution of parasite strains and the maximum level of
virulence that can be maintained by superinfection. We also note the equivalence berween our
“superinfection model’ and recent approaches to the study of the meta-population dynamics of multi-

species interactions.

I. INTRODUCTION

The ‘conventonal wisdom’ that successtul parasites
have to become benign is not based on exact
evolutionary thinking. Rather than minimizing viru-
lence, selection will work to increase a parasite’s
reproductive rate. If the rate of rransmission 1s linked
to virulence ‘which we define as increased mertality
due to infection), then selection mav in some cir-
cumstances lead to intermediate levels of virulence. or
even 1o ever-increasing viruience Mav & Anderson
1979, 1983, 1990; Anderson & May 1991 .

A much-cited example of evolution towards reduced
virulence is the Australian myxomatosis-rabbit svstem
‘Fenner & Ratcliffe 1963: bur see Anderson & May
1982, 1991 ;. A more recent exampie is the observation
that long-standing primate lentivirus associations are
apathogenic isimian immunodeficiency virus and
african green monkeys may have been coevolving for
millions of vears;, whereas the human immuno-
deficiency virus causes disease in humans. However,
there are also cases where long-standing host—parasite
systems have not evolved to become harmless. An
elegant and illuminating example is Herre's 1993}
study of nematodes of fig wasps; these nematodes have
a clearly detrimental effect on their wasp host, despite
the observation that fig wasps preserved in 20 million-
year-old amber have already been infected by nema-
todes.

Several mathematical models have been developed
to explore theoretical aspects of the evolution of
virulence (May & Anderson 1979, 1983, 1990;
Anderson & May 1981, 1982; Levin & Pimentel 1981;
Levin 1982; Seger 1988; Seger & Hamilton 1988;

Proc. R. Soc. Lond. B (1994) 255, 81-89
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Knolle 1989: Frank 1992: Lenski & May 1993: Antia
¢t al. 1994). Bremermann & Thieme 1989} have
established a *competitive exclusion’ principle, which
states that onlv the strain with maximum basic
reproductive rate can survive under quite general
conditions.

In general these models exclude the possibility of
superinfection. whereby an already infected host can
be infected by another parasite strain. There are some
interesting exceptions. Levin & Pimentel 11981} and
Levin 1983 4. 6+ have analysed two-strain models with
superinfection. where the more virulent strain can take
aver a host infected bv the less virulent strain. They
found conditions for coexistence between the two
strains. Their model is in fact a two-strain version of a
more general approach we are going to present here.
Bremermann & Pickering 1983) have looked at
competition between parasite strains within a host, and
concluded that selection will always favour the most
virulent strain. Frank ' 1992) has analysed a model for
the evolutionarily stable level of virulence if there is a
trade-off between virulence and infectivity, and if
infection occurs with an ensemble of related parasite
strains.

These models do not generally include vertical
infection (i.e. the transmission of parasites from infected
parent of offspring). Clearly the mode of transmission
is very important for the evolution of virulence (May &
Anderson 1979; Anderson & May 1981; Stewart &
Levin 1984; Levin & Lenski 1985; Bull & Molincux
1991, 1992; Ewald 1993; Herre 1993; Read & Harvey
1993). Vertically transmitted parasites should be less
virulent. There are some mathematical models for
vertical transmission. Stewart & Levin (1984) discuss

© 1994 The Roval Society
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different conditions for the evolution and maintainance
of temperate and virulent phages in & model where
phage reproducton can occur via infection of new celis
or vertcally via cell division. Nowak 1991 showed
that vertcal transmission can lead tw complicated
selective dyvnamics even for very simple models, Here
selection need not optimize R,. Yamamura ‘1993
analvses a host-parasitc coevolution model, where
vertical transmission leads to a reductuor of parasite
virulence. We refer also 1o Anderson & Mav 199]

and Busenberg & Cooke 1993 for more general
survevs of epidemiological models tor disease with
vertical transmission.

The present paper is about parasite evolution with
“parasiie” defined broadlsy 1o include viruses, bacteria.
protozoans. helminth and arthropod parasites), We
assume that the host does not evolve -at least on
timescales of interest 1o parasite evolution . We explore
the selective forces acting on the parasite populaton.
We break new ground bv considering the evolutionary
dynamics of a heterogeneous population of manv
different parasite strains with many different degrees
of virulence: and including superintection. In our
approach ‘superinfection” means that a more virulent
parasite can infect and ‘take over’ a host that is
already infected by a less virulent parasite strain. Thus
we equate virulence with a competitve advantage for
the intra-host dvnamics. We also do not consider the
possibility that a particular host is infected by ‘and
infectious for) more than one parasite strain at any
given time. We propose to call this later situation
‘coinfection’ as opposed to superinfection.

We will show that superinfection shifts the average
level of virulence above what would be optimal for the
parasite population as a whele here *opumal’ is used
in the sense of maximum basic reproductive rate of the
parasite}. Superinfection also generates and maintains
polvmorphisms. We find complicated equilibrium
distributions for the frequency of different parasite
strains within a certain well-defined range of virulence.
Under some circumstances we also find complicated
oscillations (heteroclinic cvcles).

Our intention here is to study the effect of
superinfection on the evolution of virulence and we
therefore negiect vertical transmission; we plan (0o
study verucal transmission and a combination of
superinfection and vertical transmussion in a later

paper.

2. THE BASIC MODEL WITHOUT
SUPERINFECTION

The basic epidemiological dynamics of a host-
parasite interaction can be described by the following
ordinary differenual equation {Kermack & McKen-
drick 1933; Bailey 1975; Anderson & May 1979, 1991)

dx/dt = k—ux— fixy,
dy/dt = y(fx—u—v).
Uninfected and infected hosts are denoted by x and y,
respectively. In the absence of the parasite, the host

population is regulated by a simple immigration-death
process, with £ specifying the constant immigration

(1)
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rate of uninfected hosts and « their natural death rate

this represents a simple, if somewhat artificial, way of
ataining a stable host population in the absence of
infection . Infected hosts transmit the parasite to
uninfected hosts at the rate fxy, where f is the rate
constant characterising the parasite’s infectivity, Infec-
ted hosts die at an increased rate, « +¢. The parameter,
¢, defines the virulence of the infection.

The basic reproductive rate of the parasite is defined
as the number of new infections caused bv a single
infected hostif introduced in a population of uninfected
hosts Anderson & Mav 1979, 1991, see also Diekmann
ef al. 1990 . For equation ‘1 this is

Ry= g/ u+r] kiuy (2}

[T R, 1s larger than one, then the parasite will spread in
an initially uninfected population. and damped oscil-
lations will lead to the stable equilibrium

y* = [Fk—ulut )]/ fglu+uvi. i3)

To understand parasite evolution we have to study the
epidemiological dvnamics of two parasite strains
competing for the same host. Obviously a rigorous
analysis requires the full apparatus of population
genetics: our analysis in terms of ‘strains’ corresponds
to a phenotvpic or haploid model of evolution, and
gives a feeling for the essentials. From equation (1} we
obtain see also Mav & Anderson 1983 ; Bremermann
& Thieme 1989

dx/di = k —ux—xif, 5, + By ya),
dy, /dt =y fryx—u—u)), (4)
dyo/dt =y, fox—u—uv,).

= ut jp

The vwo parasite serains differ in their infectivity, g
and #,, and their degree of virulence, », and v,. From
equation 4. we see that coexistence between the two
parasites is not possible. For a generic choice of
parameters there is no interior equilibrium. If both
parasite strains have R, > 1, we find that strain 2
alwavs outcompetes strain 1 if

Bof v, > B/t u). (5)

This is exactly the condition that the transversal eigen-
value A, = Cy./Cy, at the equilibrium &, (x*,y¥,y, = 0)
15 positive while the transversal eigenvalue A, =
0y,/0y, at the equilibrium E,(x*, g, = 0,55} is nega-
tive; that is 2 can invade 1, but | cannot invade 2.
Equilibrium £, is globally stable. This means that (i)
strain 2 can spread in a population that consists only of
uninfected hosts and hosts infected with strain 1, and
(if) that strain | will eventually be eliminated from the
population.

Condition (5} also implies that the strain with higher
basic reproductive rate will win. Thus evolution will
tend to maximize R, If there is no relation between
infectivity and virulence, then the evolutionary dy-
namics will increase £ and reduce v. Such an
implausibly constraint-free situation represents the
‘conventional wisdom’, whereby infectious diseases
will evolve to become less virulent.

In general, however, we expect some relationship
between v and #; usually the harm done to hosts (v) is

22.
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associated with producing transmission stages (5). For
certain functional relations between v and f there is an
evolutionary stable degree of virulence, corresponding
to the maximum vaiue of R,. Other situations allow
evolution towards the extreme values of very high or
low virulences. The detailed dynamics depends on the
shape of § as a function of ¢. It is interesting to note that
along some trajectories where virulence increases,
parasite evolution can lead to tower and lower parasite
population sizes (in terms of total number of infected
hosts}.

3. AMODEL FOR SUPERINFECTION

In this section we expand the basic model to allow
for superinfection. We will consider a heterogeneous
parasite population with a range of different virulences,
and assume that more virulent strams can outcompete
less virulent strains on the level of intra-host com-
petition. For simplicitv we assume that the infectuon of

C

i(&) |

[(c)

l(d)

He)

virulence

Figure 1. The equilibrium distribution of parasite strains
with different virulences The simulation is performed
according to equation ‘6. with £= 1. ¢ =1 n=230. 4, =
B/l as=086 s=01: ¢ s=03 ds=11 013
=72; i f) effect of virulence on R,. The individual r, are
regularly spaced between Uand 5. Thusy, = 0.1, =0.2,...,
tyo = 3. In the absence of superinfection s =10 the strain
with maximum basic reproductive rate. R,. is selected. With
superinfection s > (¢ we find coexistence of many different
strains with different virulences. 1. within a range r, = and
'mae- Dut the strain with the largest R, is not selected;
superinfection does not maximise parasite reproduction. For
increasing s. the vajues of 1, and 1, also increase, The
x-axis denotes virulence, the y-axis indicate equilibrium
frequencies - alwavs scaled to the same largest value:.

!
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a single host is always dominated by a single parasite
strain. Thus in our framework superinfection means
that 2 more virulent strain takes over a host infected by
a less virulent strain. This can be described by the
following system of differential equations:

dx n
S =k S A,
dy -1 Ld (6)
d_;‘_‘ Afix—u—v s Ly —s z By
j=1 juitl

i=1,...,m

Here t, denotes the virulence of strain ¢, and we assume
thatr, < t, < ... < r,,, Thus a more virulent strain can
superinfect a host already infected with a less virulent
strain, The parameter, s, describes the rate at which
superinfection occurs relative to infection of uninfected
hosts. 1f either the host or the parasite have evolved
mechanisms to make superinfection more difficult,
then s would be smaller than one. {In this context, the
superinfection parameter s can also be interpreted as
the effect of cross-reactive immunity among different
parasite strains, Gupta & Anderson (1994) have
developed a model for the transmission dynamics of
malaria with a number of different strains and
including cross-reactive immunity.} If already-infected
hoses are more susceptible to acquiring a second
infection (with another strain), then s > 1, i.e. super-
infection occurs at increased rates.

For the numerical simulations {in figures 1 and 2} we
assume a specific relation between virulence and
infectivity, 8, = av,/(c+¢,). For low virulence, infec-
tivity increases linearly with virulence; for high
virulence the infectivity saturates. For the basic
reproductive rate this means that, for strain i:

R, . = akvjuic+i, ur,. (7)

The optimal virulence. which maximizes R,, is given
by ¢, = \ cu. Figures 1 and 2 show the equilibrium
population structure of the parasite for various values
of 5 between 0 and 2. For both simulations we have
assumed £ = 1. u= 1 and g, = 8¢,/ 1 +¢,). For figure 1
we simulated n = 30 strains of parasites with virulences
regularly spaced between 0 and 5. Hence v, = 0.1, =
0.2 up to vy = 5. For this choice of parameters the
strain with v, = | has the largest Ry. We find that this
strain is indeed selected in the absence of super-
infection, 5 = 0. If superinfection is possible (s > 0.
then there is selection of an ensemble of strains with a
range of virulences between two boundaries rpy, and
maxe WIth 1, 0= v g

Thus superinfection has two impertant effects: (1) it
shifis parasite virulence to higher levels, beyond the
level that would maximize the parasite reproductive
rate; and {ii) it leads to a coexistence between a
number of different parasite strains with a range of
virulences. Note the funny ups and downs in the
equilibrium densities of strains. Often we find that
exactly every second strain becomes extinct or is onlv
present at very Jow frequencies.

For figure 2 we have n = 100 strains of parasite with
randomly chosen virulences within the interval 70, 3.

H
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Figure 2. As for figure 1. except 7 = 100 strains have been
randomly distributed over the virulence interval {0, 3},
Again we find complex equilibrium distributions, with strains
surviving i their virulence is within a well defined range.
Again superninfection increases the average level of virulence.
‘aps=0, Brs=01: 1 s=03; 4 5= Iolels=2; iy
effect of virulence on R,

We find qualitatively similar results. Without super-
infection, 5 = 0, the strain with the largest R, will be
selected and all others become extinct. For 5> 0 we
find irregular equilibrium distributions between the
same values v and ¢, as in the simulation with
regularly spaced virulence. Strains have a higher
equilibrium frequency if the strains with slightly farger
virtlences have low frequencies. Conversely below a
strain with very high frequency, sirains are extinct or
at very low frequencies. What determines such an
equilibrium? Can we understand such complex equi-
librium structures?

4. AN ANALYTICAL MODEL FOR
SUPERINFECTION

In this section we derive an analytical understanding
of the complexities introduced by superinfection.
Without losing the essential features of the model we
will simplifv equation (6} 1o

dx = "
—E=uw+ X vYy—x X By
dt =1 -1

-1 n I‘(8)
dy,
- = y([ﬂtx"vr—“+5(ﬂt z y— X ﬂ;y;)]
dt =t Jmis1

i=1,...,n

Proc. R. Soc. Lond B 19941
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The total number of infected hosts is given by y =
L.y, We assume that immigration of uninfecteq
hosts exactdy balances the death of uninfected or
infected hosts. A=ux+uy+Zoy,. Without loss of
generality we can then set y +4 = 1. This leads to the
svstem of 7 equations  with Xy < 1y

d,l/; =1 n .
R Tt B Ny — T By
=1 F=isl
f=1,... ,n 9,

This is a Lotka-Volterra svstem of equations
—=y;:R?+S_l,jyj t=1....,n, (10}

with R, = 8, — ¢ and the matrix given by

/})1 P)l‘l'jp)-: ﬂl'*”ﬁ:; /J,1+5ﬂn

Pyl = s Ayt sy ﬂ2+fﬂn

f=— ﬂﬂ'l*" /))3 I =i :H.’} ﬁ3+5ﬂn
Pol—=s g 1—5 Ao l—sr - g,

(1)

For an analvtic understanding, we take the limit ¢ —
0 in. our expression for g, = av,/{c+u). All parasite
sirains then have the same infectivity, #, and differ
onlv in their degree of virulence, v, We obtain

dy, rtu iy i
sl (5, 3 )|

f el
t=1,...,n. (12

This is a Lotka-Valierra system with R = g—p,—u
and

i L+ 145 - 1+
b —y l T4+s o s
A== 11—y 1, I 45 (13}
l—s 1—¢ -5 - l

Because 4+ ¢ ‘where 4‘is the transposed matrix of 4)
is, up to the multiplicative factor ~28, the n x n matrix
whose entries are al] equal to 1, it follows that it is
negatve definite ‘although not strictly so). A simple
vaniant of the proof in chapter 21.3 of Hofbauer &
Sigmund (1988} shows that (12} has only one giobally
stable fixed point, i.e. one equilibrium which attracts
all orbits from the interior of the positive orthant. If
this equilibrium lies on a face of the positive orthant,
then it also attracts all orbits from the interior of the
face.

Equation (12) can be rewritten in the following way

dy/dt =y, Bl f,—sy,], (14)

with

S B L v, (15)
J=i+1

2L .
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Figure 3. For 5 = | there is a simpie geometric method 10
construct the equilibrium configuration 1using triangles or
circiesi. .a: Starting configuration: ‘& equilibrium configur-
ation. Suppose there are r strains, given by their virulences
\+---.t, all between O and 1. Consider virutence on the x-axes
versus frequency on the y-axes. Start by drawing vertical

L

lines at r v, ..., ¢, Draw a 43° line running up to the left
from ¢ = 12 the intersection with the vertcal line at o,
determines y,. This corresponds o y, = 1 —t,. Now mrror

the constructed triangle at the axis given by the vertical line
at r,. The intersection of the downward poinung 45° line
with the baseline determines the point v = 1 —2y, . Now there
are two possibilities: ‘11 either v, < r.in which case draw 2
new 43° line upwards ta the left from ¢: the intersection with
the vertical line av r,_, gives y,_, - this corresponds to g,,_, =
t,—t,,— l—r,50r i, > in which case the strain
n—1 will not be present at equilibrium and the construction
method proceeds directly with strain ¢, _,: and so on. Figure
3 is self~explaining. In the figure we chose seven sirains with
arbitrarv virulences. Six of these strains are present at
equilibrium.

All possible equilibrium points of equation 14, are
given by the following relauons:

yy=0 or y =4/

Y. =0 or gy =/

yn=0 or yu:jn/)'

Note that each /f, onlv depends on the total sum y and
all y. with j > i Supposing we know y. then we can
construct a specific equilibrium point in a recursive
‘top-down’ wav:

y, = maxi0. f /5.
Ypo1 ™ ITlEiX:O.J-n_I/EE.

Yoo = max il f, /5. 17
y, = max 0. f,/si.
The notation max!.,.: simpl denotes the larger of the

two numbers. This equilibrium point is “saturated’
/this means that all ransversal eigenvalues are nega-
tive): for perturbations about any one of the points
where y,—0 sav, y, = &,. where 8, represent a small
perturbation:, we have from a linearization of equation
‘14, that dé,/df = #/.8,: but f, <0 otherwise we
would have y, -/, /s > 0,, and hence saluration. As
noted above. following Hofbauer & Sigmund 1988.
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chapter 21.3), we know that (i) any saturated
equilibrium of (12} has to be stable, and (i) there is a
unique giobally stable equilibrium. Therefore this
unique and globally stable equilibrium is given by
equation [17).

We can also rewrite equation (12} to obtain

dy,/dt =y, Alg; + 4], {18)
with
) F—1
a=1-E g+ Ty, (19)
B =1

If we again assume (o know y we can use equation {18)
to construct a specific equilibrium point now in a
recursive ‘bottom-up’ way.

y, = max (0, —g,/si.
g = max (0, — g/ s}

y, = max (0. —g5/51i (20)

y, = max (0, —g, /s

Confirming Hofbauer & Sigmund’s (1988) general
result. a specific analvsis shows this equilibrium to be
unstable. As above, dd,/d¢= fg, 8, for small per-
turbation about y, = 0, but now g, > 0 (otherwise we
would have y, = —g,/5 > 0 at equilibrium), and hence
this solution is not stable. An extension of this argument
to solutions constructed by moving upwards and
downwards from an intermediate value of v, show
explicitly that only the * top-down’ approach leads to a
stable equilibrium.

@ The case s = |

The important special case s =1 offers a quick
solution, because y drops out of equations {17}, The
unique stable equilibrium distribution is then given
recursivelv in the following wav:

{0 | z'"+u‘|
max .
#od

' -+ u
Yoy = max{U. ! u-iti»_*___zyn}’

il

Y

i
X _at
y:z2=n]ax{0‘luin_;}_"ﬁﬁ2yn+yn—])}’ (Qk)
_+_
¥, = max{(}. 1 _z‘ﬂ ufgy,,’i-y,,_‘%-..-i-yz)}.

This fixed point is saturated because for each parasite
strain / with equilibrium frequency y, = 0 we obtain
£4,/Cy, < 0 for a generic choice of parameters, i.e. all
the transversal eigenvalues evaluated at this fixed point
are negative. Hence this fixed point is stable and it is
the only stable fixed point in the system "Hofbauer &
Sigmund, 1988..

Equation ‘21 corresponds to a very simple and
illuminating geometric methed for constructing the
equilibrium sec figure 3.
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day

{L"'

(ed)

virulence
Figure 4. Equilibrium distrbution of strains. for the
simplified model with consrant infectivity, g, The simulation
is pertormed according to equation 12: with g =3, v =1
and n = 100 strains of parasite with randomly distributed
levels of virutence within the interval 0.60. a.5=0, 4.5 =
O ovv =050 d v=1: eor=1 f effectoivirulence on

Ry Arrows indicate ¢ For v =0 the strain with lowest

and hence largest R, ": selected. For s > | we find complex

equilibrium structures. The arrows indicaie the theorencallv
predicted largest levels of virulenve. s =25 g—n./ |+,
Note that for ¢+ = 2 strains with R, < 1 are maintained in the
population,

&y The case for general 5 > ()

Let us consuider an equilibrium distribution with
g, >0 tor o= 1. . n:ie we count onlv those strains
which are present at equilibrium. From equations 15
and 16+ we get

n

y=8-2 %y, 22

Jerel

with 8, = [l — v, +ui/f— 1 —5)y]/5. We obiain

Yn = B,
Yn1 =_23n+Bn-l! 123
yn—zzan_Qan]*_Bn—z'
For even n we obtain y=B8,-8,+8,—... -8, =
Wy Vo F+...—e3/id,. For odd n we obuain y=
B ~8,+8,— +8, and hence y =
B—u—v,+u,—...—u) /B At first sight the expres-

sions for odd and even n look quite different. We want
to calculate v_,,., the maximum level of virulence
present in an equilibrium distribution for a given s.
Assuming equal spacing (on average), ie. p, = kp,,
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feads 1o y = ¢, /2 tor neven and to y = |~ u/f —
For n odd we have used the
From 4, 2 0 we derive in

v 25 for onodd.
approximaton 4 —1 x n,

loth cases

! = p’—u fol =+ 24

max

This s the maximum level of virulence thae can be
maintamed in an equilibrium distribution, For s = 0
this is simply +,,,, = 0. Le. the strain with the Jowest
virulence, which tor our choice of parameters is also cthe
srain with the highest basic reproductive rate. For s =
I strains can be muaintained with virulences above
/7 —w. These are sirains that are by themselves unable
w mvade an uninfected host population, because their
hasic reproductive rate is smaller than one.

Finallv resolving the even- and oddities we insert
e 10T 7, into the two different expressions for y and
find in hoth cases

HIREN

y= pg—ujgl—.. 25,

This is the equilibrium frequency of infected hosts. The
more superinfection the fewer infected hosts!

Figure 4 shows equilibrium distributions for 100
parasite strains with randemly chosen levels of viru-
lence, for various values of the superinfection par-
ameter, 5. The urrows indicate the theoreticaily
predicted largest levels of virulence, as given by
equation 24 .. The analvric methods seem to work very
well.

3 DYNAMICAL COMPLEXITIES

Let us now return to the model with different strains
having different infectivities, 8, as given by equation
9.. Here the solutons need not converge to a stable
cquilibrium. Equarion 99 can lead to very complex
dvnamics,

For two strainsy of parasite 'n = 2) we may find
coexistence  Le. a stable equilibrium between the two
strains or a bistable situation where either one or the
other strain wins depending on the inital conditions.
An interesung situation can occur if 5 > 1, and strain 1
has a virulence oo high to sustain itself in a population
of uninfected hosts R, < 1), whereas strain 2 has a
lower virulence but an B, > 1. As s > 1, infected hosts
are more suscepnble to superinfection, and thus the
presence of strain 2 can effectively shift the repro-
ductive rate ol strain |1 above one. Superinfection can
stabilize parasite sirains with extremely high levels of
virulence.

For three or more strains of parasite we may observe
oscillations with increasing amplitude and period,
tending towards a heteroclinic cycle (figure 5). Imagine
three parasite strains, each of which by itself is capable
of establishing an equilibrium between uninfected and
infected hosts ri.e. all have R, > 1}. The system where
these three strains occur simultaneously has three
boundary equilibria, where always two strains have
frequency 0 and the population consists of uninfected
hosts and hosts infected by the third strain only. There
is also one unstable interior equilibrium with all three
strains present. The system converges toward the
boundary equilibria and cycles from the first one to the

26.
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Figure 5. A simulation of equation ‘91 with n = 3 strains with
By =2 p, =3 by =35, ¢ = 107, =205 v, =404, u=0
and 1 =0.5. The figure shows oscillations with mcreasing
period and amplitude towards a heteroclinic cvcle. g
Population size of hosts tnfected with sirain 3: {6 average
virulence of the parasiie population. r = ~t,4/Zy,. versus
‘lime,

second 1o the third and back 10 the first. The period of
such cvcles gers larger and targer. There will be long
times where the infection is Just dominated by one
parasite strain ‘and hence onlv one level of virulence)
and then suddenly another straip takes over. Such a
dvnamics can. for example, explain sudden upheavals
of pathogens with dramatically  altered levels of
virulence. If we wait long enough one of the parasite
strains may become extinet by some fluctuations when
its frequency is low. Then oge of the two remaining
strains will outcompete the other. ‘Heteroclinic cycles
in Lotka-Volterra systems have been described, for
example. by Mav & Leonard 1975). Hofbauer &
Sigmund '1988;, Nowak & Sigmund ‘1989, or Nowak
‘19901,

For small values of , al] clements of matrix 11 will
be negatve. Such a Lotka-Volierra svstem is called
‘competitive’. and al| trajectories will converge 10 an
r—1 dimensional subspace. which reduces the dy-
namical complexities ‘Hirsch 1988 This implies that
for n = 2 there are no damped oscillations. and for n =
3 one can exclude chaos.

6 EVOLUTIONARY DYNAMICS

Imagine that mutaton is contnually generating
new strains with altered levels of virulence. Selection is
then acting on the different stratns according (o the
dvnamics described in the previous sections. The
virulences are constrained (o a range between r,, and
Umax> DUL there will be an ever changing parasite
population. There wil] always be new strains capable
of invading the polymorphic population. Some of the
old strains mav then become extinct, and many strains
will have altered frequencies. If this evolutionary
dynamics is iterated for a very long time. then one can
define a distribution function ¥ r1. which describes the
long-term equilibrium frequencies of sirains as a
function of their virulence, r. Figure 6 shows a
computer simuiation of such an evolutionary process.

The distribution of virulences can best be studied by
a differential equation that uses a continuous virulence
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parameter, v. The continuous version of eguation {12)
15

dytej/di = By(vy Fiv), (26)

with

I}

Fiv) ]—y_—%ﬁu-i-sfvy(z)dz—xfny(z)dz

";“+2;f y(z) dz.

0

(27)
P=(l4+sig~

l

Here y{v) du is the total density of parasite strains with
virulences between v and v+dv; y(v) is the product of
the average abundance of each strain around 2, times
the number of such strains. The total parasite
population is denoted by 7= [Yy(z)dz. An equi-
librium solution can be found by putting F(v) =0 for
all values of ¢ within ¢ and Umax- We define v, as the
smallest level of virulence such that y(v) = 0 for all v >
'max- From F(0i = 0 we obtain for the total parasite
population

F=F—u)/f1+y). (28)
From #(r_ ..} = 0 and equation (28) we obtain
Umax = 25(f—uj/i] 4], {29)

Of course, these are the same expressions for 7 and z,,,
as in the discrete case, but here the derivation is much
simpler and more elegant. We also get a very simple
expression for the distribution function by combining
equations (27) and (28). This leads to

J"y.fz) dz = v/28s ' (30)

¢

and hence by differentiation fassuming continuity)
yio) = 1/28s 31}
Thus we obtain a uniform distribution over the interval
[0 2o ). e yior = 1 /285 for 0 € v < 25(f—u) /(1 +5)
and yiv = 0 otherwise,

For this continuous solution we do not have a fully
rigorous prool of stability and uniqueness. But note
that. in this section. we are considering an evolutionary
version of our model, where mutation js continuously
generating new parasite strains and therefore fills any
potential gaps along the virulence-level spectrum.
ntuitively — and aiso in our extensive computer simu-
lations ~ it seems clear that the solution given by
equations (29 and ‘31, is globally stable for the
mutation-selection process.

This section lends iself to further investigations.
Among the interesting questions are: How many
stratns of parasite are there on average? What are the
equilibrium distributions of density and abundance of
strains along the interval [Umin> tmax] > Answers to these
questions lead to an approximate analysis which
suggests the above equilibrium, given by equations
'29) and ‘31,, is indeed stable and unique. The
questions also have relevance in a more general,
ecological context of the meta-population dvnamics of
compeung species. Thev are answered in a separate
paper ‘Mav & Nowak 1994,

For constant # iie. in the limit c—0 in gir) =
av/‘c+r)), we can also solve the continuous version of

27 .
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the related equation 61 and obtain for the equitibrium
the explicitlv parameterized expressions

yoo= 128 for 0 < s 32,
E‘mu.\' = 2‘5/‘)7!7 33
I S S V452 sk —uF,

¥ = . (3.

RV

+ CONCLUSIONS

For mathemaiical convenience we have assumed
that individual intections are alwavs dominared by
single parasite strains. Thus ‘superinfection” in our
CONteXLt means that a new parasite strain takes over a
host alreadv infected by another parasite srrain. The
new strain must have a competitive advantage for the
intra-host selection dvnamics. We assumed that viryu-
lent strains have an intra-host competitive advantage
over less virulent strains. However, less virulent strains
mav have a better reproductive rate in the population

thev allow che host (o live longer. on average), so thar

thev have an inter-host advantage. Essentially the
tradeoff between intra- and inter-host selection main-
tains our polvmorphisms. We propose the following
conclusions

I. Superinfection leads to an increase of the average
level of virulence above what would be optimal for the
parasite population. The intuitive reason for this is that
superinfection leads to intra-host competition among
strains. resulting in increased levels of virulence and
reduction in overail transmission rates,

2. Superinfection does not maximise the basic
reproductive rate. The strain with highest R, may even
become extinet,

3. Superinfection leads to a polymorphism of para-
site strains with manv different levels of virulence
within a well defined range.

+. Superinfection can maintain strains with very
high levels of virulence ‘even strains that are so
virulent that they themselves could not persist alone in
an otherwise unintected host populadon).

Figure 6. An evolutionary simulaton of a heterogeneous
parasite population with superinfection. The dynamics of
selection are defined by equation 12y with the same
parameters as figure 4 and 5= |. We start with n = 30
randomly chosen strains. Every 10 time steps {on average) a
new parasite strain is generated with a virulence taken from
a uniform distribution on the interval (0,5). Figure 6a
shows the population structure at different time points. (i} ¢ =
0: (i} £=2000: ‘iii) ¢ = 4000; (iv) = 6000; {v}) ¢ = 8000;
il £=10000; ‘vii) £ = 12000; (viii) ¢ = 14000; (ix) ¢ =
16000; (x) ¢ = |8000. There is an ever changing structure of
the virulence polymorphism. There are always new strains

capable of invading the population. An evolutionarily stable-

population does not exist. Figure 64 shows the long-term
equilibrium distribution of parasite virulence. For this we
sampled the parasite population structure at 1000 time points
between ¢ =0 and (= | G00000. As expected, we find an
excellent approximatien to a uniform distribution. Figure 6¢
shows: (i} the average virulence, defined as 7 = Zoy/Zy,;
(ii) the total number of infected hosts, y=2y,; and (iii) the
number of parasite strains, » as a function of time (an analytic
explanation of these and allied results wiil be provided
elsewhere: Mav & Nowak 1994),

7L
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5. Superinfection can lead (o very complicated
dvnamics, such as heteroclinic cvcles, with sudden and
dramatic changes in the average level of virulence.

6. The higher the rate of superinfection the smaller
the number of infected hosts 'y decreases with 5.

7. There is a formal stmilarity between the models
developed in this paper and various approaches 1o the
dvnamics of metapopulations Nee & Mav 1992},
where a “host” is equivalent 1o a patch or a habitatr and
superinfection is “taking over’ of a paich bv another
individual. The superinfection model can also be
applied 10 this more general context.

We are much indebted 10 Josel HoMbauer and Karl Sigmund
for explaining how their general resuits can be applied ta our
calculations in §4, and (0 Dieter Ebert. Hans Heesterbeek,
Allen Herre, Simon Levin. Sean Nee and David Tilman for
helpful comments. This work was supported by a Wellcome
Trust Senior Research Fellowship and the E. P. Abraham
Junior Research Fellowship a1 Keble College M.A N.._ and
by the Rovai Sociery ROM.ALL
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