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1. SOURCE MODELS GF EARTHQUAKES

L.L. Kinematic and dynamic models

Cnce it was accepted that the mechanism of an earthquake is
that eof a fracture of the material of the earth crust, a quest was
started 1o search for adequate mathematical and physical models or
representations of the source, in such a way, that the elastic
displacements can be derjved from them. These source models or
representation are defined by a small number of parameters. One
can, then, fer a particular earthquake determine these parameters
from the observed elastic displacement field, that is, from the
observed seismic waves recorded in seismograms, The fracture
phenomenon can, in general, be considered frem two different
points of view: kinematic or dynamic (Aki and Richards, 1980;
Udias, 1991). The kinematic models are those that assume the
characteristics of the slip or displacement discentinuity at the
fault plane. These models are relatively simple and the elastic
displacement radiation field can be derived from them. The dynamic
models present a much more difficult problem. They try to relate
the fracture process to the stress  conditions and the material
properties at the source region.

1.2 Point source equivalent forces

The first paper that propesed a mathematical representation
for the model of the source of an earthquake is that of Nakano
(1923) who based his work on that of Love (1920) and Lamb (1904).
Nakano tried to find a model that would produce a quadrantal
distribution of compressions and dilatations for the first
impulses of P waves. His models consist on  sets of forces acting
at a point of a homogenecus isotropic medium and he calculated the
displacement field corresponding to them. Among the models he
studied , two, the single couple, and the double couple without
moment had a long history. Honda and other japanese authors
developed Nakano's ideas (Honda 1962) . He calls these two systems
the type 1 and type II force systems and, Tollowing Sezawa and
Kanai (i932) expressed the displacement field in spherical
coordinates. Point source force models were also developed by
Russian  seismologists leaded by Keylis-Borck that developed
several other source types (Keylis-Borok et al., 1957).
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All these formulations have in common that they view the model
of the source of an earthquake as a system of forces, mainly
couples, acting at a point. From them, the displacements for the
seismic waves can be deduced. The equation of motien for the
elastic displacements in an jnfinite, homogeneous, medium for
forces F acting at a point, using tensor notation, is

= pil 1)
Cljkl uk,ij * Fl puI (

Where C”kl are the elastic constants and p the density of the

medium. The indexes after the commas represent derivatives with
respect to the space coordinates ang repeated indexes are sunmmed.
The point force F can be considered as the limit of a Jdistribotion
of forces acting on a volume V. as it is shrunk to a point

Fl(t) = lim F{t £} dv 1.2}
Ve Jv b
In the simplest case, equation (1.1) is solved for a single (orce
acting in  a  particular direction An  expression  for  the
displacemenis u caused by a force in the j direction can be
i

written in the form (Knopoff and Giibert, 1960}

1 1 i

Tory Flt -r/w) - — ( yy - &)
1 3np e’ i) rﬁz [ ij

o0

Flt - r/) + — (3yy - :Si) T Flt - 1) dx {1.3)
3 [ I /B J

-

ry

oy

ey

oy



Where 1! are the direction cosines of the line from the source

to the observation point, r the distance and @« and B the
velocities of the P and S waves. The index j defines the direction
of the force.

The dependence on time of the force must be specified. This can
be a harmonic function or, more realistically, some kind of
impulsive function, such as a Heaviside step function. The
solution can be separated into twc parts |, the far-field and the
near-field. The former carrespond to the displacements far away
from the source , and contains only the part with the lowest
inverse power of the distance, the first two terms of (1.3). This
part of the solution is used in the studies of the source from
observations at teleseismic distances. Near-field displacements
include also the third term of (1.3).  The solutions for the
infinite, homogeneous medium only give the displacements of the P
and S waves,

From the displacements due to a force, those due to a caouple
of forces can be derived. [f u, are the displacements produced by

a force acting along the x, axis, those for a single couple in

the xl.xz plane with forces along the xl axis, are

(i.4)

and for a double couple , with the forces acting along the axes x1

and x|

u = u + U 1151

Displacements due to other combinations of forces can be deduced
in a similar manner.

The two models of point forces that became mare widely used to
represent the source of an earthquake, were the single and double
couple, since both of them give a quadrant distribution of
compressions and dilatations for P waves, in agreement with the
observations (Fig. 1.1). The double couple system is equivalent to
forces of compression and tensional character at 45 degrees of the
couples (Fig 1.2). The relation between these models and the
physical problem of a fault was at first rather qualitative.
Wrongly, the single couple was thought by some authors to

represent the motion of the two sides of a fault. The fault piane
would, then, correspend to the plane normal to that containing the
forces. In the case of the double couple model, there are two
possibilities for the fault plane.

The controversy about which of the two medels best represents
the source of an earthquake was to be solved comparing the
theoretical and observed radiation patterns of seismic waves. Roth
models give the same radiation pattern for P waves, but not for
the 5 waves (Fig 1.1). As related by Stauder (1962), early studies
by Russian seismologists, using the patterns of first motions of
SV and SH waves seemed to have proved the adequacy of the
single-couple model, although the results of the direction of the
S waves presented by Honda agreed with the double—couple model. At
that time, the problem seemed to be caused by the poor quality of
the seismic data. in the 1960°s, after the establishment of the
WWSSN  stations, good  quality, long period S wave data showed
abundant evidence in favor of an agreement with the expected
radiation pattern of the double-couple source ( Khattri, 1973).

The point source force models were also used to caiculate the
radiation pattern of surface waves that could, in this way, also
be used in the retrievai of the source parameters. The first work
in this direction seems to be that of Yanovskaya (1958) who
calculated the response of a layer over a half-space to Love and
Rayleigh waves, for single forces and couples. Ben-Menahem and
Harkrider (1964}, Harkrider (1964) and Saito (1967} calculated the
radiation patterns for surface waves, Love and Rayleigh in a flat
stratified earth for buried point  sources of single and doubie
couple type. They gave the radiation patterns for amplitudes and
phases cerresponding  to  different depths  of Focus and for
different periods.

Generally, the point source force model (s used to caleulate
only the orientation of the source.  In  the case of the
double-couple (DC) model, this is given by the unit vectors in the

direction of each couple (N and Y axes) Because of  the
orthogonality condition only three parameters are necessary 1o
represent the orientation of the source, namely, b. 8, ¢,

X x ¥

where & and 9 are spherical coordinates measured from north and
vertical downward . For the #quivalent P and T system , the source

parameters are @T. GT‘ @P .The twoc normal planes to the plane

containing the forces are the 1wo possible  fauit planes. The
orientation of the faylt plane is given by the angles ¢, &, 2,
strike, dip and rake or slip of the motion on each plane  (Fig.
1.3). Many methods for the determination of the foecal mechanism
are based on this simple model and provide these three parameters.
The double couple (DC) point  source is stil] g good  first
approximation to the source of an earthquake when observed at the
far field with low frequency waves.



1.3. Kinematic models. Dislocations

The physical model of a fault as the source of an earthquake
led to the application of results from dislocation theory to
this problem. The earliest ideas on elastic dislocations were
proposed by Volterra (1907) and later developed by Nabarro
(1951).  Applications 1to the representation of the source of
earthquakes were first made by Vvedenskaya (1956, 1959) who
considered that the formation of a rupture, or displacement
discontinuity in the focus led to an instantaneous removal of
stresses over the fault surface. She developed the displacement
fields due to several types of faults. The problem was also
treated by Steketee [(1958), Knopoff and Gilbert (1960) and
Maruyama (1963, 1966} who also showed the equivalence between
dislocations and body forces. This problem was solved in a more
general form by Burridge and Knopoff (1964). They used a
Fepresentation theorem in terms of the Green's function that had
been introduced by the previous work of de Hoop {1958) and has,
since, become the standard way 1o present the equations of the
displacement field in source mechanism studies. The Green's
function in elastodynamics represents the displacements
corresponding to  a unit force in an  arbitrary orientation
impulsive in space and time. For an infinite, homogeneous medium,
the Green's function GIj is given by equation (1.3], substituting

F{t) for &(t), the Dirac's delta function,

A dislocation is an internpal surface across which there js
some kind of discontinuity in displacement or stress, let us
consider the case in which the medium is infinite, there are no
body forces, and across and internal surface % there is continuity
of stress and a discontinuity of displacements,  given by
nu‘(g‘.z), which is usually called the slip of the Tfault (Fig.

1.4} Using the representation theorem in terms of the Green's
function, the displacements uI(xJ,I) for any point of the medium

can be written in the form

n

m
u (x’.t] = J“:r J-z Au.lEs.t)LUm (’nu,ui";'t’gf'ﬂ nleSl ds

(1.6)

Where nJ is the unit vector normal at each point of the surface ¥.

CleI the elastic constants of the medium and le the
nk,

derivatives of the Green's function. For a shear disiocation in an

isotropic medium, if the slip is in a constant direction given by
the unit vectar I;' ¢quation (1.6} becomes

u = J- dr-[ gdulln +1n)G ds (1.7)
t) "N
~a by

This expression gives the elastjc displacements at any point  of
the medium, in terms of the slip on the fault plane £ and the
Green's function. The orisntation of the source is given by that
of the unit vectors ]i and n . Bince in (1.7) we can

interchange these two vectors with the same result for u , this

means that there are two perpendicular faults that result in the
same displacement field. This ambiguity is inhkerent to the problem
itself. A shear dislocation has been shown to be equivalent to a
distribution of double-couple point forces on the faulr plane
(Burridge and  Knopoff. 1964). In  equation (1.7), the {tjme
dependence of slip must be specified, often a step Heaviside
function is used. If the displacements u are observed at large

distance compared with the fault dimensicns and for large wave
lengths, the source may be considered as a point, and the
displacements are given by the time convolution of the slip
function with the derivatives of the Green function. For the point
source approximation a pure shear dislocation is equivalent to g
double-couple (Fig. 1.2).

For a peint shear dislocation with slip Au depending on
time, the far field for the P and s waves in an infinite
homogeneaus medium is given by

P oS !
o= - TR .(n I+ n 1) Al . ] [1.R)
dnpa’r ! ! h
us = L (y ¥ 3 Jyinl + n AR r] (1.9}
h e "R
¥ 4npﬁ2r ik k) 1 I f:

Where S is the area of the dislocation, u the shear modulus, and
zl the direction cosines of the line from the source to the

observation point at a distance r. It is important to notice that
the displacements u depend on the slip velocity Ad and not on the
slip itself. The source ceases to radiate energy when Ad = 0.

The  representation theorem can also  be applied 1o
distributions of body forces over a volume V in the form,
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In  this form, the equivalent  bedy forces can be found for
different kinds of disiocations. [n equatiens  {1.6) and {l.10)
homogeneous initial and external boundary conditions are assumed.
This representation of the displacement field s very useful,
since it allows a rapid calculation of *he displacements for a
variety of source types and orientations once the Green's function
has been determined for a particular medium.

l.4. Determination of source mechanism parameters

Seismological methods for the determination of the parameters
that define the mechanism of earthquakes are based an the analysis
of observations of seismic waves. In general, this leads to an
inverse problem: given a set of observations, the values of a set
of source parameters are sought which best it the cbservations,
The parameters depend on the model ysed to represent the mechanism
of the source. In this way, the methods Lo determine the source
parameters are bhased on the development of the theory of the
soeurce representation. The direct problem, that s, the equations
that gives the elastic displacements field corresponding to a
given source medel, must be [irst sclved. Since the seismic waves
Must propagate from the source 1o the point of cobservatjon through
the earth, its structure must be known in advance The fact that
our  knowledge of the properties of 1the propagating medium s
always imperfect, imposes certain limits to our knowiedge of the
source. Which characteristics of the seismic signat under study
are due to the source and which are due to the medium is a problem
always present. |[p general, there s a trade-off  between the
details of the source that are sought and the details of the
structure of the medium that must be assumed to be known Simple
models  of  the source, observed at long  distance  and  low
frequencies, are little  affected by the propagating effects. 0Op
the contrary, the complex modeis observed at near distances and at

high frequencies are more affected by the stryctyre of the earth
Crust.

1.5 Signs of first motions of P-waves

The first methods to study the source mechanism of earthquakes
were  based on  the observations of the compressional or
dilatational nature of the first impulse of the P-waves. Because
of the simplicity of this type of data, these methods are still

widely used. One of the first indications that there may be a
connection between this type of observations and the mechanism of
earthquakes was made by Walker in 1912. The first te identified
the quadrant distribution of compressions and dilatations wasg
Shida i 1917 ( Kawasumi, 1937) The first working method was
developed by Byerly in 928 He accepted Reid's elastic rebound
theory and used the theoretical results of Nakano (1923), assuming
a single couple of forces as the source madel. To redyce the
observations to a liomogeneous medium, he introduced the concept of
extended positions. The method consists in the separation of the
regions of compressions and dilatations by two orthogonal nodal
planes, the fault plane and the auxiliary plane. The problem was
solved in a graphical way, plotting the observations at their
extended positions on 3 stereographic  projection, with the
anticenter as the pole. On this projection, the nodal planes
project as circles. From this representation, the strikes and dips
of the two nodal planes can be determined. From the method itself,
one  cannot identify the T[lault plane from the auxiliary plane,
Byerly's method, known as the fault-plane solution, was rapidly
adopted as a standard methad for the study of the mechanism of
earthquakes.

Independently of Byerly's work, studies of the mechanism of
earthquakes using first-motion data were also pursued in lapan and
Eurape. An important contribution from these two groups is the use
of the focal sphere.  The focal sphere s used 1o preject  the
observations to points on the surface of a sphere of unit radius
and homogeneous material around the focus simplifving the solution
of the probiem. Ritsema (1935), based on earty work by Koning
(1942}, was the first to carry out the cemplete determination of
the fault-plane sclution using the Wulff-net projection of  the
focal sphere. In Japan, the focal sphere  was  initially used 1o
represent the results of the analysis perfarmed on geographical
maps, and later to plot the data and solve the problem nusing a
Schmidt equal-area stereographic projection (Honda, 1962} In the
Soviet  Union |, since the middle 1950, seismologists nse  a
Wulff-net projection of the focal sphere 1o plot first motion
polarities of P, SV and SH waves and their corresponding  nodal
lines (Keylis-Borok, 1956].  Another projection used by Stauder s
the central projection, where the nodal planes project as siraight
lines {Stauder, 1962). The equivalence of the dif ferent
representations and projections was shown by Scheidegger (1957,

1.6 Geometry of the source

The orientation of the slip on a fault plane is givernn by the
unit vectors n (normal to the fauit) and | tdirection of slipl or
by the angles ¢, & y oA ifig. 1.3)

¢ = Azimuth of the trace of the fault plane, measured from 0 1o

360° clockwise from North, so that the dip falls ta the right




hand.

3 = Dip of the fault plane from 0° to 90°, measured from the
horizontal
A = slip angle from -1g0° to 180° from the horizontal to the

direction of the slip on the fault plane, in such a way that the
dip fails on the right hand of the azimuth.

The relation betwsen the system of axes of the forces !(doubie
couple) X, Y, Z, with the principal axes of stresses P, T, Z
are (Buforn, 1985)

12
* T
Bl =8 Jiwv2 (1.11)
x 0
v 1V 2
By =gl e (L12)
0
Iy

Where B is the matrix of the direction cosines of the axes T, P,
Z.

ar Brovp

B = ap BP e {1.13)
°z Bz 7

Due to the orthogonality of the axes only three angles are
needed to define the arientation of each axis:for example, GT‘ °T
y QP’ or of a plane ¢, & ¥ A The relation between these
parameters are

¢ = (bx +n/2

& = sx (1.14)
s cos E?Y

A = sen e e gx

To correct for the heterogeneities of the earth, observatijons
are projected on to the surface of the focal sphere. Each point of
observation (station) projected tracing back along the seismic ray
to the focus, where its position is given by the polar angles ihy

® (Fig. 1.5).

ih= Incidence angle at the locus, measured from the vertical

downward from O to 180"
% = Azimuth from epicenter to station measured clockwise from North

from 0 to 360°.

Determination of the incidence angle in the focus (take-off
angle) depends on the earth structure.  For large [(teleseismic)
distances (4 > 1000 km), ih can be determined from the travel-time

curve. For a focus at depth h the relation is

seni = R {1.15)

Determination js usually done by computer programs that
determine ih from the leffreys-Bullen tables. [n the case of short

distances (4 < 1000 km), determination of ih implies the knowledge

of crustat and upper mantle models for the particular region. One
type of model recommended is one formed by linear gradients of
velocity. For these models ih varies in continuous form with

distance. In the models of layers with constant velocity ih has

discontinuities,
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Once the abservations are projected on the surface of the
focal sphere, the method consists in separating them into four
quadrants of alternating compressions and dilatations with two
orthogonal planes. The solution of the problem may be done in
graphic or numerical form. Graphic solutions may be done using a
stereographic net or representing it on the screen of a computer.

1.7 Graphic methods

The data for the graphic solution of the problem are for each
station P wave polarities, dilatations or compressions, azimuth
from the epicenter to the station and incidence angle in the focus
or take-off angle . The sclution is made on a stereographic
prejection of the focal sphere (Schmidt or Wulff net). (generally.
the lower hemisphere of the foeal sphere is projected (0 = ih E

90°) for this reason the upgoing rays (ih > 967} must be projected

on the lower hemisphere

(1.16]

Fach station is located on the focal sphere in the following
manner: the azimuth ¢ is measured from North clockwise, and the
take-of f angle ih from the vertical dewnward, that js from the

center of the projection. At each station, a different symbol jg
used, a black circle for compressions and a white one or a
triangle for dilatations. In Figure 16, the following stations
are represented.

Station ¢ ih P
STI 10 60 §]
ST2 120 30 C
ST3 212 50 D
ST4 310 80 C

Once all observations are situated on the projection of the
focal sphere, compressions and dilatations are separated by one of
the great circles of the net, this is called the plane A. This
circle is drawn and jts pole, that is the X axis is located. The

pole is located at 90" normal to the plane A (Fig. 1.6) The second
plane, pltane B, must pass through the pole of the plane A, X axis
and separate the compressions and dilatations in four alternating
quadrants. The pole of the plance B must fall on the plane A, so
that the two planes are orthogonal. The Z axis (null axis) is
located at the intersection of the two planes. The axes of
Pressure and Tension (P and TI are locateg at a great circle that
passes through the axes X and ¥ and at 45 from them. The T axis
is located at the compressions quadrant and the P axis at the
dilatations quadrant (Fig. 1.6). Once the planes A and B, and the
axes X, Y, Z, P and T are located the angies ¢ azimuth, § dip and
A slip, for each of the 1wo pianes and for each of the five axes
the angles ¢ and 8 are measured The valyes corresponding to the
solution of Figure 1.6 are:

¢ 2]
P 20 82
T 120 40

The crientation of planes A and B s given by the angles ¢, &,
A which are obtained from the projection in the following lorm:

¢ . Azimuth s measyred from O to 380, from North clockwise to
the intersection of the plane with the haorizontal (limit of the
net) which has the dip of the plane to the right.

& ¢ dip measured from 0 ta 90 from the horizontal (from the |imit

of the net toward the centor) at 40”7 from 3

A Slip mesured from -i80 to 180 fraom the herizontal sturting at
the azimuth ¢ alang the plane to the pole of the other plane (in
plane A 10 Y axis and in plane B to X axis). The angle is positive
i the center of the projection  falls on  the compressional
quadrant (reverse fauli) negative if it falls on the dilatatienal
quadrant (normal fault).

For the sclution of Figure .6, these values are:

¢ 5 A
plane A 136 50 35
plane B 260 64 134

The graphic determination can be also made in an interactive
manner on the screen of a computer. Data needed are the same as in
the case of the manual solution. For this purpose Buforn (1994)
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has written a yseful program. Station data ( 'R ih' +1 or -1) (+]

compressions, -1 dilations} are entered in the computer or read in
a file. The program situates them on the projection of the focal
sphere and show them on the screen. A series of options allows to

Planes. The program draws the planes on the screen and calculate
the score of the solution {proportion of correct data). Examining
the solution on the screen and the value of the score, new values
for for the orientation of axes or planes are given until the
solution is found satisfactory (maximum value of the score).

1.8 Numerical methods

With the advent of computers, the question scon arose of
applying numerical methods to the Tault-plane problem, The first
workable formulation of the problem was presented by Knopoff
(1961}, The solution is given by the orientation of the source

which correspond o a maximum probability of correct readings. The
function to be maximized is

? = Z log 3 [1+ erf(Ui/ul sgn UI Sgn R; I aam
i

Where U} are the theoretical and R1 the abserved amplitudes of p

waves and o, a constant that represents the noise level The
problem was solved using a projection of the cbservations inte an
antipodal plane of the epicenter. The problem was reformulated by
Kasahara (]1963) using spherical coordinates in the foca) sphere,
weights for the stations and a method of successjve approximations
from an initial solution. The basic ideas of Knopoff and Kasahara
were used In a computer program developed by Wickens and Hedgson
(1967) in a modifjed way. This program was used extensively in the
Dominicn Observatory (Canada) in a reevaluation of the fault-plane
solutions for the period 1922 1o 1967,

A probabilistic formulation of the problem was proposed by
Keilis-Borok et al. (1972) using a maximum Jikeiihood method. If
" is the probability of a correct reading with respect to the

expected sign o from a given source orientation, the likehood
function is given by

L= n Ca vz nkn“"k Tz (1.18)

@ is a function of the three angles that defirne the orjentation

of the source. Maximum likelihoed estimates of these parameters
are found by the maximization of ..

A very useful numerical methed was developed by Brillinger,
Udias and Bolt (1980) and Udias and Buforn (1988). In this method
the probability of reading a compression is given as a function of
the expected amplitude of the p waves Alg,5,A)

R = prob(Y!= =7y (l“ZﬂOIAiw.G,R)l {1.19]

Where 3 has values between 0 and 172 and represents reading
errors and &(A) is the cumulative error function. The likelihood
function is similar 1o expression {].18}) substituting uk by Yk

which are now the observed vajues of the polarities of P waves and
L by the expression (1.19). The method gives the standard errors

of the parameters of the solution. An exampie of a numerical
solution found using this method is given in figure |.7. This
method has been extended by Buforn and Udias {1984) 10 use also
the signs of SH and SV wave first motions.

An extension of the problem to consider fault plane solutions
for groups of earthquakes in the same area was also presented by
Brillinger et al, [(1980). In  this case the probability of a
correct reading is  a function of the expected amplitudes of the p
waves and the likelihoed function is written in the form

=

foll |

log ;llv(Zn.k—llYlki {1.20)

Where M is the nymber of earthquakes and Nl the number of
cbservations in each earthquake, L the probability of reading a

compression at station k from shock 1, and YIk the observations

¥

P

e



of P wave polarities at station k from shock I. For group
solutions the method permits the separation of the shocks into
groups, each with the same regiona! mechanism.

FIG. 1.1
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2. SEISMIC MOMENT TENSOR

A very important concept in the formulation of the theory of
the earthquake source is the seismic moment tensor. The seismic
moment tensor was first proposed by Gilbert {197Q) defining it as
the integral over the focal wvolume of the stress drop, in such a
way. that the body forces can be derived from it. The meaning of
the moment tensor was clarified by Backus and Mulcahy (1976) who
pointed out to certain confusions in the original formulation.
They related the moment tensor to the stress glut or difference
between the elastic stresses and the true physical stresses. In
other words, it represents the inelastic strain in the source;
that is, the internal stress necessary (e  cancel the strain
produced by internal non linear processes {(Madariaga, 1981).
Geller (1976) showed the relation of the moment tensor to body
forces and the expressions of the elastic displacement field [n
terms of the Green's function, according to the furmulation of
Burridge and Knopoff (19643).

2| Definition

The moment tensor Mu can be expressed as the integral of the
moment tensor density mIJ over the source volume, or the source

surface. The eguivalent body forces per unit volume can be shown
to be related to the moment tensor in the form

r = -m (2.1

[n this way, the moment tensor can represent very general types of
force models. The cemponents  of MlJ Corresponds to couples of
i

forces which for i = J» they have the arm in the same direction as
the forces and for | = I perpendicular to them [Fig.2.1). A
combination of the resyltant 9 couples may represent any  type of
point scurce.

For homogeneous initial and boundary conditions, the elastic
displacement field for a volume source, in terms of the Green's
functicn, can be written in the form

w
u, = J drt f m G av (2.2)
k - Vo) Tkl

For a surface, the expression is



u = J drf m G ds (2.3)
K -t Ly ey

In equation (2.2), mlJ represents the moment tensor density per

unit  volume, while in (2.3) represents the density per unit
surface. For a displacement dislocation such as in (1.6) in an

isotropic medium, allowing for changes in volume, the moment
tensor density is given by

m = Aduni & +uaulnl +ni} (2.4)
Kk o3 1) 1t

Where n; and lJ are the unit vectors in the direction nermal

to the fault surface £ and in the direction of the slip Au. The
part aof (2.4}, corresponding ta i = j, represents changes in
volume. Ir n and lI are perpendicular, the expression represents

a pure shear disiocation and is given by

mU = u Au (n|lJ + nJl|J (2.5}

In this expression, m1l + m22 + m33 = 0, which is the condition

for a moment tensor without changes in volume.

For the far field, at large distances from the source and for
low frequencies, the point source approximation is valid and the
displacements may be written in the form

o= M *G .
N i ) (2.6)
where the star represents the time convolution and M” is the

integral of m]J over the source volume. The resulting expressicns

for the far field of the P and S waves are

P o_ _r
u o= Trpg M -5 (2.7

For a pure shear dislucation, equivalent tc a double-couple (DO,
M”(t) is given hy

M = M (nl +nl)fln) {2.9]
[ N

Mo is the scalar seismic moment and {1} the source time function.

Since the displacement field (2.7) and (2.8) depends on the 1ime
derivative of the moment tensor, the term source time Tunction is
applied to the derivative of f{t).

The scalar moment tensor was first introduced by Aki (1966)
for a shear dislocation in the form

M= Au 2.10)
R ¢ Bu S {

where At js the average value of the slip over the fault surface,
K the rigidity of the source medinm and S its area. He also made
the first determination of the seismic moment for the Niigata
earthquake of 1964, using long period surface waves and found it
consistent with field observaticns of ground rupture,

Since moments are conserved, I\«!1J is symmetric and in general

has & independent elements. I[ts eigenvalues al. crz. 0-3, are real

and, in the general case, have different values. The three
eigenvectors are arthogonal and represent the axes of maximum,
intermediate, and least moment {(P.B,T). For a source with no net
change of volume, the moment tensor is purely deviatoric and its
trace is zero

¢ +0_ v+ = 0 {2.11}
] 2 3

For a pure shear fault or a DC source, the eigenvalues are
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o =M, c.=0, ¢ =- M (2.12}
This condition implies that the determinant of MlJ is zero.

2.2 Partition of moment tensor

in the general case, MlJ is a general symmetric tensor and can

be separated into ap isotropic [change in volume) and a deviatoric
part.

M =M + M (2.13)

There is good evidence that earthquakes sources are deviatoric
with no net-changes in volume. Hewever, a  deviatorie moment
tensor, in general, does not correspond to a pure DC (double
couple or shear fracture) source. For this reason, the deviatoric
tensor can be divided into a DC part and another part that is not
DC (NDC). Thus a general moment tensor is divided into three parts

M o= MU0 0T e (2.14)

The non-DC part may assume several forms. A non-0OC deviatoric
source was proposed by Randall and Knopoff (1970) which was called
the compensated linear vector dipole (CLVD). Physically |, this
model represents a sudden change in the rigidity at

the source.
The moment eigenvalues are

= - M/ = - =
[ M02, T, MO/Z. crj M

. [2.1%)

Q

A general deviatoric moment tensor can be separated into a DC
cemponent and a non-DC part. This separation can be done in many
ways. In the inversion of moment tensors from observations of
seismic waves, the source is not restricted to be a DC. The moment
tensors obtained are deviatoric tensors and from them the DC part
is separated. This Separation can be done in terms of a major and
a minor double-couple or in  what has been called the best
double-couple. Strelitz (1989) has shown that mast separations can
be reduced to the sum of DC + CLVD source components.
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M = MISU . MDC - MELVD 2 161

The presence of non-DC components in the moment tensor obtained
from seismic observations may alse be attributed to heterogeneity
and/or anisotropy in the source region. However, thijs may be also
due to errors in the observations or in the earth models used in

the inversion and not necessarily te source effects (Sipkin,
1986).

The first order moment tensors are related to point sources.
If the characteristics of extended sources are to be described in
terms of moment tenscr distributions, higher order moments mnust be
used. The first order will define the center of gravity of the
source, the second the characteristic size of the source, etc. In
practice determining higher  order moments s a complicated
process. A point source at a known location and origin time s
defined by a first order mement  tenser and  specified hy  six
parameters. If the location and origin time are not knuwn, the
source is defined by [0 parameters. An extended source can be
represented by second order moment tensor including the time and
space derivatives, with 20 parameters related to the location,
orientation, rise time, spatial  extent and rupture  velocity
(Doornbos, 1982).

2.3. Moment tensor inversion

Since the earliest formulation of the seismic morment tensor by
Gilbert (1970) , it became apparent that the displacements of the
seismic waves are a linear combination of the elements of  the
moment tensor and those of the derivatives of the Green Tunction
(2.6). This linearity was first used by  Gilbert (1973) for
calculating tenscr elements from seismic wave observations. This
problem is known as moment tensor inversion. The problem of moment
lensor inversion can be considered in various parts. First the
inversion of first order moment tensor, time independent ang time
dependent and secondly to the problem of higher order moment
tensors. The most common probiem refers to the inversion of first
order time independent moment tensers. This problem jg important
because they describe, in  a first order approximation, the
equivalent forces of a general point source. As it wag explained
in part 2., they correspond to a very general type of source of
which  the shear dislocation is a particular case. If o
restrictions are imposed the inversion of the moment tensor wili
provide knowledge not only of the orientation of the source, but
also of the type of source.
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The problem of moment tensor inversion can be treated in the
time or frequency domain. The far field displacement for a point
source can be expressed in the time domain as a cenvoluticn of the
derivatives of the Green function with the seismic moment tensor

-]

s = [ e e M%) dr (2.178

and in the frequency domain as the product of their Fourier
transforms

Ulw) = G (W) M {w) {2.18)
I 1,k Ik

It is , then, possible in both cases to abtain by linear inversion
the components of M”. Since the moment tensor is a symmetric

tensor only six of its njne elements are different. If no
restrictions are imposed , the source ig of general type and may
have a component of volume change. This is the isotropic
component. If this component is zero, imposing the condition

M+ M +M = 0 (2.19)
n 22 33

With this condition, the tensor is purely deviatoric and the
independent elements are only five. This is a linear condition,
and therefore does not affect the linearity of the prabiem. If the
condition that the source corresponds to a shear dislocation
(double-couple) is imposed, that is, that the determinant is zero,
the problem is no longer linear.

In general, the derivative of the Green's function Gm) have

27 different components. However, for a purely deviatoric source,
only 8 selected combinations are needed. For example, the SH
displacements, observed at an azimuth ¢ from the source can be
expressed in the form
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Ut = -l/Z(GM'2 + Gk2.1]5m2¢ (M” + Mzz)
+ (G“'z*» sz'lP cos2¢ M12 - (sz,3+ Gk3'1151n¢ Mw
+ (sz‘3 + GkS,l) cosg M23 (2,20}

If the orientation of the mechanism does not vary with time, then

WE can separate the source time function flt)

M I(th=M rit) = M m_fi{1) [2.21)
1 1) [

In equations (2.17) and (2.18) from a set of observations u
we can determine the mechanism defined by M” if we know the

derivatives of the Green function lej also called the excitation

functions of the medium whose elements depend on the Earth mode]
used. For this purpose we have to solve in these two equations for
M”. We write them in matrix form

U=GM {2.22)

where U(N) is a vector of dimension N (number of observations)
M(6} has dimension 6 (the 6 different components of the moment
tensor! and GIN x 6) is a matrix of dimension Nxg. In the
frequency domain (2.18). the equation can be written for each
frequency. The relation is linear for the real ang the imaginary
parts of Ul - For the modulus , the relation is  non-linear and it

must be solved through a Proper linearization. If the real and
imaginary parts of the spectrum are used , for N statjons and M
frequencies there are 2NM equations to be solved for the 6
compenents of the moment tensor. The excitation functions must
also be known at each station and for each frequency, that is | in
general 6NM. Since data from many stations and frequencies are
generally used, the problem is overdetermined. The 6 components of
M reduce ta 5 if we introduce the condition of that there are no
changes of volume,
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M+M +M =0 (2.23)
i 22 T

Since according to (2.17) and 2.18) we have N equations with &
unknown, the system is over determined and may be solved by least
squares. The solution may be written in the
form

M=(6"6)'6¢"uz 24) M=(cT61 6Ty (2.24)

Also using Lanczos generaiized inverse matrix

M=BA Vv U {2.25)

Where A is a diagonal matrix formed by the eigenvalues of G, B the
matrix formed by the eigenvectors of G and V the matrix formed by
the eigenvectors of G'.

This form of solving the inverse problem has sometimes many
difficulties due to the i1} conditioned nature of the matrix G.
For this reason, the problem is often solved in the direct form,
given values of M and calculating U, The error is defined as the
difference between the observed and calculated values of U. The
solution is found as the vaiue of M that gives a minimum error in
the least square sense. Because of the influence of the depth of
the focus h, this parameter is also introduced in the problem as
an unknown together with the 5 components of M.

Data used are the displacements of internal, surface waves or
free oscillations.The inversion can be done in the time (2.21) ar
frequency domain (2.22). In all cases, we must have in mind that
both equations represent the ground displacements, so that the
seismograms must be corrected previously for the instrument
response. Regarding the Green functions, they must be calculated
for a given theoretical Earth model. The simplest one is that of
an infinite, homogeneous, isotropic medium. They become more
complicated as we complicate the modei. The functions depend on
the relative position of the observation point with respect to the
focus  (hypocenter). For teleseismic  distances standard Farth
models may be used. For regional distances local models of the
crust and upper mantle must be used.

In figure 2.2, tha focal mechanism obtained from the inversion
of the moment tensor using internal waves together with the best
DC component. The compenents of the moment tensor are the
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fellowing,

m = 8.90
11

m =580
12

m13= .10

m_ = -6.60
22

mz3= 9.93
m_,= ~2.30

The percentage of non-DC component in the solution is 1438 %
This is a large amount and it means that the source cannot be
considered as a pure shear fracture. This characteristic of  the
source is lost in other methods where the DC character of the
seurce is assumed from the starting point.

The first procedure for moment tensor inversion was proposed for
free  oscillations data by  Gilbert and Dziewonski (1975,
Mendiguren (1977) preseated the inversion of surface waves,  He
used a linear inversion of the real and imaginary parts of the
spectra of Rayleigh and Love waves and a linearized procedure for
the non-linear problem of the amplitude spectra. The method
provides also a fast way to determine the saurce depth. Some
problems involved in the linear inversion were pointed out by
Patton and Aki (193] Kanamori and Given (1981) presented a
methed using the spectra of long period (180 to 350 g) Rayieigh
and Love waves, They pointed out that for shallow sources, the
determination of certain components of the moment tensor (M” and
M23] becomes very difficult. To overcome this difficulty, they
introduced certain constraints. One of them is to force these 1wo
components to be equal to zero. This s equivalent to force the
mechanism to be a pure strike-siip on a vertical fauit or a pure
dip-slip on a fault dipping 45 degrees. This may provide a very
useful first approximation. Since the solution was not forced to
be a double-couple source, it js separated into a major and a
minor double-couples.

Romanowicz (1982) proposed a two steps methed for moment
tensor  inversion in  the frequency domain. The first step,
independent of depth and azimuth solves for SM unknowns from the
total of 2MN equations. The second step uses SM  equations to
solve for the S unknowns (5 components of deviatoric moment
tensor) for different valyes of the depth. The minimum error
selects the value of depth and the corresponding value of the
moment tensor.
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Stump and Johnson (1977) presented the first inversion of bady
waves in the time domain. They applied the method to synthetic
data and made use of the Lanczos’ generalized inverse matrix. Body
waves were also used in the inversion of the moment tensor by
Strelitz (1978). Amplitudes of teleseismic body waves were used by
Fitch et al. (1980) to estimate the elements of the seismic moment
tensor. Sipkin (1982} used a method based on multichannel signal
enhancement in the time domain. Using recursion techniques, the
elements of the moment tensor are solved for, as the optimum
multichannel signal-enhancement fijlter. In a second appreach a
multichannel vector deconvelution is used in which a set of
filters is computed which, when convolved with the data yield time
averages of the elements of the moment rate tensor. These methods
can be applied to a variety of data of teleseismic and local
earthquakes. Sipkin's method is applied in a routine form to
sufficiently large earthquakes by the U.S. Geological Survey. Many
other methods have been derived to obtain the elements of the
seismic moment tensor, for example, the one presented by Pearce
and Rogers {1989) that uses the amplitude ratios of P, pP and sP.
A different approach is followed by Vasce and Johnson (1990) who
have devised a method of extreme models in the inversion of moment

tensors to test how universal is the double-couple model and the
presence of isotropic components.

A possible source of error in the determination of the seismic
moment tensor is the misslocation of the hypocenter. Dziewonski et
al.  (198l) considered that the values given by hypocentral
determinations from first arrival times may not be adequate for
the determination of the seismic moment tensor. They proposed that
the coordinates of the focus and the origin time must be
determined at the same time that the elements of the moment
tensor. This location of the focus does not correspond to the
initiating point of rupture, but to the centroid of the source
area. The method is called the inversion of the centroid moment
tensor (CMT). The method uses the body wave portion of the
seismogram and is solved in the time demain, computing the
synthetic seismograms by superposition of normal modes and using a
non-linear least-squares inversion. This method is actually used
in a routine basis for large earthquakes using data f(rom digital
stations by the Harvard University group and reported in bulletins
and periodic publications.
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3. SOURCE DIMENSIONS

3.1. Source time function

The first dimension that can be introduced in  the
representation of the source is that related to its dependence on
time. As has been mentioned, the temporal dependence of the source
can be represented by the source time function f{t). For a
dislocation model, this functjon represent the time dependence of
the non-elastic displacement or slip at the source Au(£,t). If the
time dependence is the same at all points of the fault

Ault) = Au f(t) (3.1}

As was shown in (2.7) and (2.8), the displacements of the elastic
waves at abservaticn points away from the source depend on the
derivative of the displacement at the source Au{t), that is, the
rate of slip or veloecity of the displacement of each point of the
source. This means that the radiation of energy from the source
depends on the velocity and not on the displacement of the motion
at the fauit. Because of this reason, the term scurce time
function is usually given to the derivative of fit).

The simplest type of source time function if the Heaviside
step function

Flt) = HIT) { =@t < 0 {3.2)
I t > G

This function does not introduce any time dimensions as the
motion  at the source occurs instantaneously from zero to its
maximum value at time t = Q. The derivative of the H(t) function
is the Dirac delta function a(t). According to (1.8) and (1.9,
the wave displacements u(t) wiil have in this case an impulsive
form with this time dependence.

More realistic is to introduce a time 7, called the rise time,
that takes for the displacement to reach from zero to its maximum
value. This is the first way in which a dimension is assigned to
the source. This time dimension may be considered even for point

sources. The simplest function used in this case is a linear
increase from 0 to t,
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Au % 5 0<t<x
Auft) = (3.3}

fu ; Tt

In this case, Au increases linearly from zero to its maximum value
in the time t. The discontinous nature of this function can be
avoided using an exponential dependency

Bult) = Au Ht) (1 - & ¥7 (3.4)

In this case Ault) = 0.638u. In these two cases (0} = Q. However,

we are more interested in the behaviour of flt), and in both cases
for t = 0, this is not zero, but there is a jump in velscity.
{Fig.3.1), One way to to avoid this problem is to use a functicn

such that Both f(t) and fit) are zero at t = 0. This function can

be approximated using for (1) a triangutar function, The form of

the pulses of the seismic waves is the same as that of f(t) with a
time width that depends on the rise time (Fig.3 2)

0 t <Q

. /s ; < /2

Balt) = av t/r Q t<T/2 (35)
-Av it T2t
0, t >0

As  we  will see ater, this function s generally used for
modelization of wave forms. The form of the wave pulses are also
triangular with a width depending on the rise time.If we want ta
introduce the duration of the process at the source keeping the

point source approximation, we can make f(t) to have a trapezoidal
shape with a total duration equal to T {Fig.1.3).

In conclusion, the time dimension in the source may be
intreduced by an appropiate choice of the source time function
even if the source is kept ta ba punctual. This intreduces new
parameters such as the rise time and time duration. The wave
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pulses resulting from this type of sources have a time width that
depends on the time dimension of the source.

3.2 Source spatlal dimensions

The point-source approximation does not consider the spatial
dimensions of the source region. Progress in the representation of
the seismic source must include besides its orientation, its shape
and dimensions. One of the first  relations between seismic waves
and the dimensions of the source was established by Jeffreys
(1931) who proposed a model of the source as a spherical cavity
with uniform tensions applied on its surface. A similar model was
also proposed by Nishimura (1937} and later by Scholte (1962) with
a distribution of stresses over the surface of a sphere of finite

Volume sources have little relation with the physical mode| of
a Tault. More realistic modeis start with the consideration of
elastic disiocations of finite dimensicns, Burridge and Knopoff
(1964) studied the case of propagating dislocations over a certain
finite length and showed its  equivalence to propagating double
couples.  Previous g this  work, Ben Menahem  (196], 1963)
determined soluticns for  surface and body waves from extended
sources, consisting in point  forces of the single and double
couple type Propagating in one direction with a finite velocity
v. The model! of the fault is a rectangular fault of finite length
L and width W. He shows that the effects of the finite dimensions
can be jsolated by means of the directivity function, ratio of the
spectral  amplitudes radiated  from the source  in  opposite
directions.

Haskell (1964, 1966) presented a model of the source with
finite dimensions of rectangular shape of length L and width D, in
which the slip has the form of a rupture front that propagates in
one dimension with velocity v, along the length. The siip
depends on time in such a way that takes a time 1 (rise time) to
reach its maximum value Au  in the form of a ramp function, from
t =01t t =1 (33, This model has been useg extensively to
determine the dimensions of the source of earthquakes from the
observations of seismjc waves. Dimensions of the source were also
introduced by Berckhemer (1962) Tfor a circular  fracture that
propagates from jtg center, showing their influence in the width
of the seismic Pulse. Later, Berckhemer and  lacob (1968}
calculated numerically the radiation for circutar and rectangular
faults initiating at 3 boint and with varjable velocity., A model
of an elliptical fault was presented by Savage {1966). Ruptyre
starts at one of the foci and bropagate outwardly at constant
velocity until the beundary s encountered  with constant and
variable slip. . Hirasawa and Stauder (196%) investigated the
radiation from several models of rectangular faults with fracture

initiating at a point and propagating Unilaterally and
bilaterally.
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The radiation of P waveg in the far field, from a simple
rectangular fault (Fig. 3.4}, can be written in the form

n R(r‘,n],llJ

J su g, v - Ty gs (3.6}
3 [+3
dnpar z

Where thl.nl,ll) is the radiation pattern of a point source as in

expression (1.8), constant for b2 if r is very large in
comparison with the dimensions of the source.If in the course of
propagation , the fractyre moves  with velocity v along the

length of the fault L . the integral can be written in the form

Lo ro g 4
D!O Au[t-;—;[cosﬂ—‘:]]ds (3.7}

For the time-dependence of Au, the function (3.4) js used (Ben
Menahem and Tokséz, 1963}

[n this case, taking the Foyrier transform and evaluating the
integral we obtained for the spectrum of the displacements

- pAu 1D ! sin X Hwr/e + X -n/2)
U (w) = 3 R[?l'"t']” I+ jwr x°
1 ampo’r ! ¢ {3.8)
where X is given by
wl @«
X = —(cosH - — ) {3.9)
2a v

In equation (3.8) the dimensions of the source introduce the
factor sin X/X  and the existence of a rise time the factor (1 +
iwr) ™ Therefore, the spectral amplitudes have the fellowing
form. For low frequencies as @ tends to zero the spectral
amplitudes tend to a constant value. For values of w larger than a
certain value wc , the spectral amplitudes decrease as  w {Fig.

3.5). The properties of the spectral amplitudes and phases for
bady and surface waves radiated from propagating sources over a
finite faylt area are the basis for the determination of the
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parameters which define the dimensions of the seurce. These models
introduce the following five parameters: L the fault length; D the

fault width; v the rupture velocity; Au  the permanent slip  and
T the rise time.

3.4 Corper frequency and dimensions

A different approach to the problem of fracture over an
extended fault was presented by Brune (1970}, He madels the
earthquake dislocation as a tangential stress pulse applied to the
interior of a dislocation surface . The pulse s applied
instantaneously over the whole fauit surface, neglecting fault
propagation effects. He described  the near and far field
displacement in the time and frequency domain. The spectrum has a
flat part for low frequencies and decays as o ° for frequencies
larger than a particular wvalue W called the "corner frequency”

{fig. 3.5). This result agrees with the previous work by Aki
(1967). The corner frequency is inverse proportional to the
dimensions of the source. According to Brune , the radius of the
circular fracture is related 1o the corner frequency of the
spectrum of § waves by

2.21 8

r = " (3.10)
c

Savage (1972) caiculated the corner frequencies for P and § waves
for a model of a rectangular fault of length |. and width D and
a rupture velocity v = .9 2, with the follawing result

1.7 o
\/ID = P (3.11)
w
[~
388
\/:D = g (3.12)
W

Accerding to these expressions, the corner frequency of the S
waves i3 higher than that of the P waves. The opposite resylt is
found from the model of Sato and Hirasawa (1973) and Molnar et al.
(1973). According to__Madariaga (1977), the form of the spectra
with a decay as ¢ ° beyond the corner frequency is a general
Property common to the targe part of fracture models, However, the
relation betwesn the corner frequency and the fault dimensions
depends on the details of the model assumed for the source, in
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particular on the stopping mechanism.

3.5. Seismic moment and stress drap

As can be seen from equation (3.8}, the displacements of
seismic waves are proportional te the scalar seismic moment MD =p

Au S, This parameter can, then, be accurately determined from the
observed seismic waves. It represents also a better measurement
of the size of an earthquake than the magnitude and can be
related to the stress drop at the source. The stress drop  Ac s
the difference between the shear stresses at the fault before and
after the occurrence of an earthquake. For a circular fault of
radius a, the reiation between the seismic moment and the stress
drop is

Moo= 1850 0 {3.13)
2 7

In logarithm form the relatisn between the stress drop, the source
area and the seismic moment for g circular fauit is given by
(Kanamorj and Anderson, 1975}

2 16 Ac

= V> 314
logMo 2lc:gS +log(7"3/z} 13.14)

For a constant Ac, log S is proportional to log MG (Fig. 3.6). As

an avera‘gc, observations agree with this proportionality  with
slope 3/2 for moderate and large earthguakes. The stress drop may
be considered constant with valyes ranging frem | to 10 MPa (10 to
100 bars). This result was also found by Aki (1972). Larger values
of stress drop seem to correspond to intrapiate than to interplate
earthquakes.

Seismic moment can be also related to magnitude, assuming an
empirical relation between magnitude and energy. Using the
Gutenberg-Richter relation for Ms » this relation is (Kanamori and

Anderson (1975)
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Log Mo = 5 Ms - log (posu) + 11.8 (3.15)

Where ¢ is the average stress acting at the source and 7 the
seismic efficiency. Observations also support the constancy of the
apparent average stress no with an average value of about 3 MPa
(30 bars).

3.5 Nucleation, propagation and stop.

The complete process of fracture propagation from a
kinematical peint of view must  include the description of its
nucleation, spreading and stopping. Savage (1966) studied the
effects on the seismic signal of the initiation and stopping of
the rupture. The problem was more fully considered by Sate and
Hirasawa (1973) and Molnar et al (1973). In these models, the
slip 8u was specified, in such a way, that it comes to a stop,
when the limit of the fault is reached. The phase generated by the
stopping of the rupture was called by Savage the “stopping
phase™. The relative importance of the initiating and stopping
phases is different according to the model assumed for the slip.

In the simplest case, for a circular fault of radius a  and
displacement  Au constant over the entire fault surface, this may
be represented by

Au (p,t) = Au HO - p vl [1 - Hip ~ a)) 13.16)

Where p is the radial coordinate and v the velocity of fracture
propagation.In the center of the fault ¢ = 0, the faults starts at
time t = 0, in an instantaneous way from O to Au. For a value p <
a, Au is zero until t = es/v, at this time arrives the fracture
front that travels with velocity v. At the border of the fracture
p = a, the motion stop (Au = 0, for p > a) (Fig. 3.7). For a point
at a distance r above the center of the fracture, an approximaticn
of the displacements of P waves is

ulr,t) = 2m su Vo - Ly vt - Dy - a <o
v @

(3.17)
ulr,t)

il
=

vit -5y -2 o
o
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The displacements have a discontinuity that corresponds to the
time t = a‘v + r/a According to our approximation this time
corresponds to the arrival to the observation point to the signal
fram the stop of the fracture at the border (p = a). This arrival
is called the stopping phase. After this phase the displacement is
zero  and  there s an impulsive increase in velocity  and
acceleration,

The theory of propagating dislocations over a finite area has
been also applied to the study of the near field dispiacements by
Aki  {1968), Haskell (1969} and other authors, using numerical
integrations. A comparisen of the near field motion for several

different kinematic models of faulting can be found in Anderson
and Richards (1975).

3.6 Modelling of seismic waves

Displacements of seismic waves as observed in a seismogram
wlt) in a particular seismic station are the result of a
convolution of the displacemsnt at the focus ult) with attenuation
effects along the path Qi) and the instrument response [it)

wit)={(t]*Q{t)*u(r) [3.18)

Since I{t) isca known function and Qlt) for teleseismic
distances (A > 30°) can be approximated by a Jinear uperator
F(t.T/Q} which satisfied that T/Q = | for P waves and rQ =4
for S waves, the time dependence of the seismic scurce can be
obtained from ul(t). In this way, the methods of seismic wave form
modelling allow the determination of the source time function.

The method of modelling the forms of the Waves consists in the
calculation of theoretical seismograms from models of the smirce
defined by its scalar seismic moment,  orientation of the
dislocation and the source time function. The comparison between
the theoretical and observed selsmograms permits to adjust the
values of the parameters that define the seismic source.

Using a point source corresponding to a shear dislocation

(DC), the vertical component of the P waves at a distance A, in
spherical earth of radius a, may be written as
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P a9
u= —R7(8.i lglale (i )f{t-r/a) (3.19)
dnpaa i 20

Where p is the density, o the P wave velocity, RF(@,i) the
h

radiation pattern for direct P waves which is a function of the
relative orientation of the ray leaving the focus with respect to
source geometry (ih= take off angle at the focus) , gla) the

geometrical spreading of the wave front, = (io) the free surface
z
effect (iu= incidence angle at the station) and flt-r/al the

source tlime function (Deschamps et al., 1980). Here the source

time function (1) represent  the time dependence of the slip
velocity AGit).

If the focus is located at a depth h, besides the direct P rav
we must considered the rays reflected in the free surface pP and
sP that arrive at the station a short time later {Fig. 3.9).
Thus, we must modify expression (3.19),

M

=
L]
I

°73~— gld) e (i 1{R”(¢,i b=t )«
4nphoc rh =0 h F

+ R m-i 1 ™ rer ) R0 0 v e ) }
h PP h Ps

{3.20}

The first term correspond to the direct P wave, the second to the
PP and the third to the sP waves. In this expression R’ y R*Y are
the normalized radiation pattertis for the P and SV motion. For the
pP and sP waves, the rays leave the source in u%\gard direction and
correspond to take-off angles equal to ﬂ—ih. v and v are the
reflection coefficients at the free surface for an incident P and
S and reflected P. t, is the arrival time of P, that is (r/a),
e ¥ L, those of the pP y sP waves. These two last terms are

given by

34

1321

t,=t,+h . (3.22)

From these equations we can calculate the theoretical
displacements of the P waves u (t) for each statjon, that
z

correspond to the sum of the three arrivals, namety, P, pP and sP
(Fig.3.9). Depending on the depth of the focus h, the time
intervals between these arrivals vary. For larger depths the
intervals are longer and the aspect of the waves is more complex.
The obtained displacements wu(t) must be convolved  with the
response of the instrument [(t) and the attenuation factor of the
medium  Q(t}, before we can compare the theeoretical with the
observed seismograms.

In practice, there are several computer programs to carry out
the medelization (Deschamps et al., |980; Helmberger, 1983;
Nabelek, 1984) The technique that will be described corresponds
to the method developed by Deschamps et al. {1980).

For eaEh stalioon, data used (limited to epicentral distances
between 30 and 90 } are :The wave form of the verticai component
of P (rumerical sampled armplitudes given In cm), the take-off
angle at the focus in' the azimuth ¢ and the incidence angle at

the station io' initial values of the orientation of the fault

plane $. & y A, depth of the focus h and of the source time
function fit) fusually of a triangular or a trapezoidal form}.
From these initial parameters starts the madelling process: First
the theoretical seismogram is calculated for one station, This
seismogram is compared with the observed. Using an iterative
procedure the source parameters ¢, &, A, h and f{t) are changed
so that the best agreement possible is found between the
theoretical and observed seismograms. The solution found for the
first station is used for the other stations. By successive
trials, a solution is found that adjust best to the greater number
of stations. In this way, the depth of the focus h, and
orientation of the fault plane, ¢. & A are corrected from the
initial values (found from other methods such as arrival times and
P wave polarities). Simple wave forms indicate surface shocks in
very hemogenecus media with a simple source, while complex wave
forms may be due to deep focus, hetercgeneous media or complex
sources. An example of the ambiguity between the complexity of the
source and the depth of the focus is shown in Figure 3.10. In this
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flgure the P waves in the same stations have been modelled using a
simple source at a depth of 40 km and a complex source at a depth
of 12 km. As can be seen, the effect is almost the same.

The problem of madelling wave forms at regional distances
(epicentral distances between 50km and 1000 km) is more complex,
since for this case the crustal and upper mantle structure has a
great influence. The problem consists in separating correctly the
effect of the source form the effect of the propagation in the
medium. Correct detailed models of the crust and upper mantle are
needed for each region that in most  caseés are not available
(Helmberger y Engen, 1980; Koch, 1991; Sileny et al., 1992).

3.7. Empirical Green functions

To solve the problem proposed by the lack of knowledge about
the detailed structure of the propagating medium, the methed of
the use of empirical Green functions has been proposed. This
method is based on the use of waves from  earthquakes of small
magnitude as empirical Green functions, in order te  modei
earthquakes of greater magnitude with the same hypocenter. It is
assumed that the waves from the small earthquake include ali the
effects of the propagating medium and therefore are good
approximations to the actual Green function, since its source may
be considered approximately as a delta function (Mueller, 1985;

Frankel y Kanamori, 1983, Frankel et al., 1986; Mori y Frankel,
1990).

Let us assume that WI(U y wz([) are the observed seismogram

at the same station, for twa earthquakes with the same hypocenter
and different magnitudes. As we have seen, the seismogram is the
result of a convolution of the displacement fjeld generated at
the source u{t), the propagating mediums Q(t) and the instrument
respense 1(t). The last two are the same for the two shocks.

wl(l] =0(t) * Qix) » ul(t)

{3.23)
wz(tJ = Ht) * Qft) = uz(t)

and in the frequency domain
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Wl(mlI Kw) Qlw) ul(m]

(3.24)

wz(w) Hew) Qlw) uz(wl

if the two earthquakes have the same mechanism, the radiation
pattern is the same. The difference between the two signals is
only due to the source time function. If the corner frequency of
the smaller shack s Ereater than the range of frequencies in
which we are interested, we can consider the waves of the smaller
shock as generated by a Dirac delta function. The quotient of the
Seismegrams in  the frequency domain wl[wl and wzlw) in the

frequency domain is the transform of the source time function of
the larger shock.

= el R 13.25)
u L

If we take the inverse Fourier transform of Flw) we obtain the
source time function f(t) of the earthquake of larger magnitude,
From this function we can determine the seismjc moment by
calculating the area under the curve and the dimensions of the
securce from the time width or duration of the source function
(Mori y Frankel, 1990).

Data needed for the application of this method are pair of
seismograms  in  the same station  from earthquakes  with
approXimately the same hypocenter and mechanism and a difference
in magnitude of at least one and maximum 2.5 units. The Fourier
transform of the two signals must be caiculated, then we make the
quotient and take the inverse transform. The obtained signal which
represent the source function is filtered. An example of this
method is shown in Figure 3.1l. The 1wo earthquakes have
magnitudes 3.2 and 4.5. The seismograms for each shock, their
spectra and its quotient are shown The source time function
obtained has a duration of 0.56 5.

This method allows also to detect the directivity effects
shown in differences of the signals observed at different stations
for the same earthquake. Inspite of these differences the area
under the signal which is a measure of the size of the shock must
be the same in all stations.

This method is of great interest for the study of earthquakes
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at regional distances, since it permits to separate the source and
propagation effects. For this range of distances this is the onty
way to correct for the Prepagation in a very heterogeneous medium
that never is known with sufficient detail. These shortcomings
difficult the application at these distances the application of
the modelling of wave forms.

3.8 Spectral analysis

As we have seen, the spectra of seismic waves depend on the
dimensions of the source, For a great variety of models consisting
on a fracture on a finite fault area, the shape of the spectrum
has the same characteristics. These are: a flat or constant level
of the amplitude spectrum for the low frequencies and a decay,
generally, proportional to w ", starting at the corner frequency
w (Fig. 3.5). The value of spectral amplitudes at the flat part

is proportional to the seismic moment and the corner frequency 1o
the inverse of the fault dimensions. It is possible, then, to

determine these two parameters of the source from the seismic wave
spectra.

The seismic moment can be obtain from body waves at teleseismic
distances using the equation,

Qn anv?a explwr / vIQ |]
Mot ¢, (T RI$,5.7. T3 (3.26)

i
h

Where QO 15 the spectral amplitude at the flat part of the
spectrum of P or § waves, g the density at the focal region, v|

the velocity of P or § waves also at the focal region, a the
radius  of the earth, gld}  the geometrical spreading, the
exponentiat function represents the attenuation of the medium n =

quality factor}, C‘(iOJ the effect of the free surface and
R[¢.6.R.ihl the radiation pattern. For regional distances asgial

may be substituted for r the distance along the ray

The radius of & circular fault  (Brune's model) can be
calculated from the corner frequency r
c
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2.34 8
P (3.27)

For a rectangular fault (Haskell's model) we obtain from the
corner frequency the product of the length L by the width D of the
fault

From the values of Mo and the dimensions r o 1. and D. other

parameters of the fault such as the stress drop 8¢ and the average
displacement Au can be determined

Mo
A = YRl (3.29]
S
Mo
g o= . N 330
Au S (3

Where $ is the fault area and # the shear or rigidity modulus at
the focal region

Data needed for these calculations are digital recordings of P
or S waves and the response function of the instrument I'he
observed signal wit) is transfermed 1o the frequency domain Wiw]
(a minimum of 256 samples is recommended) The recorded signal has
te be corrected by the instrument using the instrument response or
transfer  function. Usuaily  the digital seismographs  record
velocities of ground motion, If these are given by st} (chserved
seismogram), they can be written in time and frequency domain as

sit)=T(t}* vit) 13.31}

s(w)=T(w)v(w) (3.32)

Where T(t} is the response or transfer function of the instrument
for velocity ground motion vitl. The ground displacement git) can
be obtained by integration,
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glt) = [ v(t) dt (3.33)
° _ \;(w]

g(w) = 'T- (3.34)
stw) = Tw) | w gle) (3.35)

Therefore, in the frequency domain the ground displacement s
given by

stw) (3.36)
T (w)
1

glw) =

Where Tl[w) is the instrument transfer or response function for

displacements. Although the data are velocities to determine the
spectral amplitudes for displacements, we must use this transfer
function. Usually transfer functions are given as quotients of
polynomial form, specifying the poles and zeros, For example for a
Streckeisen broad band instrument

T(f) = %Li_u (3.37
! €5 - 2ihff - rd
a a

Where f0= G.00278 Hz, h = 0.707, G = 1.04 x 10’ counts/cm s~

Once the spectrum has been corrected by the instrument, we can
calculate the values of Qo and f . In Figure 3.12 the P wave
<

recorded in a short period instrument of vertical compeonent js

shown, together with the amplitude spectrum corrected for the

instrument response. In the spectrum the values of QO and f are
<

also shown..
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4.DYNAMIC MODELS AND SOURCE COMPLEXITIES

4.1. Dynamic models

The kinematic models of the source mechanism of earthquakes
are based on the assumption of a certain function of space and
time for the stip Aulsk.tl over the fault area. The form of the

fault surface and the velocity with which Au moves, that is, the
velocity of fracture propagation must also be assumed in the
model. The latter may be constant or variable over the fault
Depending on the model, the slip takes its maximum value at each
peint of the fauit, either instantaneously or after a certain rise
time as the fracture front propagates. The slip is also made to
start at a certain point, propagate through the fault area  and
finally stop at its border. From these models, the displacement
radiation u(xl,t) at the near and far field can be derived . From

the physical point of view, the kinematic models have many
shortcomings  and  inconsistencies. In fact, in them, nrear the
borders of the fault there is interpenetration of matter, the
strain energy drop is unbounded and the stress drop is mﬁmte
(Madariaga, 1976). To obtain more physically realistic models, one
must proceed te establish dynamic models in which the ship s
derived from the state of stresses and the strength of the
material at the source region

4.2. Stress drop and fault slip

The genera! problem of dynamic models is based on the idea of
crack formation and propagation in a prestressed medium.  The
mechanism of an earthquake is considered as a shear rupture that
nucleates at a certain point of the fault and propagates at a
certain  velocity and finally steps at its border. Inside the
crack, the shear stress drops from its initial value ¢ to a final

value, defined as the frictional stress T The driving stress of

the fracture is, then, the stress drop Ac or difference hetween
the initial and residual values.

Q F t4.1)

The dynamic problem relates the displacement of the fault Au with
the stress drop fAc. The simplest relation is that of the static
solution, that for a total stress drop (ch = 0} in a circular

fault gives
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sulp) = ”‘% a® - p? p<a (4.2)

The stresses outside the fracture due to the stress drop inside are

olp} = p>a (4.3)

/pz_ K

Expressions (4.2} and (4.3) introduced us In the dynamic problem.
The stip Au is not assumed as in the kinematic models, bui results
from the stress drop A¢ over the lault area {Fig.3.1a). The stress
drop on the fault modifies the state of stresses outside the
fault, accumulaling siresses near the border (Fig 3.1b). This
creates a singularity where stresses become infinite.

The relation of ¢ with the average value AU is

= l&a
Au = Tan Ao 14.4)

From this expression we can derive a relation between the scalar
seismic mement and the stress drop

16 3
l‘-‘l0 =-5a Ao {4.5)

For this case we can also write for the energy spent during the
process in a fault of area S

E=4ubdeS 14.6)

In terms of the seismic moment this expression can be written as
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E = da M 4.7
pITE]

If the stress drop is not totai, there will be a residual energy
lost by friction ER, and the total energy, according to (4.5),

will be

E=E +E =405 (40 + ¢ ) 14.8)
S R F

These simple relations show how we relate the displacement Au at
the fault with the stress drop Ae, fraction of the stresses acting
at the source region that is responsible for the displacement.

4.3 Crack or fracture propagation

The use of crack models for the dynamics of the source of
earthquakes was Initially proposed by Kostrov (1966). The physics
of cracks can be traced back ta the early work on the formation of
cracks in crystals and metals by Griffith (1921}, Starr (i928),
Irwin  (1948)  and  Orowan {1952). Kostrov  (1966) laid  the
foundations of the dynamic problem for earthquake sources and
found expressions for the slip inside the crack and stresses
outside, both on the crack plane. Burridge (1969} extended
Kostrov's work using a numerical technigue to study finite shear
cracks with a flixed velocity of rupture.

Te study the propagation of shear cracks and  thejr
displacement fields for two dimensional models, two modes of shear
fracture are considered antiplane and inplane (Fig. 4.2). In the
antiplane mode, the slip along the surface of the crack is
perpendicular to the direction of propagation of the rupture
front. [n this case, only SH motion is radiated. In the inplane
mode, the slip is in the same direction as the rupture propagation
and P and SV motion is generated. In the three-dimensional
problem, both modes appear at different place arcund the fault
boundary.

The simplest case of ecrack propagation is that of steady
growth at constant rupture velocity in an homogeneous medium. In
this case the crack propagates indefinitely. The growth of the
crack is ensured by a finite energy flow into the rupture front.
In this case the stress and slip velocity for the antiplane case,
are given by {Madariaga, 1983}

elx) = Klx - 12 (4.9)
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aulx) = v [Ut) - xi 2 (4.10)

Where 1(t) is the position of the crack tip ., K is the dynamic
stress  intensity factor and V  the dynamic velocity intensity
factor. The energy flow into the crack tip G, used to create new

fault surface and which is spent in the processes in the breakdown
zome, s given by

G == KV (4.11)

Where v is the velecity of rupture propagation. For antiplane
cracks, K and V are related by the expression

i
- 2,.2.1/2
K o= o - vgh)y (4.12}

where u is the rigidity and B . the shear wave velocity.

. The natural fracture criterion demands that the energy fllow
mt.o the crack tip be equal to the energy required 1o create a
unit surface of new fracture.

The simplest models of crack propagation are those with an
assigned velocity of rupture which may be given a constant value.
In  this case, if the crack starts at a peoint and growths
symmetrically, without stopping, we have a circular crack For
this case, there is a simple relation for the shear slip Au in
terms of the shear stress drop Ac that drives the rupture process

Ao
Aulrt) = - ctw (t? - o E roCvt (4.13)

Wherf_- Clv) is approximately unity for the whoie subsonic rupture
veloclt},r_ range. The circular self-similar shear crack is very
useful since it permits to study many properties of crack models.

If the siip, slip velocity and stress near the rupture front
are examined (Fig. 4.3), it is found that the slip velocity inside
the crack and the stress outside become infinite as they approach
t!.*\e rupture front. For brittle fracture where the material is
cllther'. broken or continuous, with no transition zone , this is the
s:tuat_u.)n { Kostrov and Das, 1988) . To avoid this singularity, a
transition zone ahead of the crack tip must be considered. In this
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zone there is an interaction of the material immediately ahead of
the rupture front.

Barenblatt (1959) proposed a mode] with a transition zone that
he called the cohesive zone, where cohesive forces act, opposing
the crack sliding. This idea was applied to seismological models
by Ida (1972) , Palmer and Rice (1973) and Andrews (1976) in the
slip weakening model. This model assumes that the shear stress on
the crack is a function of the slip. Several theoretical models
have been proposed for the form of e{au). In ail of them, the
shear stress ¢ has a finite value for Au = 0O and drops to the
frictional stress for A&u larger than a critical value [ (Fig.
4.4a). In general, as slip increases , the stress decreases from a
certain value below which the crack does not slip to the
frictional stress. [n this model a breakdown zone of a certain
length d is created which corresponds to the length of the
cohesive zone along the crack front (Fig 4.4b). The size of this
breakdown zone is thought to be very small compared to the overall
dimensions of earthquake faults. A major difficulty with these
models seems to be that the cohesive zone is not independent of
the rupture history.

4.4. Spontaneous rupture, nucleation and stopping

Complete models of earthquake occurrence must include the
entire phenomencn of rupture, its initiation or nucleation,
propagatien and stopping on the basis of the stress conditions and
material properties at the source region. The two determining
factor are ., therefore, the tectonic stresses derived finally from
the relative plate moticns and the physical properties of the
rocks at the fault zones.

To study the initiation and the spontaneous propagation of a
fracture, a failure or fracture criterion must be introduced. For
pure brittle fractyres two criteria have been proposed (Kostrov
and Das, 1988). Griffith’s criterion states that in order to
create new crack surface a certain amount of f{ree surface energy
is required that must be supplied from the surrounding medium
The specific amount of energy needed is assumed to be a material
constant. Irwin’s criterion is formulated in terms of the stress
intensity factor. In order for the fracture to propagate the
stress intensity factor must exceed a certain critical value. This
criterion has been also formulated as a critical comparison of
shear stress with a static friction level. If a cohesion zone is
assumed to exist ahead of the crack tip, the failure criteria must
be somewhat modified.

In models of spontaneous <¢rack propagaticn, the stress
distribution and the fracture criteria determine the motion of the
crack tip. The first of these models was presented by Kostrov
(1966) in analytical form for antiplane cracks in an infinite
medivm. This work was extended also to in-plane cracks by Burridge
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(1969) applying numerical methods., Andrews (1976) used a finite
differences technique to solve the problem, introducing the
cohesive forces in the failure criterjon. Madariaga (1976) used
alse finite differences to study the problem of a circular shear
crack which growth at a fixed velocity and stops suddenly. Das and
Akl (1977) used a numerical technique to determine the problem of
two-dimensional shear crack propagation with a critical stress
Jump across the tip of the crack as the failure criterion.

The three-dimensional problem has been solved by several
authors, such as Das (1981}, Virjeux and Madariaga (i982), and Day
(1982) wsing numerical metheds. For most models the average
rupture velocity is centrolled by the normalized strength and the
complexity of the rupture process depends on the variations of
stress and strength distribution.

If the conditions of stress and strength are homogenecus, once
a fracture has been initiated, it will propagate indefinitely. In
a model, however, a crack can be made to s5top arbitrarily when the
rupture front reaches a certajn limit. For a circular crack, this
can be made when the crack reaches a certain final radius
(Madariaga, 1976). The s10pping of rupture generates very strong
healing waves that Propagate inward from the edge of the fault
that finally reduce the slip velocity to zero. A more realistic
way to stop fractyre propagation is to assume an inhomogeneoys
distribution of strength and stress tHusseini, et al.,, (975). The
crack tip motion can be stopped by a barrier of high surface
energy aiong the fault Plane or limiting the prestressed region to
a finite size. The crack stops when the strength of the material
to be fractured is too high or the stress drop on the crack js too
low.

4.5. Complexity of the source

The study of wave forms generated by large earthquakes has
shown that most of them are multiple events (Wyss and Brunpe,
1967). That is the source is not a simple fracture with uniform
slip propagating at constant velocity over a certain area. The
conditions over the fault surface cannot be homogeneous, even if
only for the requirement of the rupture to stop at certain
limits. Field observations show that faults cross over a variety
of different kinds of rocks of different strength and that the
fault surface changes directions at some places. If we want to
describe the physical Process of the rupture at earthquakes, the
heterogeneity of the faulting process must, in sofme  way, be
modelled. Also, the fairly constant and relatively low valyes,
between | and 10 MPa, obtained for the stress drops of earthquakes
of magnitude above 5 .+ reveal that these must be average values
over the whole fault, since rocks may support much higher stresses
without fracturing. Observations in the near field at high
frequencies show Yery complex seismic signals, alsg evidence of
complex processes at the source.
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Two models have been proposed to explain this heterogeneity
and complexity of the source, the barrier and the asperity model.
The barrier model proposed by Das and Aki (1977) and Aki (1979)
assumes  that faulting takes place  under uniform prestressed
conditions over the fault surface, but with differences in the
strength. Regions of very high strength are cailed barriers since
they will impede the propagation of rupture. Actually |, when
rupture arrives at a barrier it may stop temporarily and then
continue if it is a weak barrier, or remain unbroken if it is a
strong barrier. The stress will be released in the zones that have
been ruptured and accumulate at the barriers left unbroken. After
the earthquake, the fault area has a heterogeneous distribution of
stress (Fig. 4.5). The faulting process consists, for thig model,
in  several fractures separated by strong  barriers. Large
¢arthquakes are, then, a superposition of several smaller events,
The barriers left unbroken may rupture later, giving origin to
aftershocks after the occurrence of the main event.

In the medel of asperities, proposed by Kanamori and Stewart
(1978), the fault has a heterogeneous distribution of high and low
Prestressed zones. Zones or patches of high stress are called
asperities. Previously to a large earthquake, the low strength
zones of the fault rupture producing small events, leaving only
the asperities, or zones of high strength where stresses are
accumulated. These zones break during the main shock. Complexity
of the source js produced by the successive rupture of several
asperities. After the rupture of all the asperities, the stress
falls to a uniform distribution over the fault (Fig. 4.5). This
model explains the occurrence of foreshocks, byt cannot  explain
the occurrence of aftershocks.

In the barrier model , an earthquake is a stress roughing
process, while in the asperity model is a smocthing process. [n
both cases, however, earthquakes are complex ruptures of

elementary patches, either of asperities or inter-barrier zones. A
barrier model has been proposed by Papageorgius and Aki (1983) in
which a rectangular fault i filled with circular cracks . In an
earthquake, these cracks rupture progressively leaving the space
between them (barriers) unbroken. In this  model one can
distinguish between the “global stress drop”, estimated from the
total fauit area, assuming a uniform stress drop over the entire
fault, and the "local stress drop”, estimated from the maximum
slip at each elementary crack. The presence of stable asperities
and barriers through many repeated earthquakes may explain the
concept of characteristic earthquakes ( Aki, 1984). The complexity
of the source may be also considered as the cause of departure
frem seif-similarity in earthquakes, Self-similarity implies that
the only parameter that regulates the earthquake process is the
fault  length, In complex sources the scale  length  of
heterogeneities [barrier interval), the dimensions of the cohesive
Zone and the fault-zone width that are related to secondary
features of the fault, such as branching, stepping, etc., are
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important dominant factors (Aki, 1988}

Numerical models for cemplex sources have been applied by
Mikumo and Miyatake (1978) for a fault with a variable
distribution of friction and Day (1982) for fracture propagation
in a medium with a nonunifarm  distribution of prestress. He
considers the case of fracture in a fault with one or more
asperities and the presence of friction. Das and Kostrov (1988)
consider models with both asperities and barriers. They unify the
terminology calling barriers, the localized regions of the Tfaulr
which remain unbroken and asperities, those that rupture with a
high stress drop. After considering many modeis, they conclude
that the complexity of seismic radiation can be attributed to the
inhomogeneity of stress drop distribution over the [ault, the
presence of barriers and of friction. It cannot be simply related
to the number or size of the asperities. Complexity of the source
may alse be interpreted as caused by the non-planar geometry of
the fracture. Andrews (1989) warns that planar thinking have
dominated earthquake modeling and perhaps have led us astray. For
him the essential mechanism in modeling earthquakes is geometric
irregularity including fault-bends and fault-junctions.

4.6. Acceleration spectra

We have seen how the dimensions of the fracture affect the
form of the amplitude Spectra in the far field. Complexities of
the fracture process, however, are only observed in the high
frequencies observed in the near field. High frequencies attenuate
very rapidly so that they are not observed in the far field. For
the low frequency ohservations the source model of a uniform
rupture over a certain fault area is adequate, but not so for the
high frequencies. They are affected by the irregularities and
complexities of the source, such as changes in the fracture
prapagation with stops and accelerations, existence aof elementary
units  (asperities or barriers) that break progressively  and
departures from planarity in the fault surface

Regarding the displacement spectrum (Fig. 3.5), the spectrum
of accelerations s multiplied by a factor of o Its  form,
therefore, depends on w for the low frequencies, corresponding to
the flat part of the displacement spectrum, and is flat for
frequencies higher thap the corner frequency w . For higher

frequencies a certain maximum frequency w appear at
max

approximately {0 Hz beyond which amplitudes decrease very rapidly

(Fig. 4.8). This frequency is usually known as f (w =
max Mak

2rtfm"JA This frequency has been related to attenuations effects

in the path or tg source effects. It is reasonable to think that
both effects take part.

The source effacts that have been related to f are in the
max
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first place the minimum fracture dimension for elementary units of
the fault (asperities or space between barriers). The source is
conceived in these models as formed by a group of elementary units
with a minimum dimension of about 200 m, that break successively,

These units are easily associated to asperities. In this form f'm X
a

is a measure of the complexity of the fault. Aki (i988),

associates with the dimensions of the cohesive zone d or
max

critical displacement D, in the form,

v 40 v
<
= X - (4.14;
fmax d HNCD

Where v is the velocity of fracture propagation, o the critical

stress, p the rigidity at the source and Clv] a function that for
subsonic fracture has a value near to unity. The dimension of the
cohesive zone may be between 100 m and I km. If v = 1 km~s and d =
300 m, f = 10 Hz.

max

Some authors (Madariaga, 1989) introduced another frequency
called the “patch frequency” [, iower than me where there (s a
[

change in the slope of the spectrum. This frequency is related to
the inverse of the dimension of the subevent fracture units. An
earthquake is modelied by the rupture of one or several elementary
fractures or asperities {patches). For smali earthquakes, rupture
of a single unit, the patch frequency coincides with the corner
frequency, while for larger ones the patch frequency is higher
than the corner frequency, but lower than the maximum frequency
(Fig. 4.6). In this model the maximum frequency may not represent
a source effect.

Source complexity and irregularity affects the radiation of
high frequencies and for this reason can only be detected by the
analysis of strong motion acceleration records from the near
field. We have only shown the effects in  amplitude spectra.
Complex models of the source are used to model the strong motion
records in a similar way as we showed the modelling of wave forms.
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