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These lectures assume a knowledge of the Theory of Elasticity and some knowledge

of seismology. A good mathematics background is essential.
The lecture notes for Lecture 1 are extracted from the following sources:

Aki, K. and P.G. Richards (1980) Quantitative Seismology: Theory and Methods. 932 pp.,
W.H. Freeman and Company, San Francisco, Calilornia, 1980.

Kostrov, B.V. and S. Das (1988) Principles of Earthquake Source Mechanics, Cambndge
University Press, Applied Math. and Mech. Ser., Cambridge Univ. Press, N.Y.,

pp. 286, 1988.

Note: These notes are an attempt to provide a complete background to the lectures.
Only some aspects will be discussed in the lectures. The reader is referred to the

original sources for complete details and for references mentioned in the next

pages.
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24 BASIC THEOREMS IN DYNAMIC ELASTICITY
2.3 Theorems of Uniqueness and Reciprocity

It is natural to introduce the discussion of uniqueness (for the displacement

field u throughout a body with volume V and surface S) with some general

1 remarks concerning the ways in which motion can be set up. Because the dis-

| placement is constrained to satisfy (2.17) throughout V, the application of body
forces will generate a displacement field, as will the application of tractions on

| the surface S. We shall show that specification of the body forces throughout V,

' and tractions over all of S, is enough to determine uniquely the displacement
field that will develop throughout V from given initial conditions. An alternative
way to specify the influence of S on the displacement field is to give a boundary
condition for displacement itself (on S) instead of for the traction. For example,
S might be rigid. It might seem at first that the traction on § and the displace-
ment on S are independent properties of the displacement field throughout V.
This is not so, however, and it is important for an intuitive understanding of
Sections 2.3~2.5 to appreciate that traction over S determines the displacement
over 5, and vice versa.

UNIQUENESS THEOREM

The displacement u = u(x, {) throughout the volume ¥ with surface § is uniquely
determined after time ¢, by the initial values of displacement and particle velocity
at iy, throughout V: and by values at all times 1 = ¢, of (i) the body forces f
and the heat 2 supplied throughout V; (ii) the tractions T over any part §,
of §: and (iii) the displacement over the remainder §, of S, with §; + §, = §.
(Either of §, or §, can be the whole of §.)

PROOF

Suppose u, and u, are any solutions for u that satisfy the same initial conditions
and are set up by the same values for (i)—(iii}. Then the difierence U = u; —u, is
a displacement field having zero initial conditions, and is set up by zero body
forces, zero heating, zero traction on S, and U = 0 on §,. It remains to prove
that U = 0 throughout Vfort > t,.

The rate of doing mechanical work in the displacement field U is clearly zero
throughout V and §, and S, (see (2.22)) for t = t,. The third equality in (2.2Z)
can be integrated from t, to ¢, and, together with the zero initial conditions and
the use of a strain-energy function (U involves adiabatic changes), it follows that

.”I % pUUdV + J]I % CijuUi U dV = 0.
v v

Both the kinetic and strain energies are positive definite, so that U; = 0 for
t > ty. But U, = 0att = 1y, and hence U = 0 throughout ¥ fort = t,.

[ TN e,

=
-~
T T I T T S PR P T T IE' RN TR TR TR W W Py T 'mmm‘ IR TR T Y



2.3 THEOREMS OF UNIQUENESS AND RECIPROCITY

25

B80x 2.4

Use of the term “homogeneous,” as applied to equations
and boundary conditions

The equation for elastic displacement is L{u) = [, where L is the vector differential operator
defined on the components of u by

(Liw}); = pii, ~ (C.,‘kr“u.l).j-

f body forces are absenl, then the equation Liu} = 0 for u js said to be homogeneous.
/mww_wdnm on the surface S is one for which either the displacement
or the traction vanishes at every point of the surface.

This terminology is reminiscent of linear algebra, for which a system of n equations in
n unknowns, in the form Ax = 0, is also said to be homogeneous. Here, x is a column
vector and A is some n x n matrix. It is well known that nontrivial solutions (x # 0) can
exist, but only if A has a special property (namely, a zero determinant}. The corresponding
result in dynamic elasticity is that motions can occur throughout a finite elastic volume
¥ without any body forces and with a homogenecous boundary condition over the surface

certain frequencies. See Chapter 8.

of V. These are the free oscillations or normal modes of the body, which can occur only at

RECIPROCITY THEOREMS

We shall state and prove several general relationships between a pair of solu-
tions for the displacement through an elastic body .

Suppose that u = u{x, 1) is one of these displacement fields, and that u is
due to body forces f and boundary conditions on S and initial conditions at
time r = 0. Let v = v(x, 1} be another displacement ficld due o body forces
£ and (o boundary conditions and initial conditions (at ¢t = 0) which in general
are different from the conditions for u. To distinguish the tractions on surfaces
normal to n in these two cases, we shall use the notation T(u, n) for the traction
due 1o the displacement u and, similacly, T(v, n) for the traction due to v.

The first reciprocal relation to note between u and v is

J-_U(f — pi) v dV + ffT(u, n v S
[ 5

=ﬂf(g_pv)-udv+ffT(v,n)-uds. (2.34)
14 5

This result is due to Betti. It can easily be proved by subsitution from (2.17yand
(2.16) and then applying the divergence theorem to reduce the left side to

|t PORTANT
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BASIC THEOREMS IN DYNAMIC ELASTICITY

BOX 2.5
Farallels

A rearrangement of Betti's relation (2.34) gives
_UI{U.'(C.',M“&.JJ - u.‘(ﬁjuﬁ.:).;} dv = ff{v,-T,-(u, n) — u,T,(v, ")} ds.
v 5

This is a vector theorem for the second-order spatial derivatives occurring in the wave
equation of elasticity, which is analogous to Green's theorem

fﬂ‘“’v% - V) dv = fsf(wg—:’ - ¢f%) ds

for scalars and the Laplacian operator. Green’s theorem is a working tool for studying
inhomogeneous equations, such as V2¢ = —dnp, and we shall use Betti’s theorem for the
elastic wave equation, in which the inhomogeneity is the body-force term.

There are many further analogies between Dirichlet problems (for potentials that are
zero on S)and elasticity probiems with rigid boundaries; and between Neumann problems
(é¢/cn = 0 on §) and traction-free boundaries.

i1 coati s dV. Similarly, the right-hand side reduces to v i jory dv,

and (2.34) follows from the SYMMELTY €5 = ;.

Note that Betti’s theorem does not involve initial conditions for u or v.

Furthermore, it remains true even if the quantities u, &, T(u, n), and f are eval-
uated at time 1, but v, ¥, T{v, n), g are evaluated at a different time t5. If we
choose ¢, = ¢ and {2 = T — t and integrate {2.34) over the temporal range 0
to 7, then the acceleration terms reduce to terms that depend only on the initial

and final values, since

J: el Vit — 1) — u(y)- Vit — )} dt

0!5% {a(t) - viz — 1) + u(t) - v(t — 1)} dt

If there is some time tg before which u and v are everywhere zero throughout

Viand henceu = v = Q for ¢ < 14), then the convolution

f_“’m L) vt ~ 1) — w(e) - ¥(x — 1)} dr

COUETRE S A W T R e T - l

p (1) - ¥(0) — B(0) - v} + u(r) - ¥(0) — u(0) - ¥(1)
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is zero. We deduce from Betti’s theorem the important result, for displacement
fields with a quiescent past, that

f“: dt fff{u(x, Hoglx, T — 1) — v(x, 1 — t)-fix, 1)} dV

= f_m dr ff{v(x, T — 1) T(u(x, 1), n) — u(x, - Tv(x, z — 1), n)} dS. (2.35)
5
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2.4 Introducing Green's Function for Elastodynamics

A major aim of this chapter and the next is the development of a representation
for the displacements that typically occur in seismology. The representation
will be a formula for the displacement (at a general point in space and time)
in terms of the quantities that originated the motion, and we have seen (in
the uniqueness theorem) that these are body forces and applied tractions or
displacements over the surface of the elastic body under discussion. For earth-
quake faulting, the seismic source is complicated in that it extends over a
finite fault plane (or a finite volume) and over a finite amount of time, and in
general involves motions (at the source) that have varying direction and
magnitude. We shall find that the representation theorem is really nothing
but a bookkeeping device by which the displacement from realistic source
models is synthesized from the displacement produced by the simplest of
sources—namely, the unidirectional unit impulse, which is localized precisely
in both space and time.

The displacement field from such a simple source is the elastodynamic
Green function. If the unit impulse is applied at x = £and ¢ = = and in the
n-direction (see (2.4}, taking A4 = unit constant with dimensions of impulse),
then we denote the ith component of displacement at general (x, 1) by
G.(x, t: & 1). Clearly, this Green function is a tensor (we shall work throughout
with Cartesian tensors, and therefore do not distinguish between tensors and
dyadics). It depends on both receiver and source coordinates, and satisfies the
equation

b
P ?—2 G = 0,0(x — &t — 1) + E_( 0 Gk,,) (2.36)
ct ax;

Cjui ax_
1

throughout V. We shall invariably use the initial conditions that G(x, t; &, 1)
and 8{G(x, t; £, 1)}/0t are zero for t < rand x # §. To specify G uniquely, it
remains to state the boundary conditions on S, and we shall use a variety of
different boundary conditions in different applications.

If the boundary conditions are independent of time (e.g., S always rigid), then
the time origin can be shifted at will, and we see from (2.36) that G depends on ¢

T T T T W s EEETE T
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AsIL TREUHEMS 1IN OYNAMIC ELASTICITY
and 7 only via the combination 1 — 1. Hence
Gx 180 =Gix, t — 1:4,0) = G(x, —1; &, —1), (2.37)

which is a reciprocal relation for source and receiver times.

If G satisfies homogeneous boundary conditions™on 3, then (2.35) can be
used to obtain an important reciprocal relation for source and receiver positions.
One takes f to be a unit impulse applied in the m-direction atx = £, and time
{ = 7;,and g to be a unit impulse applied in the n-direction at x = &, and time
t = —15 Then u; = G {x, 1; &, 7,) and Ui = Gi{x, t; &, —1,), 50 that (2.35)
directly yields

Gaml€2: T + 12081, 1) = Gual€1, T = 1,5 &5, — 1), {2.38)
Choosing 1, = 1, = 0, this becomes
Gaml&2, 7581, 0) = Ga(éy, 15 &2, 0), (2.39)
which specifies a purely spatial reciprocity. Choosing © = 0 in (2.38) gives
Goml82, 72381, 1)) = Gral&r, =15 &3, — 1), (2.40)

which specifies a space-time reciprocity.

The actual computation of an elastodynamic Green function can itself be a
complicated problem. We shall take up this subject in Chapter 4 for the simplest
of elastic solids (homogeneous, isotropic, infinite} and also for the case of large
separation between source and receiver in inhomogeneous media.

2.5 Representation Theorems

If the integrated form of Betti’s theorem, our equation (2.35), is used with a
Green function for one of the displacement fields, then a representation for the
other displacement field becomes available.

Specifically, suppose we are interested in finding an expression for the dis-
placement u due both to body forces f throughout V and to boundary conditions
on §. We substitute into (2.35) the body force g,(x, 1) = d:,0(x — E)8{r), for
which the corresponding solution is vy(x, t) = Gilx, 1; £ 0), and find

u (& 1) = J’L dt J'_[ S5, DG X, T — 1 & 0) dV

+ f:c dt ff{Gin(xs T — ;& 0)T{(ulx, £}, n)
s

= w06, 06 ;G (X, T — £ &, Q)} ds.
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2.5 REPRESENTATION THEOREMS

Before giving a physical interpretation of this equation, it is helpful to
interchange the symbols x and & and the symbols ¢ and 1. This permits (x, t)
to be the general position and time at which a displacement is to be evaluated,
regarded as an integral over volume and surface elements at varying £ with a
temporal convolution. The result is

wix, 0) = [ 7 v [[[fue 0Gu& t - v:x,0dv(©)
+ 7 a [[1Gue = x0T u(g, 0. m)
S

= w8, )il G &, 1 — 10, 0)} dS(2). (2.41)

This 15 our first representation theorem. It states a way in which displacement
u at a certain point is made up from contributions due to the force f throughout
V, plus contributions due to the traction T{u, n} and the displacement u itself
on §. However, the way in which each of these three contributions is weighted
1s unsatisfactory, since each involves a Green function with source at x and
observation point at & (Note that the last term in (2.41) involves differentiation
with respect to £;,) We want x to be the observation point, so that the total
displacement obtained there can be regarded as the sum (integral) of contri-
buting displacements at x due to each volume element and surface element.
The reciprocal theorem for G must be invoked, but this will require extra
conditions on Green's function itself, since the equation G, (.1 — t;x,0) =
Gulx,t — 1;&,0) (see (2.39)) was proved only if G satisfies homogeneous
boundary conditions on §, whereas (2.41) is valid for any Green function set up
by an impulsive force in the n-direction at & = xand t = t.

We shall examine two different cases. Suppose, first, that Green’s function ts
determined with § as a rigid boundary. We write G™#* for this function and
Gi#YE, 1 — 1;x,0) = 0for &in S. Then (2.41) becomes

mmn=f:d{ﬁbﬁJm#Wxt7n§de
¥

£ (} .
*J‘_ ~ dr v[fu,—({, T)Cijurtt; (E Grgdix, 1 — 1;&,0)d4S.  (2.42)

Alternatively, we can use G'™* as Green’s function, so that the traction
A/ GUF(E, t — 1:x,0) is zero for & in S, finding

wlx, 0) = [ dv ([[ 1€ 065t - 18, 0y av
v

+fiﬁk£ﬂﬁ?HJ—w;§mﬂm@JLMdS (2.43)
5
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BASIC THEOREMS IN DYNAMIC ELASTICITY

Equations (2.41)-(2.43) are ali different forms of the representation theorem,
and cach has its special uses. Taken together, they seemn to imply a contradiction
to the question of whether u(x, t) depends upon displacement on § (see (2.42))
or traction (see (2.43}) or both (see (2.41)). But since traction and displacement
cannot be specified independently on the surface of an elastic medium, there is
no contradiction, D

The surface on which values of traction (or displacement) are explicitly
required has been taken, in this chapter, as external to the volume V. It is often
useful to take this surface to include two adjacent internal surfaces, being the
opposite faces of a buried fault. Specialized forms of the representation theorem
can then be developed, which enable one to analyze the earthquakes set up by
activity on a buried fault. This subject is central to earthquake source theory,
and is taken up in the following chapter.

So far, we have considered only Cartesian coordinate systems. In practice, the
seismologist is often required to use different coordinates that allow the physical
relationship between components of displacement, stress, and strain to be
simplified for the geometry of a particular problem. In particular, it is often
found that a boundary condition must be applied on a surface that can be
chosen as the surface on which a general curvilinear coordinate is constant.
Vector operations grad, div, curl, and V? are derived for general orthogonal
coordinates in many texts, but rather more is needed to analyze the vector
operations required in elasticity.
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BOX 5.3

The distinction between kinematics and dynamics

Kinematics is the branch of mechanics that deals purely with motion, without analyzing
the underlying forces that cause or participate in the motion. Dynamics is the branch
ol mechanics that deals directly with force systems, and with the energy balance that
governs motion. From these flundamental definitions, two useful conventions have devel-
oped for applying the words "kinematic™ and “dynamic.”

First, in the analysis of displacements aione, kinematic properties are those that may be
derived [rom the eikonal equation (4.41), whereas dynamic properties are those related to
displacement amptitudes. Thus the existence ol particular wavefronts and ray paths is
part of the kinematics of the problem in hand. As an example of a dynamic problem, we
might ask if a certain approximation is adequate for the displacements observed at a given
receiver at some given distance from a localized source.

Second, in those problems in which we have a direct interest both in the displacement
and the associated system of stresses, then kinematic propertics are properties of the
displacement field and dynamic properties are related to the stresses. For example, if the
relative displacement between opposite [aces of a fault surface is known as a function of
space and time, we say that we have a kinematic description of the fault motion. If the
stresses (i.e., traction components} are known on the fault surface, we have a dynamic
description. As another example, one refers to boundary conditions as being kinematic or
dynamic, in the sense developed in the present section.

-
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THE BOUNDARY—INTEGRAL EQUATION
METHOD

5.1 Representation relations

in order to reduce the earthquake source problem to the solution
of a boundary-integral equation, it is necessary first to represent the
stress and displacement fields throughout the medium in terms of the
displacement discontinuity or the traction perturbations on the fault
plane. In the case of the kinematic description of the earthquake source
(“dislocation” model), such representation relations provide an explicit
solution, as we saw in Section 3.2. However, as we shall show later, the
boundary conditions for the dynamically described source (“crack”
model) are of mixed type, and such representation relations do not give
the required solution explicitly; instead, they relate the boundary values
of the traction perturbations and slip, neither of which are known on the
entire boundary (fault plane). Together with boundary conditions, these
relations comprise the integral equations. When these integral equations
are solved, the displacement and stress fields inside the body can be
obtained using the same representation relations.

The geometry of the problem is shown in Figure 5.1. The plane X;=0
is taken as the crack plane and denoted by S. Let S(1) be that portion of
the X, = O plane where slip is nonvanishing at time ¢ and let (1) be its
complement: S = S(1) + S(r). Generally S(¢} is unknown and is to be
determined as part of the solution. The relation between the displace-
ment u, (X, ) at any point (X, 7} in the medium and the displacement
discontinuity a,(X’, ("} across S was given by equation (3.2.9). For a
homogeneous, isotropic medium and the case of a planar shear crack,
this relation becomes (with slightly different notation for convenience)

u (X, 1) = fo'dz' Smxm(x X = t)a (X, ') dS (51.1)

174
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S=5( + SN

51 The geometry of the problem. $(¢} is the cracked portion of the X; =0

plane.

where Latin subscripts take values 1, 2, 3 and Greek ones the values 1, 2.
K 3, 1s given by

(512)

U, al,,
Ku]k(x’t) = —u X + X
o 3

where the Einstein summation convention is assumed and U, is given by
(3.3.1). Equation (5.1.1) gives the representation relation throughout the
medium. To express the traction perturbation on the fault plane in terms
of the slip on it, we evaluate the traction perturbation components 7., by
differentiating (5.1.1) and taking the limit as X; — 0 to obtain .

14(X, 1) = f’dz' T,o(X = X, 1= 1')ag(X,r)dS (513
0 St

r

where X and X’ are now the two-dimensional vectors on the fault plane
S. The kernel T,,, obtained by differentiating K, is given by
32Uy, 32U, 3, 3*Up,

+ + + 514
3X X, 9X;,3X, 93X dX, %X, ( )

Ta,B= -4

Kernel T,; has strong singularities, so the integral in (5.1.3) must be
considered to be a principal value. Hence, the solution of (5.1.3) is
unique only under additional conditions. Usually, it is sufficient to
assume that the slip a,, is smooth everywhere except at the crack edge,
where it must be finite. This implies the square-root behavior of the slip
a, near the crack edge (see Section 2.3).

An alternative representation relation is obtained by exploiting the
symmetries in the probiem. For planar shear cracks, the solution can be
shown to be antisymmetric in X;. That is, the displacement components



176 The boundary—integral equation method

u, and traction perturbation 7;; are odd in X,, whereas u, and 7,5 are
even in X,, and it is sufficient to solve the problem for the upper
half-space X, = 0. Furthermore, from the continuity of tractions across
X, = 0 [equation (1.3.25)], it follows that 7,; = 0 everywhere on X, =0
To obtain the required representation relation, let us first reproduce the
Green-Volterra formula (3.1.5) after replacing ¢, by r and ¢ by ¢’ for
notational convenience. Then we have

foldr'j;(a”-u,’ - o/u)n, dS + f(;dt‘fyp(j}u[ - fu)dV

=

+ [ olui; —iu)d =0 (5.1.5)
v =0

Let us choose as u/ the three solutions corresponding to the three
concentrated unit forces f’ directed along the X, X, and X; axes and
given by

fr=8,8(X-X)8(r-r) for X{>0, X =20
(5.1.6)

where 8, is the Kronecker delta and 8(X) and 8(¢) represent the Dirac
delta function, and with the initial and boundary conditions

w=u/=0 for t<t; 63=0 at X;= +0 (5.1.7)

Let us denote the solution u] by G,. Then in (5.1.5) the fast term
vanishes due to initial conditions, and the terms containing f; and ¢}
vanish due to the absence of body forces f; and by (5.1.7), respectively.
Taking o,; as the stress perturbation tensor 7,; and evaluating the term
with the 8 function, we get

(X, 1) = fo'd:'fscka(x _X = )T (XL ) dS  (5.18)

Letting X, — 0 and accounting for the symmetry of the displacement
components, we obtain the required alternative representation relation as

a(X, 1) = 2L’dz’fsc,5(x — Xt — ) (X r)dS (519)

where X and X’ are now two-dimensional vectors on S. The required
components of G are the solution to Lamb’s problem and can be
expressed in terms of elementary functions. The expressions for G, for
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5.1 Representation relations 177

the two- and three-dimensional cases are given in Appendix 1. The
kernel G5 possesses only weak singularities and can be directly dis-
cretized for numerical computation, as we shall discuss in Section 5.2.

Thus, we have obtained two representation relations, (5.1.3) and
(5.1.9), both of which relate the slip on the crack plane to the traction
perturbation on this plane. These relations comprise a set of mutually
inverse integral transforms. If either the slip a, or the traction perturba-
tion 7,, were known everywhere on S, the other of these two quantities
could be obtained using (5.1.3) or (5.1.9), respectively. But in a dynami-
cally described source (crack) problem, neither one of them is known
everywhere on S. The systems (5.1.3) and (5.1.9) thus simply provide
relationships between a, and 7,,. Some additional relations between a,
and 7, on the crack plane are needed to provide the required
boundary-integral equations. These relations can be obtained from the
constitulive relations on S, as we shall discuss in Section 5.2.

Relations (5.1.3) and (5.1.9) are equivalent in that either of them can
be used together with the constitutive relations to solve the crack
problem. The variables X and X" in (5.1.3) are confined to §(r) since a,,
vanishes outside the crack. On the other hand, the integration domain in
(5.1.9) covers all points influenced by disturbances that propagate with
the fastest wave velocity of the problem (e.g., the compressional wave
speed of the medium for general three-dimensional problems). Therefore,
one of these two relations may be more efficient than the other for a
given problem. For problems in which S(7) is much smatler than S, for
example, “interior” crack problems, it is more advantageous to use
(5.1.3). For some “exterior” crack problems, the region of traction
perturbations is limited, and then (5.1.9) is the more efficient relation. Of
course, the domains of integration may coincide for some particular
situations — for example, for the case of a self-similar crack propagating
with the fastest wave speed of the medium. The domains of integration
for the two representation relations are shown in Figure 5.2 for two cases
of the interior crack problem. The domain of integration for the exterior
problem will be discussed in detail in Section 5.6 under “A crcular
asperity on an infinite fault plane.”

The relation (5.1.3) was essentially formulated by Budiansky and Rice
(1979). Burridge (1969) used its two-dimensional form, and Burridge and
Moon (1981) its three-dimensional scalar form. The two-dimensional
form of (5.1.9) was first used by Kostrov (1966) for dynamic elastic
problems and by Das (1976, 1980) for general three-dimensional prob-
lems.
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FOR {5.1.9) FOR (5.1.3)

5.2 Cross sections of the domains of integration in the ( X, — r) plane for the
relations {5.1.3) and {5.1.9) for (a) a propagating “interior” crack and (b) a
stationary “interior” crack. The crack regions are stippled. The striped areas are
the domains of integration for determining the slip at some representative point
A, say, within the crack.

In the next section, we discuss the discretization of the representation
relations developed here.

5.2 Discrete representations
Let us first discuss the method of discretization of relation
(5.1.9). We introduce a regular network of grids centered at the points

X, =iAX, i=~o,...,~1,0,1,... 0
X, = jAX, j=-00,...,-1,0,1,...,0 (521)
t=(k+3)Ar, k=01,...,00

In each element of the network, we replace the tractions by their average
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values over the grid given by (the subscript 3 for the 7.'s being implicit
from now on)

1
Tk T AAX?
AX/2
xfomd-r J[ nax + &, jAX + &, kAr + 1) dt, as,
—A%,2

(5.2.2)

We replace the slip a, by its value at a point within the grid,
Qe u=a,(iAX, jJAX, kAt + 81), 0<8r<Ar (5.2.3)

and we replace the discrete Green function F.g by
At AX/2
Foali, jok)==2] dr
f ) fo f -ax/2

XGup{iAX + £, jAx + £, kAr + 81 — 1) dg, d¢,
(5.2.4)
Since G,, possesses integrable singularities, Fg 1s easily evaluated using
(5.2.4). The properties of F,, are discussed in detail in Appendix 1. The
Green function F,; vanishes outside the region v = X2+ X2. In

particular, if vg(Ar ~ 8r) < AX/2, F_p(4, /,0) is nonvanishing only for
i =0 = j. This value is

o0
3
F.5(0,0,0) = —2]0 dr [[ Galt,, 6. 7) dt, dt, (5.2.5)
or, taking into account the homogeneity and symmetry properties of
Gz,
Fg{(0,0,0) = Fyb,581 (5.2.6)

where

F, = —2fﬂldfffc“(gl,gz,7) dt, dt, (5.2.7)

Here F; is a positive constant {the minus sign in equations (5.2.4) and
(5.2.7) was included to make F, positive] independent of the grid size
and 3,5 is the Kronecker delta. The constant F, is the largest element in
absolute value of the matrix F4. Substituting the discrete forms of =,,
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a,, and G,g into (5.1.9), we obtain

k o o0
Aoipie = > Z p Fag(f i j—=j k- k')Tﬁ;"j‘k'
k'=Q = —00 f=—00

+ approximation error (5.2.8)

{n this expression, with the same order of approximation, the constant
F, can be replaced by some other positive constant G, say, independent
of the grid size, which is to be chosen on the basis of stability considera-

tions.
Accordingly, (5.2.8) can be rewritten as

k-1
+ AtGgToij = Y X Eeli=ihJ —J k= k) T e
K20, pesh,

o jk

for i,j€ 8k (529)

where S, is the union of all grids influenced by disturbances at time
k Ar. The stability and approximation efrror of (5.2.9) are discussed in
Appendix 2, where it is shown that

£y
0<— <2 (5:2.10)

0
is a necessary condition for stability. Relation (5.2.9) is the required
discrete form of the representation relation (5.1.9). For a given k, the
right side of (5.2.9) depends only on the solution at previous times
(k < k') and (5.2.9) is an explicit scheme.

Successful discretization of equation (5.1.3), which would lead to a
convenient numerical scheme, has not been achieved. Some possible
approaches are discussed by Burridge (1969) and by Burridge and Moon
(1981). Instead of discretizing (5.1.3), we shall use the fact that (5.1.3) is
an integral transform, inverse 1o (5.1.9), apd construct an inverse of the
discrete transform (5.2.8). This inverse transform, like the direct trans-
form (5.2.8), must be a discrete convolution transform; that is, its kernel
will depend only on differences:

& oC ]

g = - L L L Sall T AL S L%
k=0 =—on j=—o0
(5.2.11)

Then, application of transform (5.2.8) to this kernel must give the unit

Vel
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kernel:

k oo o
Y OY L Feli-ii-Jk-k)

k=0 i'm—oc j/= o0
xSﬁY(" - ‘-r-‘ jr _j”1 k: _ k")
= Bay 8n" 8}}“ akk" (5212)

To determine S,,, we obtain the explicit numerical scheme from (5.2.12):

k=1 o oo
ALGyS, (i, j, k) = — Y o Y Fali—i,j—j.k—k)

k'wmQ i'=—00 [i=—00
XSBT(i’, j’v kr) + 8«7 81’08;'0

Equation (5.2.11) can be written in a form similar 1o (5.2.9) as

k—1
Tar,lk + S()aarjk =~ Z Z Sﬂﬂ(i - ir’ j _j” k — k’)aﬁi'j'k'
k'=0 i ;e85

for i, j& S,, (5.2.13)

where S, is the union of all grids with nonvanishing shp and the tp
element S, = $,,(0,0,0) = 1/{A1Gy) and is a positive constant. {The
sign of F,, Gy, and §; becomes important in problems where friction
acts on the fault faces.) Note that using (5.2.9) is exactly equivalent to
using (5.2.13) for a particular problem; that is, the solutions using the
two algorithms must coincide, apart from different rounding error accu-
mulation. The properties of S,, are discussed in Appendix 2.

The approach of discretizing T4 by inverting F,g has two advantages.
First, one can use the simple discrete representations of 7, and a,, that
is, (5.2.2) and (5.2.3), which can be shown to be good approximations by
comparing the results with analytical solutions of simple problems (an
example of which is given in the next section). Direct discretization of
T,s may require some different representation for 7, and a,. Second,
and more important from the practical point of view, Fz is a well-
behaved matrix and can be inverted without reservation. Furthermore,
since F,4 is quite sparse, one does not actually have to invert a very large
matrix {F,z will consist of (N*T)? elements if N 2 is the number of
perturbed spatial grids on the fault plane and T the maximum time level
for which S, is desired] but may determine S, by an explicit time-step-
ping procedure.

It was mentioned in Section 5.1 that representation (5.2.13) is more
economical than representation (5.2.9) for “interior” crack problems,

oy
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whereas the situation is reversed for “exterior” crack problems. Let us
quantify this efficiency for the numerical solution of a stationary crack —
that is, a finite crack that slips without growing. In general, in seismology
one is interested only in the slip distribution on the crack, because it
completely determines the radiation from the crack through the asymp-
totic form of (5.1.3), that is, equation (3.2.11). The traction distribution
outside the crack, in this context, is of interest at most in the vicinity of
the crack edge. The number of grid values that are relevant at a fixed
time step is proportional to the crack area in this case, whereas the
number of traction values involved in algorithm (5.2.9) is proportional to
the square of time. The number of arithmetic operations necessary to
obtain the solution at the kth time step is proportional to k° and the
necessary storage is proportional to k3, when using (5.2.9). So every
doubling of the number of time steps requires eight times more storage
and sixty-four times longer computation time. For the stationary crack
problem under discussion here, the number of slip values is proportional
to k& and the number of arithmetic operations when using (5.2.13) is
proportional to k2, and the storage required is proportional to k. Thus,
for this problem, using (5.2.13) would be k* times faster and require k?
less storage. Since the two algorithms are equally efficient for a self-
similar crack propagating at the fastest wave speed of the medium, the |
economy in using (5.2.13) over (5.2.9) for interior problems increases
with slower and slower crack speeds. Similar comparisons of efficiency
can be made for exterior problems, with the above considerations
applying in reverse. Algorithm (5.2.9) was first used by Hamano (1974)
for two-dimensional crack problems and by Das (1980) for three-dimen-
sional problems.

We shall now proceed to apply the algorithms developed here to some
specific dynamic crack problems. In general, we shall consider only
three-dimensional cases except when appropriate solutions do not exist,
in which case a two-dimensional iltustration will be used.

5.3 The circular self-similar shear crack

We consider the three-dimensional problem of a self-similar
circular shear crack, which is initiated at a point and propagates at a
known constant velocity, v say. The assumption of a constant fracture
speed is rather unphysical, because it violates principles of fracture
mechanics. A stress singularity that grows in time, as the stress singular-
ity at the growing crack edge does, is unlikely to result in a constant
fracture speed under any of the fracture criteria discussed in Chapter 2,

e
i\

T T e e e e reee—n o S W W W WS Do e e e, B it s | il |l s i .



5.3 The circular self-similar shear crack 183

f s

5.3 Geometry of the self-similar circular shear crack.

unless the fracture toughness distnbution on the fault plane is rather
pathological. Spontaneous crack problems are more physical, and we
shall devote a large part of this chapter to them. It 1s instructive,
however, to discuss the self-similar problem since it is the simplest
possible case and is useful for demonstrating the numerical method,
including its accuracy and stability. Historically, more than two decades
ago, this problem was the first dynamic three-dimensional shear problem
to be solved.

The crack region S(¢) 1s known and given by

S(2): X7 + X{ < ypy?
The geometry of the problem 1s shown in Figure 5.3. We shall solve the
problem when the stress drop on $(r) 1s prescribed to be a constant, Ae,

say.! Without loss of generality for the circular crack problem, we may
assume that the stress drop is directed in the X, direction. Then we have

the mixed boundary value problem
7, =A80,,=0 on S5(t); a,=0 on S(1)

ty F°

After discretization, we obtain
Titjk = AO, Tln_fk =0
2 2 k+ 1\ 2
for S, :(1AX) + (jAX) suz(———z—) (A)” (5.3.1)
am'jk =

c . 2 . 2 2 k+ : 2
0 for S,,:(iAX) + (jJAX) >v — (4ar)

' The term “stress drop” has traditionally been used in seismology to mean
traction drop, and we shall continue to use the term in this sense.
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Taken together with (5.2.9) or (5.2.13) this gives the complete formula-
tion of the problem.

We first use (5.2.9) to solve the problem. We denote its right side by,
say, Lmﬂ,‘_l,, that is,

k-1
Lm;(k—l) = = Z ): Fmﬁ(i =i j=J k= k’)TB.c';'k'

k=0 r'.j'ES,'i-.
— P
for i, j&€ 5,

where S5, was defined in the last section. The term L, ;4 -1 depends on
the values of r, at all previous time steps and is thus known at any time
step if the traction history up to the previous time step is known. The
summation in L, ., extends over the entire cone of dependence of
the grid point (i AX, jAX,(k + 1) Ar) except the grid point itself. Then

we can rewrite (5.2.9) as

a + A[GOTauk = Lau(k—l)

ar fK

It follows very simply from this that, under the mixed boundary condi-
tions (5.3.1), the solution is given by

amjk = _aal AtGO AO + Lai}(k‘-l) (5 3 2)
T jh = 8, o on S,
and by
L _
at j{k—1)
= TG Gax=0 o Sw (5.33)

where &, is the Kronecker deita. Since the initial L,, ;) is zero by
definition, this is an explicit scheme to determine slip and traction
perturbation everywhere on the crack plane.

Let us now solve the same problem using the discrete representation
(5.2.13). We denote its right side by, say, M,, ;,_1,, that s,

k1
Mmj(k—l} - Z Z Saﬂ('r - it* J' _j" k- k’)aﬂi'j'k'
k=041, ;' €5,

for i, j€ 8,

where S, was defined earlier. The term M, (-, depends on the values
of a, at all previous time steps and is thus known at any time step if the
slip history up to the previous time step is known. The summation in
M, (k-1 extends over the intersection of the cone of dependence of the
point (i AX, k AX,(k + 1) Ar) with the crack area S, but excluding

?:"‘I)
o
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this point itself, that is, over a smaller region than when (5.2.9) was used.
We can now rewrite (5.2.13) as

Taijk T Soamjk = Mai;(k—l)
The solution to this under the mixed boundary conditions (5.3.1) is very
simply
o1 Do + M, i

= §, Aa; Qo = — 3 on S5,
0

Ta:_,'k

(5.3.4)

This is an explicit scheme for finding a,,, on S, since Mgy, is
known to be zero initially and gives the required slip on the crack. If the
solution for the stress 7., , on S(k) is desired, it can be easily obtained

as

a = 0; Taisk = Mai i (5.3.5)

aijk

It is important to note that the solutions for the traction perturbation
and slip are homogeneous functions of zeroth order of the coordinates
and time for self-similar problems (definition of self-similarity).

We shall now compare the numerical solution using the two forms of
the representation relations with the corresponding analytic self-similar
solution. Let us consider the case in which the fracture velocity v = vg/2.
The results are shown in Figure 5.4 for the case of a Poisson solid. (In
the remainder of the book all numerical results will be illustrated for the
Poisson solid only.) The required analytic solution for the slip a, is
obtained by integrating equation (3.4.18) with respect to time and
substituting v = vp/2. The numerical solutions are determined from
(5.3.2), (5.3.3) and from (5.3.4), (5.3.5) for the two forms of the represen-
tation relations. The two numerical methods yield solutions that are
identical except at the last decimal place, as expected. Since the initial
crack in 2 numerical method cannot be infinitesimal, one cannot in fact
numerically study a self-similar crack. In this example, an initial crack of
radius A X is assumed to appear instantaneously and start extending at a
speed of vp/2. In other words, the analytic and numerical solutions are
really solutions of different problems. However, at larger and larger
times, the effect of this initial difference is expected to become less and
less significant. The normalized half-slip U/ is plotted in units of
(20 A A X)/3p and the normalized time T is plotted in units of vp/A X,
The analytic solution for the half-slip is shown by the continuous line in
Figure 5.4, its numerically calculated values are shown by crosses at

N
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points along the X, and X, axes and along a line at 45° to the two axes.
The numerical solution always lies above, that 15, is larger than the
analytic solution owing to the above-mentioned initial difference. What
1s most Important, however, is that the rate of increase of slip with time
is the same for the analytic and numerical solutions except for the first
few time steps of the solution. To ensure stability, G, was taken as 2F,,
which satisfies the necessary criterion for stability given by (5.2.10). We
note that the square-root form of the slip a, is well approximated
numerically. The slip component a, on the crack was always found to be
less than 3 percent of a, ; in other words, it is practically negligible (it is
identically zero in the analytic case). In fact, the maximum values of q,
are concentrated in grids near the crack edge, which in a numerica
scheme is Necessarily smeared out, and in the interior of the crack its
values are even smaller. The values of a, can be considered a measure of
the numerical noise in the solution. Thus, the slip is in the direction of
the stress drop on the fault plane for the circular self-similar crack.
Figure 5.4 also shows that the numerically determined slip 1s azimuthally
symmetric (as the analytic one is) without the a priori imposition of such
a condition. The three-dimensional self-similar circular shear crack prob-
lem was numerically studied by Madariaga (1976), Archuleta (1976), and
Das (1980), among others.

So we have used the numerical boundary-integral method in its two
forms 1o study a simple self-similar problem and showed that the results
compare well with its analytic solution for one particular fracture speed.
In a similar way, any crack problem with given stress drop on the fault
plane and crack speed (neither of these need be constant and the speed
need not be the same in all directions) can be solved following the above
development. It includes as a special case the stationary crack problem
studied by Madariaga (1976) and by Das (1980).

5.4 The finite circular shear crack
Next we consider the problem of a circular shear crack that
initiates at a point, Propagates at a preassigned constant velocity v, say,
and stops when it reaches some finite radius r, say. Let the stress drop on
the crack be assigned a constant, Ag, say, and directed in the X
direction. The crack region S(1) is defined by

S(t): X2+ X? < o*? for vt <r; (5.4.1)

X'+ X=,* for vt >r //

\j’
;
-

T AR
R BT L e

W WW W T TR W W T W m w

BEL LR 2]




5.4 The finite circular shear crack 189

Then we have the mixed boundary value problem
m=40,7,=0 on S(r); a, =1 on S§(r)
(5.4.2)

This problem can be solved numerically following the procedure outlined
in detail in the last section, the discrete crack area Sixy now being
defined as

1A

(FAX)" + (jAX) < o?(k + 1*(Ar)?
Sei): for  p(k + Har<r
(1AX) + (jax) =2 for  v{k +1)Ar>,

I
~

Even this relatively simple problem of a finite dynamic crack cannot be
solved analytically, though a kinematic description using the results of
the self-similar problem was considered by Sato and Hirasawa (1973).
Let us apply the numerical algorithm (5.2.13) to this problem. We
consider an instantaneously appearing crack of diameter 3A X, which
8rows 10 a final diameter of 41 A X af a speed v = vp/2. We shall allow
backslip to occur on the crack in this example. The half-slip a, /2 is
plotted against time in Figure 5.5 and is normalized by (rbe)/3u for
this problem. The slip on the crack is found to be essentially in the
direction of the stress drop even after he crack has stopped, and it

when backsiip is allowed on the crack, as it is here, it decreases from its
maximum value and approaches the static value,

From some simple geometric considerations, it is possible 0 obtain a
rough estimate of the dynamic overshoot expected at a point within the
crack. A point on the crack continues slipping until some (diffracted)
wave from the crack edge returns o it. Let this wave have velocity V-
Then the displacement expected at a point on the crack is given by
the solution of the dynamic self-similar circular crack propagating at the
speed v. The overshoot OV on the crack varies with position on the
crack, being largest at the center and smallest at the edge. At the center,
the overshoot is given by

- jﬁg;(Hi)_l
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5.5 Normalized half-slip {/ versus normalized time T = v} /r for a finite
circular crack for (a) points along the X, axis and (b} points along the X, axis.
X=X, /r, Y =X,/r, r being the final crack radius, and vp A1/8 X = 5. The
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crack edge are indicated on each curve by arrows. The static solutions for
the points r'/r = .2, 4, .6, and .8, where r’ is the distance of the point from the
center of the crack, are given by U = .55y/1 — r'i/r* and marked along the
abscissas.
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where A(v)/A(0) was plotted in Figure 3.6 as a function of ». For
v = vp/2, this overshoot is 0.85(1 + vp/20y) — 1. A lower bound of
this overshoot would be obtained for Uy = Up, that is, if the wave that
stops the slip is the P wave. This lower bound at the center of the crack
is ~ 28 percent above the corresponding static slip from the above
formula. Figure 5.5 shows that the maximum slip is reached at or soon
after the time when the Rayleigh wave arrives from the crack edge. Then,
taking vy = v, the Rayleigh wave velocity, one obtains a very rough
estimate of the upper bound of the overshoot at the crack center as
~ 65 percent. This is a very rough estimate since it assumes that the P
and/or S waves from the crack edge did not modify the slip determined
by the dynamic self-similar solution (an assumption that is seen from
Figure 5.5 to be not quite valid!). At the crack edge the overshoot is

A(v)
OV'—:W/I-FU/UH -1

so that for vy = v,, the edge overshoot is - 4 percent, and for
U = Ug,1tis ~ 18 percent of its static vaiue. The static values of U/ are
shown in Figure 5.5, and the central overshoot in the numerical case was
found to be ~ 36 percent. Estimates of this overshoot, obtained by
Madariaga (1976), Archuleta (1976), Das (1980), and others using differ-
ent numerical methods and /or different grid sizes and without allowing
backslip were found to lic between 20 and 27 percent. The dynamic
overshoot of slip in the interior of the crack may, of course, be inter-
preted as the overshoot of the static stress drop there. The above
formulas atso show that the dynamic overshoot increases with increasing
crack speed v. Obviously for a given problem (solved by the same
method and using the same discretization of the problem), the overshoot
must be greater when backslip is disallowed on the fault. Hence, in
obtaining an estimate of the static solution, allowing backslip would give
a better estimate than disallowing it.

3<
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For a self-

similar, circular shear crack with constant
stress drop Ao, the slip rate

distribution is (Kostrov, 1964)

14
d=-————o  for xx <%? (3.4.18)
(!2 _ XX-/Uz)l/z iy

Here, v is the constant fracture velocity,
wave velocity, and A is given by

4 Ao
A = (o) (3.4.19)

which is < vp, the Rayleigh

where /(v) is a smooth function of v given by

= 0—2 ” v e ) »)'7? v
I(u)—(vg)]; {(2 P (v ) 1) ) }
x i (3.4.20)
i [1 + v(uz/oé)ll(l + v)l/z o

Aly
[,
—_—

0 0.5
v/ v

36 A/v, normalized by its static value, versus fracture speed o.

and vy = vg/v,.! Here 4 /v
is plotted against o
value 24 Ao/ Tmu. ~

gives the ratio of slip versus crack radius and
in Figure 3.6, its value being normalized by the static

! Performing the integration in (3.4.20), we can write [(v) if closed form as

12a* — 21a® + 8

et 1
I(u)-a4{12(7— 1) - (i 1)0/2] tan a
) o
120" - 8y Ve oy 2 (3.4.202)
+ e tan . (a1
Ve — v
where a? = 03 /0%,
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ELLIPTIcAL CRACK

Burnidge and Willis (1969) solved a more general problem, in which
the fracture velocity depended on the direction, so that the crack at all
times had an elliptical shape, given by

2 2
X X
S+ = < (3.4.24)
03 v;

where v, and v, are the fracture speeds in the x, and x, directions,
respectively. It was found that the slip direction coincides with the
direction of stress drop, when it is parallel to one of the axes of the
ellipse. The distribution of slip rate magnitude is

At

2,2 23172
(2 = x}/o} — x2/0})

da{x, 1) = (3.4.25)

where A is proportional to the stress drop Ae. The expression for 4 has
the form of a complicated surface integral, which depends on the
velocities v; and v,.
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6.3 The heterogeneous faulting process

Variations in any one of these parameters over the crack plane would
produce variations in the fracture velocity, slip rate, and stress drop
distribution over the fault, This heterogeneity would be manifested in the
complexity of the radiated pulse shapes. Such observations of “multiple

shocks” led 1o the introduction and subsequent acceptance of models
with heterogeneous stress drop and strength over the fault plane. Two
idealizations of this situation have been considered in the past decade. In
one, known as the “barrier” model, the stress drop on the fractured part
of the fault plane is essentially uniform and the critical stress level has
large variations. In the other, known as the “asperity” model, the stress
drop is highly variable over the fault. Obviously, every conceivable
variation and combination of these two extreme cases js plausible in
reality. Also, instead of one unique crack edge, there may be muitiple
crack edges due to the locking of regions behind the main crack edge.
The stress drop in this case becomes inhomogeneous not only in space
but in time as well. A problem of random variation of stress drop
and strength over the fault was studied numerically by Mikumo and
Miyatake (1979), though with a somewhat simplified model. The fracture

It is now well known that some aftershocks occur off the main fault
plane. Obviously, a complex seismic event may be accompanied by such
shocks, occurring during the majn earthquake rather than after it. This
implies that at least part of the complexity of seismic radiation cannot be
assigned to the main fault plane as is assumed in the models mentioned
here. This is especially true when one is considering the high-frequency
radiation from an earthquake.

In this section, we shall consider only some stmple examples of these
variations confined to the fault plane and determine the far-field seismic
radiation due to fracture propagation on such a plane,

The barrier model

A barrier may be characterized by some measure of its areal
éxtent and some measure of its strength. We may use the parameter §,
defined in Section 5.6, to denote the relative strength of the barrier. If the
areal extent of the barrier is large, the crack edge propagation will be
arrested. But if its areal extent is small compared with the instantaneous
crack dimension at the time it is encountered by the crack edge, the
crack edge and the barrier will mteract in the three different ways,
depending on the value of §:

L If S is small, the barrier will be broken as the crack edge
encounters it.
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2. If § is very large, the crack edge will propagate around it,
leaving behind an unbroken region.

3. If § has some intermediate value, the barrier will not be broken
the first time it is encountered by the crack front but will
eventually break due to the subsequent concentration of stress
on it during the dynamic growth and slip of the surrounding
areas.

The presence of such barriers on the fault will introduce diverse slip
functions over the fault, which in turn will be seen as complexity in the
radiated seismic wave forms and will modify the seismic moment of the
earthquake. This problem was first studied two dimensionally by Das
and Aki (1977b) and by Das (1985) for the three-dimensional case. Since
the two-dimensional results are very complete and are now well known,
we shall include only these results here. The three-dimensional calcula-
tions show that the two-dimensional results correctly predict the com-
plexity of the far-field waveforms for a fault with barriers.

Let us confine our discussion to the unilateral propagation of an
inplane crack. The four cases studied are listed below. The total crack
length is taken as 10A X and § = 0 in the areas without barriers for all
the cases. The latter parameter value means that a cntical crack length of
zero is needed for dynamic propagation, which makes the calculations
very economical. Backslip will not be allowed in all cases so that
@i jh; > Ao ju;» Where ki > ki Hence AL, (k Ar,m) is positive for all
time and the maximum value of the amphtude spectrum is at zero
frequency.

Case P-SV-0: There are no barriers on the fault, this case being
included purely for the purpose of comparison. The crack extends at a
speed close to vy due to § being chosen as zero. The distribution of §
and the resulting slip on the fault are shown in Figure 6.3. The far-field P
pulse shape determined from equation (6.1.4) and the corresponding
amplitude spectra are given in Figure 6.4. )

Case P-SV-1: One strong barrier exists on the fault, and it
remains unbroken when the dynamic fracture process on the fault is
completed. The distribution of S and the slip on the fault are shown in
Figure 6.5, and the far-field radiated field is plotted in Figure 6.6. The
spectra for the case P-SV-0 is indicated in the latter figure by dashed
lines.

3%




6.3 The heterogeneous faulting process 237

P-5v-0Q

{1+5)

NORMALIZ EC DISPLACEMENT

6.3 Distribution of the parameter § and “snapshots™ of the distribution of the
normalized half-slip 4, /2 over the fault length for case P-SV-0. The half-slip is
normalized by L Ag/3pu, where £ is the fauit length and the integer next to each
curve indicates the time measured in units of SL/vp . (From Das and Aki,
1977b. © Am. Geophys. Union )

Case P-SV-2: Two unbreakable barriers exist on the fault. Fig-
ure 6.7 and Figure 6.8 show the corresponding S, the slip on the fauit,
and the far-field radiation. The dashed lines again give the P-SV-0
spectra.

Case P-SV-3: The two barriers on the fault, having intermediate
§ values, do not break at the initial passage of the fracture front but
break before the completion of the dynamic fracture and slipping pro-
cess is completed. The related parameters and results are shown in
Figures 6.9 and 6.10.
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The major conclusions drawn from this example can be summarized as
follows: N

1. The smooth fault P-SV-0 and the P-SV-3 fault result in single
earthquakes, whereas the heterogeneous faults P-SV-1 and P-SV-
2 result in multiple shocks.

2. The time history of slip on the fault and the resulting far-field
radiation are most complicated in the case when the initially
unbreakable barrier eventually breaks (P-8V-3). In this case the
duration of the fracture and slipping process are longer than in
the other cases for the same fault length.

3. The final slip on the fault and hence the seismic moment are
largest for the smooth crack (P-SV-0) and smallest for the case
of the fault with two unbroken barriers (P-SV-2). In the case of
the barrier that eventually breaks, the final slip and moment are
almost as large as those for the smooth fault. The slip for the
fault with two unbreakable barriers has the most uniform value
over the fault, whereas the fault with no barriers at the end of
the fracture process (P-SV-0 and P-SV-3) shows the largest
amount of variation in slip distribution over the fault! This may
explain why the uniform dislocation model (Haskell, 1964) has
often been able to explain observed overall features of se1smo-
grams satisfactorily.

4. Clear directivity effects in the seismic radiation are seen in all
cases, these effects being stronger for the fault with unbreakable
barriers than for the smooth fault. However, when the barriers
eventually break the directivity effect is even weaker than that
for the smooth fauit. )

5. The time domain pulses are more sensitive to the complexity of
the fracture process than the spectral shapes. In particular, when
the barriers eventuaily break the pulses show complexity in all
directions from the source, but the spectra are not particularly
revealing, .

6. When the barriers remain unbroken, the spectra at the highest
frequencies for which the numerical results are meaningful (this
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64 Far-field P-wave displacement pulse shape and amplitude spectra for
various directions from the fault for case P-§V-0. The angle # is measured from
the normal to the fault. The arrows indicate the arrival of the first diffracted
wave when the crack tip stops. For & = 0° the P- and S-wave pulse shapes
coincide. The amplitude spectra are normalized by their value at zero frequency.
( From Das and Aki, 19776, © Am. Geophys. Union)
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P-SV-I

gl

1
+

6.5 Same as Figure 6.3 but for case P-SV-1. There is now one barrier on the
fault that remains unbroken at the completion of the dynamic fracture of the
fault. { From Das and Aki, 19776, © Am. Geophys. Union.)

limit can be obtained by comparing the numerical solution for
some simple case with an analytic solution, the spectra in alf the
cases plotted in this example being shown only up to the
frequency where the numencal results are valid) have more
energy than that for the smooth fault.

7. The corner frequency averaged over all directions from the

source is unaffected by the presence of unbreakable barriers.

8. The stress drop averaged over the total fault length (including

the barriers) is lower for the case with unbroken barriers than
the other cases. In fact, there is a stress increase on these
unbroken regions due to the earthquake. Thus, a complex earth-
quake with lower average stress drop can generate waves of
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6.6 Samc as Figure 6.4 but for the case P-3V-1. The dashed lines on the spectra
are the curves for the case P-SV-0 and are included for the purpose of
comparnison. ( Frem Das and Aki, 1977b, © Am. Geophys. Union )
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6.7 Same as Figure 6.3 but for case P-SV-2. The two barners on the fault
remain unbroken. { From Das and Aki, 19776. © Am. Geophys. Union.)

relatively higher frequency than a simple earthquake with rela-
tively hugher stress drop.
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6.8 Same as Figure 6.4 but for the case P-SV-2. The dashed lines give the curve
for the case P-SV0. ( From Das and Aki, 19775. © Am. Geophys. Union )
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6.9 Same as Figure 6.3 but for case P-SV-3. The two barriers on the fault are of
intermediate strength and eventually break while dynamic fracturing of other
parts of the fault is continuing. (From Das and Aki, 1977h. © Am. Geophys.

Union )
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6.10  Same as Figure 6.4 but for case P-SV.3.
Geophys. Union.)

(From Das gnyg Aki, 19776 © Am.




The observational support for complex faulting models came from
both seismology and geology. Observations of multiple shocks on seis-
mograms were mentioned at the beginning of this section. The measured .

surface slip after large earthquakes often shows a form similar to the
fault slip found for P-SV-1 and P-SV-2. Direct evidence from fractures
on mine faces showed that faults are usually very complex, with side
steps and highly deformed but unbroken ligaments in the stepover
regions (Spottiswoode and McGarr, 1975; McGarr et al.,, 1979). The
impact of this model, in spite of its idealizations, on the understanding
of the earthquake faulting process was significant. It led to the char-
acterization of barriers as being material (large §) or geometric (when
the fault plane deviated from Planarity) by Aki (1979). It also led to the
identification of barriers in the field by structural geologists and by
seismologists in various locations around the world (Lindh and Boore,
1981; King and Yielding, 1984; Nabelek and King, 1985; Sibson, 1986;
Barka and Kadinsky—Cadc, 1n press; Bruhn, Gibler, and Parry, 1987, to
name only a few). Major projects are under way in many countries to
identify barriers along faults and to try to understand the origin and
geochemical characteristics of barriers. The primary reason for this
general interest is that earthquakes often nucleate and terminate at
barriers.

Since the unbroken barrier with its high residual stress concentration
can become the “asperity” of a future earthquake on the same fault, it s
important to consider the radiation due to the fracturing of such an
unbroken barrer. In Section 5.6, we studied the dynamic fracture of
isolated asperities of different shapes on infinite faults. In the next
subsection, we will look at the far-field radiation generated by such a
model.

Radiation due 1o the Jailure of an isolated asperity

The far-field displacement pulse shapes can be conveniently
calculated for this case using (6.1.,5’). The corresponding radiation pat- o
terns were given in Section 4.6. Let us consider the far-field pulse shape
for the circular asperity along the direction of the normal to the fault. In
this direction, the P- and the S-wave pulses coincide. The pulses are
given by the term

Z Tauk'
LJEE,
of (6.1.5) and plotted in Figure 6.12. The normalized time in the figure is
vpt/AX, and it is measured from the time of arrival of the first wave at
the recciver. The most striking feature of this pulse is that there is a
permanent offset, in contrast to what we saw in the previous examples in
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6.12  Far-ficld displacement pulse shape for the P and S waves along the normal
to the asperity, due to the fracturing of a circular asperity (Figure 5.18). The
bracket and brace are explained in the text. { From Das and Kostrov, 1983. @ Am.
Geophys. Union.)

this chapter for the conventional crack model. This is not surprising
when we recall that the problem was formulated such that the two
half-spaces on either side of the fault plane remain permanently shifted
after the asperity has fractured and disappeared. The rise time of the
displacement from zero to thus final value is the time required for the
asperity to fracture. The brace in the figure indicates the time when
the number of grids broken per unit time is the highest. The fracture
process for this case (Figure 5.18) shows that this indeed took place
toward the end of the breaking process. The square bracket indicates the
period when the breaking rate is high but the displacement does not
increase. This is because, although the number of grids breaking per unit
time is large, these points are situated far from one another on the
asperity, also, they do not have large stress drops associated with them
and hence do not contribute significantly to the increase in the far-field
displacement. If we looked at the acceleration pulse shape (obtained
simply by twice differentiating the displacement pulse in Figure 6.12), we
would find that the high accelerations correspond in time to the (relative)
times when the breaking rate of grids on the asperity is the highest. Thus,
the far-field displacements are very sensitive to the location of fracturing
points on the asperity, whereas the accelerations are sensitive to the rate
of increase of the broken area but not to its distribution over the fault.
The pulse shapes in other directions from the source have essentially
similar characteristics, the rise times being shortest in the (general)
direction of fracture propagation and longest in the opposite direction.
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ASPERITY

6.13  Geomeltry of the problem of failure of an isolated asperity on a finite
fault.

The pulses for elliptical asperity fracture (Das and Kostrov, 1985) are
stmilar and are not included here.

The asperity model

The basic idea of this model was suggested by Madariaga (1979)

and by Rudnicki and Kanamori (1981). According to the model, an
earthquake is caused by the failure of isolated, highly stressed regions of
the fault, the rest of the fault having little or no resistance to slip (being
partially broken and preslipped, say) and contributing little or no stress
drop to the earthquake process. This results in a nonuniform stress drop
over the fault. Since the regions without slip are able to withstand the
high stresses concentrated on it until the moment the earthquake begins,
1t must be assumed that the parameter ¢“ for these regions is higher than
that for the rest of the fault. The spontaneous, dynamic fracturing of one
or more such isolated asperities of general shape and size on a finite fault
has not yet been studied. The simpler problem of radiation from the
fracturing of a circular asperity at the center of a circular fault was
studied by Das and Kostrov {1986), and we shall discuss the result here.
In this model, a circular crack of radius R, say, has a circular asperity
of radius r, say, at its center (Figure 6.13). The annular region between
the crack and the asperity is broken and assumed to be at or very close
to the kinetic frictional level. When the central asperity breaks, this
annular region exhibits no (or little) dynamic stress drop. It also has little
Or no resistance to slip. For the numerica] calculations, r/R is taken as
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6.14 Far-field S-wave displacement pulse shape due to the failure of the
isolated asperity shown in Figure 6.12. Inset shows details of pulse shape in
stippled region. ( From Das and Kostrou, [986. © Am. Geaphys. Union.)

-1 and the asperity is taken as a single spatial grid. The asperity is
released, and the ensuing dynamic slip is aliowed to spread out over the
entire circular fault. The slip is calculated using algorithm (5.2.13) and
the P- and S-wave pulse shapes in different directions from the source
are found using (6.1.4). The normalized S-wave displacement pulse shape
looking down at the fault along the normal as a function of normalized
time vpt/A X is shown in Figure 6.14 as a represemtative example. The
displacement pulse immediately reaches its maximum value and remains
flat until the first diffracted waves from the crack edge arrive at the
observer at time T, =~ R /g, measured from the time of arrival of the
first S wave. The displacement then starts decreasing and finally reaches
zero at time = 2T, (= 2R /vy ). The minor oscillations following this
that occur due to backslip being permitted on the fault are ignored in
this figure. The duration of the fat part of the puise is thus controlled by
the size of the large crack of radius R. Since the asperity was released
instantaneously in this problem, this picture does not represent the rising
part of the pulse correctly. But this was calculated in the last subsection,
and using those results and adjusting the time scale, we obtain the pulse
shape in the stippled region of Figure 6.14, as shown in the inset of this
figure. The rise time for the failure of a single asperity was shown in the
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6.15 Schematic representation of the far-field displacement puise due to the
failure of an asperity on a finite fault and due to a propagating crack. ( From Das
and Kostrov, 1986. © Am. Geophys. Union.)

last subsection to be controlled by the asperity size and is given by
ta=r/B.

Since the details of the pulses of Figure 6.14 depend on the parameters
of the particular problem (crack and asperity size and shape, fracture
velocity, etc), one may neglect the details and construct a schematic
representation of the pulse shape due to the fracture of an isolated
asperity on a finite fault, as shown in Figure 6.15. The main features of
this pulse are a steeply rising part followed by a flat portion of long
duration and then a gradual return of the displacement pulse to zero.
The tnangular pulse from a circular crack (Figure 6.1) is also shown in
the figure for comparison. If this circular crack is taken to be the same
size as the asperity of the model under discussion here, then the pulse
shape would have the same rise time as the asperity model. However,
once the maximum amplitude is reached, the two pulses become very
different in character, the crack pulse immediately starting to decrease
toward zero and reaching zero at time about twice the rise time, as we
saw earlier in this chapter. :

Thus, the asperity pulse has an anomalously large seismic moment
{area under the pulse) and anomalously large duration compared with a
crack pulse for a crack of radius r. Such earthquakes have been called
“slow” or “weak” earthquakes (Kanamori and Cipar, 1974; Kuznetsova
et al,, 1976). The spectrum of the puise shown in Figure 6.14 was found
to have the same general form as that for the conventional crack model
(Figure 6.1).

it must be pointed out here that this model is not the only possible
model for slow earthquakes. Clearly, such earthquakes could also be
modeled as a very slowly propagating crack, due, for example, to very
low stress drop.




