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Incorporation of azimuth anomalies
into surface wave tomography

1.Introduction

The data which are widely used in tomographic reconstruction of lateral
velocity variations are travel times of seismic waves. This problem can be
easily linearized: time delays respectively a properly chosen starting velocity
model are represented as linear functionals of the unknown velocity vanations.
Thus the tomography problem is reduced to a system of linear equations.
However, another data exist, which also depend on velocity variations, and can
be obtained from seismological observations easily enough: such data are
polarization anomalies, which are related to anomalies of directions of wave
propagation.

The data on surface wave polarization allow to determine the azimuth of a
wave arriving to a station, and consequently the azimuth anomaly, which 1s a
deviation of the observed azimuth from that corresponding to a great circle
path. Since a path of surface wave is governed by phase rather than group
velocity, the azimuth anomalies are related to variations of phase velocities. So
we may expect that incorporation of azimuth anomalies to the tomography
problem for surface waves would give an additional information about phase
velocity distribution.

Observations of surface waves show marked azimuth anomalies in some cases
(Lander, 1984; Lerner-Lam & Park,1989; Nesterov & Yanovskaya, 1988;
Levshin et al.,1992) . However, up to present time these anomalies were
interpreted only qualitatively. A reason, why they have not been used in
tomographic reconstruction (separately or jointly with travel time data) is that
it is difficult to construct a linear functional of velocity variations for azimuth
anomalies similar to that for time delays. Following Hu and Menke (1992) we
shall show how to construct a procedure for determining a relationship
between polarization anomalies and velocity variations for general case. It
will be seen that the procedure is too much complicated, and therefore it is
invalid for inversion of large body of data. Then it will be shown hcw to
simplify this procedure for 2D case if the velocity in the starting model may be
assumed to be constant. Obviously, this case is applicable for surface wave
data.

2. General case

The problem is to derive a relationship between perturbation of slowness
vector and velocity variation. Let the velocity in the starting model be Vy(x),
the slowness vector in the starting model p,, the velocity and slowness vector
in a perturbed model V(x) and p respectively. The ray tracing differential
equations are following:
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where x is the position vector along a ray, p = t/ ¥ (x), t is unit vector tangent
to the ray, s is arc length of the ray.

For perturbation of the ray 3x and 5p we have the following differential
equations:
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The equations (2),(3) are to be solved with the initial conditions 8x.=0 and
6x~0, where x, and x, are positions of source and receiver, respectively. So to
determine 8p, in the receiver it is necessary to solve the two-point ray tracing
problem. Hu & Menke (1992) reduced this problem to one-point ray tracing.

In the approach proposed by Hu & Menke the velocity model is described by
a finite set of parameters m, and 8V is replaced by a vector dm. Also it is
convenient to replace the variable s by travel time t. Then the equations (1)
can be wnitten in general form
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and the equations (2),(3) in the form
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If we integrate these equations from the source to the receiver, we have to take
into account that in the perturbed model the ray and the travel time between
the source and the receiver are to be perturbed. Thus we obtain
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Our aim is to obtain the linear relationship between 8p, and 8m in the form
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The matrix D can be obtained as % , where 8p, is calculated from

differential analogue of (7),(8) for a given dm. It is clear from (7),(8) that the
variations 8p, and 8x, result from variations of the model parameters dm, of
the initial ray direction in the source dt, , and of the travel time between the
source and the receiver 8T
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The variations ox" and dp” can be obtained from the differential equations

(5).(6) with the initial conditions &x. =0 and dp, = -~ ED) supy
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numerical integration from t=0 to t=T.
The variations Sx’ and §p’ can be obtained by numerical integration of the

differential equations
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travel time 8T only, we have
&x! =F(x )T, op! =G(x,)éT
So we can calculate the matrices
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and express the total variations of x, and p; in terms of these matrices:
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Since 8x,~0, the variations dp; and 8T can be expressed through dm:
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This is the matrix relating a variation of slowness vector in the receiver and
variations of model parameters. The inconvenience of this approach is obvious:

to construct the matrix % it is necessary to integrate the ray tracing system

n+3 times (for variations of n model parameters and of 3 components of the
vector Op,). This procedure should be performed for each source-receiver pair.
For the problems with large number of model parameters this procedure is
useless.

3. Approximate functional for a starting model with constant velocity

We shall treat 2D model, assuming velocity in the starting model to be
constant. Surface wave velocity corresponding to a fixed period satisfy to this
assumption: in fact, lateral variations of phase velocities are small, and in the
first approximation surface wave propagate along great circle paths, or along
straight lines in a plane case. For simplicity we shall consider only the plane
case. So the problem can be formulated as follows:

in linear approximation fo derive a relationship between azimuth anomaly
da and lateral variation of phase velocity éc(x,y)=c(x,y)-co
It is convenient to write the ray tracing system in the form
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where t and n are unit vectors tangent and orthogonal to the ray, respectively,
S is length of the ray, q is a parameter varying from 0 to 1, so that ds=Sdq,
where ds 1s an element of the ray length..

A system for the variations dx and 8t can be written as follows (assuming
Ve, =0):
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The values of Voc should be taken on the ray corresponding to the model
c{x,y), i.e. in the points x=x5+0x, $0 that

Nc
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0
The last term in the right-hand side of (12) in general is of the second order ,
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because & however it is important in the case, when Vdéc(x,) is

dx
close to zero, while the second denivatives of the velocity are sufficiently large.
This is the case, when the ray is directed along a ravine or a ridge of the

(11b)



function 8¢(x,y). However, in tomographic problems, when the data for a large
amount of paths are used, such cases are rare, though they would result in
additional errors in the data.

The equation (11b) can be integrated from the receiver to the source:
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where 8t Is a variation of the unit vector t in the receiver.
Substitute (13) into the equation (11a) and integrate from the receiver to the
source, 1.e. from q=0 to q=1:
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0 0
Taking into account that in the source §x=0, and turning to integration along
the undisturbed ray (ds=S,dq) we obtain
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The second term in the right-hand side of (15) should be at least of the sescond
order of smallness: a variation of a unit vector should be orthogonal to it, so
that in the linear approximation
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Consequently,
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The double integral in (16) can be transformed to a single integral by exchange
of the order of integration:
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It is easy to see that |5t, is equal to a deviation of azimuth in the receiver, so

that
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Thus the azimuth anomaly turns out to be expressed as a linear functional of
spatial derivatives of the velocity variation 8¢. The relationship (17) may be
used for inversion of a set of azimuth anomalies da; (1=1,2,..N) into the
velocity distribution c(x,y).

4. Results of testing

Since denving the formula (17) we assumed that a value of the velocity
gradient is to be taken at the initial rather than at the disturbed ray, it is
necessary to estimate an error related to this assumption. It should be
expected that the error would be large if Voc varies too fast. This error was



estimated on some numerical examples: for some velocity models the azimuth
anomalies were calculated exactly by numerical integration of the ray tracing
system, and by the use of the approximate formula (17). The velocity models 1
and 2 are shown in figs.lab. The models contain positive and negative
velocity anomalies, respectively. The velocity anomaly in the both models
consists 10%. The rays in these models are shown in figs.2a,b. The azimuth
anomalies were calculated at the both ends of rays - receiver and source were
exchanged. Figs 3a,b show the azimuth anomalies for these models. It is seen
that the error (deviation of the approximate azimuth anomaly from that
calculated exactly ) is not too large. However, if the velocity anomaly
increases, the deviation increases rapidly, which indicates to a strong
nonlinearity of the problem.

Model 1 Model 2

-80 -30 -10 io 3a 60 —-60 -30 =10 10 30 60
L T s S Es B E G S R W —TT T T T T T T T |

- 80 - &0

Fig.la .

Rays in the model 1 Rays in the model 2
50 - = LA . N %

PR MR : F100 T = AU U NN 2




—la.oj -10.0 3

-7.5 ] -7.5]

Fig.3a Fig.3b
Azimuth anomalies in the model | Azimuth anomalies in the model 2
Solid line - exact solution, dashed line - approximate solution
Curve 1 - azimuth anomaly in the source, 2 - in the receiver

5. Tomographic reconstruction: model example

Velocity reconstruction from the azimuth anomaly data (azimuthal
tomography) differs from the well-known time delay tomography, because the
azimuth anomalies are related to the velocity gradients, whereas travel times
(or time delays) to the velocity distribution directly. Formula (17) represents
the azimuth anomaly in the receiver as a functional of two velocity derivatives
0b¢/Ox and 88c/dy. It is obvious that these derivatives are not independent: to
determine them both it is sufficient to know either 8c(x,y), or the absolute
value of the velocity gradient, and values of &c at one boundary of the region,
for instance, 8¢c(x,yo), Therefore it is necessary to transform the functional {17)
so that it would contain only independent unknown functions. For the
tomography problem it is convenient to take the velocity disturbance de(x,y).
This function should be represented either in parametric form, or by a set of
values in discrete cells. In the latter case (17) is reduced to a linear system of
equations respectively m,=8c,/c, (k=(i-1)M+j):

Am=b (18)
where b;=a,,. This system should be solved under some apriori assumptions
on the vector of the unknows m.

Also it is obvious that it is also necessary to accept a condition, which fixes
absolute values of velocity disturbances: the equation (18) determines only the
differences on the adjacent cells: for example, the equation holds if one and the
same constant value is added to all values of 8¢, . If a mean value of the




velocity is known, such condition is equality to zero of a sum of the velocity
variations in ali cells:

>, =0 (19)

Another condition can be constructed if travel time along one or several rays is
known.

The method was tested on the following example. Fig.4 shows the velocity
model with two anomalies - positive and negative. For this model azimuth
anomalies have been calculated for 40 rays, schematically shown in fig5. For
solving the tomography problem the area was divided into 100 cells (10x10),
and the condition (19) was used. The linear system of 41 equations with 100
unknowns was solved by SVD method. The result is shown in fig.6. Though
the solution differs from the real velocity distribution in details, the main
anomalies are revealed distinctly. It should be noted that magnitudes of the
velocity anomalies are close to those in the real model, which is not always
proved to be in the time delay tomography.
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