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WAVEFORM SYNTHESIS BY RAY THEORETICAL METHODS

Ray theory has played a fundamental role in the interpretation and modeling of setsmograms for
many applications in seismology. Its use in applied geophysics has been limited to the calculation of
travel times. The main reason has been the difficulty to handle singularities in the amplitude of the
ray field due to caustics, small discontinuities, etc. A major development has occured in the lasi ten
years with the simultaneous introduction of two methods that have greatly enhanced the possibilities
of ray theory. First, dynamic ray tracing or, more appropriately, paraxial ray tracing, a method that
permits to calculate not only a ray but a whole beam of rays propagating in its vicinity. Although
initially derived from a parabolic approximation to the wave equation in ray centered coordinates,
this method is in fact based on classical time-dependent perturbation theory. Paraxial ray tarcing
can be derived in any coordinate system in which we can write the eikonal equation in a separable
form. The second important development, was the introduction of spectral methods in which the wave
field is decomposed into a set or basis of independent beams, each of these beams is then propagated
independently and finally they are summed at the observer. In the WKB and Maslov methods the
beams are chosen as a set of ”Snell waves” or initially flat beams. In the Gaussian beam summation
method, the base functions are a set of gaussian beams which are propagated using the paraxial
approximation. These notes will describe the fundamental aspects of these techniques without gelting

into excessive algebraic detail. Simple examples will be chosen.

L. INTRODUCTION

The purpose of these notes is to present in a relatively simple form several techniques to construct
synthetic seismograms in the high frequency regime. The simplest and most widely used of the high
[requency methods is classical geometrical ray theory, which is the basis of most practical methods for
the modeling of seismograms and the inversion of travel times in seismology and applied geophysics.
A comprehensive discussion of several aspects of ray theory may be found in the books of Cerveny
et al (1977) and Bleistein (1984), and in the notes by Burridge (1976). Many programs that perform
ray tracing have been written in order to calculate travel times and synthetic seismograms based
on ray theory. One of the most difficult problems in generating syntheties was the calculation of
geometrical spreading. A major advance in this field was made by Popov and Psencik (1978) who
proposed a new technigue for the calculation of geometrical spreading. This method is usually called
dynamic ray tracing. Later work demonstrated that dynamic ray tracing was in fact a subset of what
is called paraxial ray theory in optics, i.e. the study of rays propagating in the vieinity of another
ray. This method is new to seismology but it has been used in optics for several decades (see, e.g.
Deschamps, 1972). In fact, as demonstrated by Farra and Madariaga (1987), paraxial ray theory,
dynamic ray tracing, Gaussian beams and many other problems in ray theory can all be derived from
ray perturbation theory as described in all Classical Mechanics books (e.g. Landau and Lifschitz,
1981; Goldstein, 1981). Recognition of this similarity between ray theoretical methods and classical
analytical mechanics dates back to last century and was the major contribution of Hamilton to modern
physics. With the identification of paraxial ray theory as perturbation theory a wealth of powerful
theoretical methods becomes available. For instance, the propagation of paraxial rays across curved
interfaces reduces to a simple canonical transformation problem as shown by Farra and Madariaga
(1987). A few simple applications of Hamiltonian methods to seismic ray theory will be presented in

these notes.

Classical ray theory presents a number of practical problems due to the presence of singularities
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of the ray field (caustics and focal points), and numerical instabilities due to small scale perturbations
in the velocity model. In the last ten years or so, a number of methods based on the spectral
decomposition of the wavefield at the source have been proposed in order to alleviate some of these
problems. Among these methods the best known are WKB for vertically stratified velocity models
(Chapman, 1978}, Maslov or asymptotic Fourier transforms (Chapman and Drummond, 1972) and
Gaussian Beams (Popov, 1982 and Cerveny et al, 1982). In the later part of this paper we will discuss
these various techniques in the simple case of a homogeneous medium and we will show that they all

have a common theoretical background in ray theory.

The basic methods that will be used in these notes are ray theory and ray perturbation theory. Ray
theory is used to trace rays and determine travel times for a given set of initial conditions, for instance
a point source. Ray perturbation theory is used to evaluate ray amplitudes and to iteratively solve
two-point ray tracing problems. The most important perturbations in this context are perturbations
of initial and final values of position and slowness. Perturbation theory provides a method to calculate
the trajectories of paraxial rays that propagate in the vicinity of a reference ray. The study of the
divergence and convergence of paraxial rays provides a method for the calculation of ray amplitudes
and travel time extrapolation for different conditions at the source: plane waves, Snel-waves, point
sources, Gaussian beams and other wavefront configurations that are needed in waveform synthesis
and inversion. Paraxial rays provide also a natural way to interpolate rays so as to solve the two
point ray tracing problem: to find a ray that passes through a given source and receiver. Thus we
find a common background to such apparently disparate techniques as Gaussian beam summation,
ray bending, and the WKB method.

2. CLASSICAL RAY THEORY

Ray theory is based on an ansatz or hypothesis about the form of the solution of the elastic field.
As proposed by Babich (1956) and Karal and Keller (1959) we look for elastic waves of the form:

Poco eiwﬂ(x,xo) (1)

u(xaw) = A(X,XO,W) ch(x,xO)

where u(x,w) is the Fourier transformed displacement at point x in the elastic medium and w is the
circular frequency. p and c are the density and wave velocity. This expression is valid both for P
and S waves. For the former ¢ = o, the P-wave velocity, while for the latter ¢ = 3, the shear wave
velocity. #(x,xg) is diversely known as the eikonal, phase or travel time function. In (1) we have
explicitely introduced the position of the source xo as well as the density py and velocitycy at this
source. The parameter J(x,%g) appearing under the square root is the ray Jacobian or geometrical
spreading of the wavefronts; it will be defined later in the paper. In many applications J may be
negative or complex so that the proper branch of the square root of J in (1) should be chosen. The

vector amplitude A({x, xo,w) is a complex function ofx.

From a strict theoretical point of view xo should not appear in (1}, but since we know that
solutions propagate along rays we introduce the source and geometrical spreading from the beginning.
A more detailed formal development of (1) may be found in Cerveny (1985) or in the references cited
in that paper.

In expression (1) there is no approximation since A is a general function of x and w. In order

to obtain the ray theoretical approximation we expand the vector amplitude into a series of inverse
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powers of w: .
A(x,xg,w) = s(w) Z Ai(x, xo)w ™ (2)
=0

and retain only the first few terms. In practice, however, only the lowest order term in the series is
actually used. In this case, vector Ay contains the polarization of the wave, the radiation pattern of
the source and, if appropriate, a product of reflection and transmission coefficients. For P waves the
polarization is along the ray direction, while S-waves are polarized on a plane that is tangent to the
wavefront. In (2), s(w) is the source wavelet which contains information about the development of

tupture for natural earthquakes, or the source time function for explosive sources. Using only the first

term in the series (2), (1) reduces to

¢ .

u(x,w) = Ag(x, xg), [ —L20_s(u)eiwdxx0) (3)
ped(x, xq)

In some applications of ray theory, such as Gaussian beams, or in the prescnce of attenuation a,J

andAy may all be complex.

Equation (3) is an approximation to the wave equation valid only at high frequencies when the
higher order terms in (2) may be ignored. The ray theoretical approxiamtion assumes that Ag, S andf
are slowly varying functions of space; the only rapidly varying term in (3) being the exponential. This
form of the soluton simplifies the caleulation of selsmograrns in a substantial way. It is in fact simple
to do the inverse Fourier transform of (1) in order to obtain the time-domain version of (3). Since

u(x,t) is a real function, the Inverse Fourier Transform has the following form:

£(t) = ke [ s f(w)e—w‘dw] (4)

where Re denotes the Real part of the complex function in brackets. The inverse of (3) is

u(x,t) = -j;s(t) * Re [Ao” i;f:; i(t . HI— zAt)] (5)

here At is a very small real quantity that is used to pull a possible pole at { = 0 out of the Real ¢ axis.

straightforward:

Once the real part is evaluated At can be made to tend to zero, in which case (5) may be written in
terms of generalized functions or distributions. In the computer implementation of (5} it is preferable
to keep a small positive At in order to stabilize the numerical evaluation of this expression near the
pele at ¢ = 6 . As proposed by Madariaga and Papadimitriou (1985), a convenient value for Af is
the time step used in the discrete evaluation of . Comparing with (3), the inclusion of this stall
imaginary part is equivalent to multiplying the frequency domain expression (3} by f(w) = exp(—wAf)
for w > 0. The time domain transform of this function is:

At
f(i) - 12—{- (Ai)z

{6)
Thus, adding the small imaginary part {Af to & is equivalent to a convolution of the time domain
displacement u with the function (6). If At is equal to the time step, the effect of (6) is practically

negligible bellow one half the Nyquist frequency of the signal.

When the travel time 0(x, xo} is real we can evaluate (5) in a more familiar form in terms of the

source time function s(¢) and its Hilbert, transform. Letting At — 0, we get

_ Pocy NP foco * s —
u(x, t) = Re [Ag m .S[t G(X, Xo)] +Im [Ag "—_—-—pCJ(x’ XQ) & [t G(X, Xg)] (7)
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where 5*(¢) is the Hilbert transform of s(t):

= ()

* _ 1 _ 1 « —fwt
sw=gpv. [ A= ~tm [ s(w)e (8)

P.V. denotes the principal value of the integral. The last Fourier integral provides the most practical
way of computing the Hilbert transform of s(t). [t is easy to see that in most computer calculations

it is preferable to use (5) to calculate time-domain seismograms.

Let us return now to the ray theoretical expression (3). The main property of ray theoretical
seismograms is the clear separation between the kinematics of rays and wavefronts represented here by
¢ , and the amplitudes and waveforms controlled by J, Ag and s(t). At high frequencies the quantities
outside the exponential vary slowly with position, while the exponential term varies very fast because
w is large. This simplicity of ray solutions comes from the neglect of the interaction of the waveform
with the heterogeneities of the propagation medium. There is no scattering along the ray trajectory:
rays are bent and deviated by the structure but encrgy is conserved along ray tubes. As shown by (7),
in classical ray theory (8 is real) the only effect of propagation upon waveforms is an eventual Hilbert
transformation (phase shift) of the signal. Unfortunately, the limits of validity of this approximation
are difficult to evaluate and, except in simple cases, there is no general method for determining the
validity of ray theory. A recent discussion of the limit of applicability of ray theory may be found in
Ben Menahem and Beydoun (1986).

3. RAY TRACING

In order to calculate the different terms that make up the ray theoretical ansatz (3) we substitute

it in the elastodynamic equations:
p(x)w?u(x,w) = Dive(x,w) (9)

where p(x) is the density and o(x,w) is the stress tensor which is related to strain by the Lamé

parameters A(x) and p(x):
o(x,9) = AT -u(x,w)L + 2u(x)e(x,w) (10)
where I is the identity matrix and e is the strain tensor:
€= 1/2[Vu+ (Vu)T] (11)

and the superscript T denotes transposition.
After collecting terms of the same order in w one finds two sets of independent solutions (see, e.g.
Cerveny et al., 1977). From the highest order terms in w one finds for P waves:
(Vo) =a™! Agx (V=0 (12)
and for § waves:
(VoY = g7° Ag- (V) =0 (13)

From the next order term in w, we get the equations for the Jacobian J, which will b2 discussed later
in the text.
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In order to interprete these equations we define as in Figure I, a wavefront as the surface f(x) =
constant. Then the vector '
p=Ve

is perpendicular to the wavefront and its length is the slowness of the P wave, a~1 or of the S-wave,
B~ pis simply the slowness vector. The right hand side equations in (12) and (13) define the

polarization of vector Ay. This is parallel to p for P-waves, and perpendicular to it for Swaves.

The left-hand side of equations (12) and (13) may be rewritten in the standard form:
(V8)? = o* (14)

where « = ¢—1 stands for the slowness a~! of P-waves or 871 of S-waves, and ¢ for the corresponding
wave velocity. This is a first-order nop-linear equation for the travel time 6 , that is usually called
the eikonal equation, from eikon, image in greek. The standard method to solve it is the method
of characteristics as developped, for mstance, by Courant and Hilbert (1966). In ray theory the
characteristics are called rays. Let us define the wavefronts as surfaces of equal travel time in x space:
#(x,%9) = f = constant. The characteristics of the eikonal equations, or rays, are defined as the
trajectories that are orthogonal to the wavefronts. The set of rays and wavefronts depend on the
initial conditions for ¢ Given an initial wavefront to = 0y(x, xp), the rays and succesive wavefronts
may be calculated by ray tracing.

In order to obtain the ray tracing equations we introduce the ray coordinate s, a parameter that
tneasures position along the ray. There are many choices for this parameter, for instance it may be
the curvilinear distance along the ray, the travel time ¢ itself, or other discussed by Cerveny (1985).
In the following we will use curvilinear distance s as the ray parameter. The ray tracing equations
may be easily rewritten for any of the other ray parameters using the Hamiltonian formulation to be

discussed later in the paper. From figure 1, we remark that

dx
p=Vd= u(x)E; (15)

so that the slowness is parallel to the local ray tangent dx/ds. This is the first ray tracing equation,
the other one may be obtained taking the gradient of the eikonal equation (14). We write the ray
tracing system in the following way:

dx _

& =% P=cpo (16)
dp

— =V

ds "

The latter equation is closely related to ray curvature. It shows that rays deviate from a straight
trajectory because of the gradient of the slowness. The ray curvatbure is actually given by:

K=u "'n Vu=—¢"ln.Ve (17)

where n is the unit normal to the ray.

Solution of (16) requires the specification of initial or boundary conditions, The simplest problern
is to specify the initial position x(so), and slowness vector P(s0) for each ray on some initial surface,

The direction of the initial slowness vector is arbitrary but its norm has to satisfy the eikonal equation
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(14). For a point source, for instance,x(sg) is the same for all the rays, while p(so) changes from
ray to ray. Once the initial conditions are specified the ray tracing system (16) can be integrated
numerically, for instance, by the Runge Kutta method. There exist also a few models of slowness or
velocity distribution for which equations (16) may be integrated analytically. Let us remark that the
system of six ray tracing equations (16) has to be solved together with the eikonal equation (14) so
that in fact only 5 of the equations are independent. In practice, when (16) is being solved numerically,
the eikonal equation (14) can be used as a consistency check. Other ways to reduce the system based
on coordinate transformations will be discussed in section 5. Once the rays have been traced, the

travel time 8(x, xp) may be calculated by direct integration of

dd

-(T;:

u (18)

along each ray.

Solution of the initial value ray tracing problem is relatively straightforward. In most seismological
applications, however, the usual problem is to trace a ray that passes through two points xp and x;.
In this case, one has to find the initial value of the slowness py for the ray that satisfies the two
boundary conditions. This problem may be solved by iterative methods using the paraxial ray tracing

techniques to be discussed later in this paper.

(siven appropriate initial conditions, the set of rays and wavefronts is uniquely determined in
those regions of space that are illuminated by the initial data. Because the ray tracing system (16)
is non-linear the ray field may present singularities. In order to understand these problems and to
determine geometrical spreading we remark that the set of rays and wavefronts forra a curvilinear
coordinate system. As shown in Figure 2 we introduce orthogonal curvilinear coordinates v, an v, on
the wavefronts in addition to the ray coordinate s. Each pair (71, y2) defines a ray. The curvilinear
coordinate set (s,7),v2) defined in this form is usually called the ray coordinate system. Any point
P in the region illuminated by rays may be defined by its ray coordinates. In this coordinate systern

the volume element is
dV = dedydz = J(x, xq)dsdy dys (19)

where J is the Jacobian of the transformation from cartesian to ray coordinates. Since ds is a
curvilinear abscissa along the ray the cross section dS (see fig. 2) of a beam of rays defined by
the four rays with coordinates v, vs, v + dy; and vz + dvs is given by

dS = J(x, xq}dy dy2 (20)

so that in fact J is a measure of the variation of the cross section of this beam. J is usually called

geometrical spreading, because it measures the spreading of the wavefront around the ray (71, 72).

We can now explain the presence of J~!/2 in the expression for ray theoretical seismograms (3).

Elastic energy flow across a wavefront element of cross section dS, see fig. 2, is:
dE = 1/2pcljul|*dS = 1/2pc||i]*J dyrdys

Since in the ray approximation energy flows along a beam of rays without lateral scattering, the energy
flux
F = dE/dydy, = ped ||4l]®
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is conserved. Therefore the amplitudes of the ray theoretical velocity and displacement field are
necessarily of the form:

_ Poco
lull = @, /228

where py and ¢; have been introduced for convenience and @ is a source excitation factor to be

computed from the solution of a certain canonical problem.

As mentioned earlier, the transformation to ray coordinates may be singular. Near these
singularities the usual expressions of ray theory as given by (3) fail and other methods, like WKB or
Gaussian beam summation, have to be used. The most common singularity is a caustic which appears
when J — 0. An example of simple caustic formation in a two-dimensional reflexion selsmogram is
shown in Figure 3. The medium is homogeneous but the reflector is curved, rays deflected by the
interface cross each other forming a cusp. We observe that the set of rays is tangent to two curves
or caustics. Inside the area delimited by the two caustics three rays arrive at each observer, while
only one ray reaches observers outside the caustics. The geometry of caustics may be described by
catastrophe theory as shown, for instance, by Nye (1985).

Finally, let us return to the expression (18) for the computation of travel times & along a ray.
Actually, travel times may be calculated not just by integration along rays but by integration along
any curve that may be convenient for the problem at hand. In fact since p = V8, for any curve T

Jotning two points X1 and x3 in the region illuminated by rays we get:

#y = & +/p,dx {21)
r

where 9; and 6 are the wavefronts passing through points x; and x,, respectively. The curvilinear
integral (21) is path independent in the regions where the ray field is regular. As long as no caustics are
crossed the path ' may be chosen arbitrarily. This curvilinear integral will be used later to calculate

wavefront approximations for paraxial rays and beams.
4. VARIATIONAL FORMULATION

The ray tracing problem has been posed so far in its differential form. The problem may also be
posed in a variational form which may be used to develop alternative methods of solution of these
equations, to introduce perturbation theory, to calculate wave-fronts, etc. The starting point for this
formulation is Fermat’s principle which may be stated in the following form: among all trajectories
Joining two fixed points xg and xq, a ray is the trajectory for which the travel time is stationary. We

write this condition in the form:
1
68(x0, x1) = 6] u(x)”d—xllds =0 (22)
0 ) dS

where s is as before the curvilinear distance along the ray. Let us note that since the ray tracing
problems are highly nonlinear severa) rays may satisfy the variational condition (22). The rays that
render (22) stationary may be found by standard techniques of the calculus of variations. The solution
satisfies the following system of Euler equations:

d  dx

o uE‘;)—Vu:D. (23)
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which, taking into acount (15) is seen to be equivalent to the ray tracing equations (.6). This result
demonstrates the equivalence between the variational formulation based on Fermat’s principle and the

standard ray tracing system derived from the eikonal equation.

Let us note that the variational principle (22) looks for -an extremal trajectory without any
constraint upon s. The total distance s from xg to x; is allowed to change so that the time is
extremal. Fermat’s principle corresponds to the so-called Maupertius principle of mizimum reduced
action in analytical mechanics. A more powerful variational principle is that of Hamilton that states
that the functional (22) is to be minimized under the constraint that the value of s at the initial point
xg and at the final point x; remain constant. The perturbations to the functional that we consider
are virtual so that they do not satisfy the condition that ||dx/ds|| = 1. Thus s has to be considered
as a truly independent parameter. Under this conditions we rewrite ||dx|| in the form:

x| = /(@7 = (lax]? = ds7)
where [dx|?—ds? is the variation of the squared length vector. For small variation we can approximate:
lfdx|| =~ 1/2ds(1 + ||x|{*)

where x = dx/ds. We can write Hamilton’s principle in the standard form:

1
66’:0:5/ Lds (24)
0
where the Lagrangian function is:
L(x,x) = 1/2u(x)(1 + [1x]|*)

On the true ray the variation is equal to zero and ||x{| = 1, so that the travel time function 6 = [ uds
obtained from Fermat’s principle (22) and for Hamilton’s principle (24) are the same. Otherwise,
these two principles are quite different.

We can now introduce the Hamiltonian formulation of the ray tracing problem. For that purpose
we remark that the ray tracing equations define a ray by a couple of variables x{s), p(s). x(s) describes
the ray in configuration space, the physical space where rays are being traced. Rays are more naturally
described in a six dimensional phase space, where the variables arex and p. Rays are trajectories in this
space, where they have a number of well known properties. For instance, two distinct ray trajectories
never cross each other, because two rays that pass through the same point in phase space are identical.

In order to obtain the Hamiltonian we introduce the Legendre transformation:

H(x,p)=px - L(x,p)

where the derivative x is replaced by the generalized momentum p using the classical relationship
p = L/0x = u(x)x. Comparing with the definition of slowness in (15) we see that the generalized
momentum associated with the coordinate x is the local slowness vector. Thus we find the
Hamiltontan:

H(x,p) = 1/2u™(x)[p® — v*(x)] (25)

The term in brackets is just the eikonal equation (14} so that the Hamiltonian is constant and equal to

zero for all ray trajectories, Finally, the ray equations (16) may be found in a straightforward manner
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from Hamilton’s canonical equations (Landau, Lifschits, 1981 or Goldstein, 1981). These equations
state that the trajectories that satisfy the variational principle (24) are given by the following set of

canonical equations:
dg JH dp  OH

ds  dp ds g

here, following conventional notations in analytical mechanics, ¢ stands for the vector x,p for the

(26)

vector p and partial derivatives are to be interpreted as gradients in phase space. It may be easily
verified inserting the Hamiltonian (25) in the canonical equations (26) that these equations are just a
short-hand notation for the ray tracing equations (16).

5. REDUCED RAY TRACING SYSTEMS

We remarked above that the standard ray tracing system (16) contains only five independent
equations because p has to satisfy the eikonal equation Ip|l? = ©?. In addition to this, the ray
parameter s is not really independent and may also be eliminated taking any of the g or p coordinates
as the independent variable. The new ray tracing system will contain only four equations . The best
way to implement this reduction of the ray tracing equations is to use the Hamiltonian formulation.
In fact, if we redefine the Hamiltonian in any convenient way that satisfies the eikonal equation we
can new ray tracing equations using the canonical equations (26). We will present two examples of
reduction for the two most frequently used coordinate systems: cartesian coordinales in this section,

and ray centered coordinates in the following.

In most ray tracing problems in the Earth it is natural to consider ray tracing as a function of
depth. This is always done in the case of vertically varying media (see e.g. Bullen and Bolt, 1986)
where the ray tracing equations reduce to only 2 equations because the ray is contained in a plane
through the source and the observer. In this section we will consider that the vertical coordinate z is

used as an independent parameter. In this case we define a reduced Hamillonian:

H"(qsp1z):_p2 :_VUZ(QJZ)_I)Q (27)

where ¢ stands for the two dimensional position vector q = (z,y) and p for the two-dimensional
conjugate momentum p = (p;,p,). The reduced Hamiltonian (27) was obtained solving for p, from
the original Hamiltonian (25). Thus, the complete slowness vector (P, Py, p.) still satisfies the eikonal
equation. The reduced Hamiltonian (27} contains the same information as (25), but it depends on
only four variables. This apparent simplicity is offset by the fact that H. depends on tne independent

variable z. Inserting (27) in the canonical ray tracing equations (26) we find cxplicitly:

dr  p

dz ~ p,

Qv _py

dz  p,

dp: Ou l )
dp, Ou l

ds  dyp.

where p, is given by (27). This form of the ray tracing system is entirel equivalent to (15). One

may at first sight think that it is casier to solve (28) in order to trace rays in cartesian coordinates.
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This is not necessarily so because solutions to (28) may be multiple-valued. This is typically the
case in seismology where rays penetrate to a maximum depth and then return to the surface. At
the maximum depth, is not defined, or equivalently p, = 0 , so that special care must be taken to

integrate (28) across this point.
6. RAY CENTERED COORDINATES.

In the course of the study of rays in a multimirrored resonator Popov (1969}, see also Babich and
Buldyrev (1972), introduced an orthogonal curvilinear coordinate system centered around a reference
curve. Later, Popov and Psencik (1978), Psencik (1979), Cerveny and Hron (1980, among many
others, found that this coordinate system centered around a reference ray was very convenient to
calculate geometrical spreading. The procedure to calculate geometrical spreading by this method
is usually called dynamical ray tracing. The ray centered coordinate system was also found to be
usefull for the development of paraxial ray theory and one of its main applications: the calculation
of Gaussian beams (see, e.g. Cerveny, Klimes and Psencik, 1984; Madariaga, 1984; Klimes, 1984;
Cerveny, 1985). Recently, Farra and Madariaga (1987) showed that this coordinate system is also
very convenient for the calculation of ray perturbations and the modeling of slightly heterogeneous

media. The ray centered coordinate system will be discussed in some detail in the following.

Refering to figure 4, we consider a curve parameterized by the curvilinear abeissa s. Around
this curve we generate an orthogonal coordinate system (s,q) where q is the position vector on a
plane orthogonal to the ray. This coordinate system is regular in the vicinity of any curve with finite
curvature. The system becomes double valued once the distance to the reference curve is greater or
equal than the radius of curvature of the reference curve. The system is chosen so that it is cartesian

in the plane (q;, g2} normal to the curve. In this system of coordinates, the slowness vector p 1s given

by:

ae ae a6
=vo=hLe+ L+ & 29
p=V 3t aqlel+ 3" (29)

where the e; are the unit vectors in the plane perpendicular to the curve, ¢ is the tangent to the curve,
and h, is the scale factor of the curvilinear coordinate s. The scale factor ki, takes into acount the

curvature & of the reference curve, and is given by:

hy(s,q)=1-«(s)n-q

where n is the normal to the curve.

Let us introduce the components of the slowness vector in the piane perpendicular to the reference

curve. From (29) we get:
o0 86

= — = — 30
m N P2 042 ( )

In the nomenclature of Hamiltonian theory, these two components of the slowness vector are the
momenta conjugate to the position vectors q; and g». A four dimensional vector (qi,¢2, p1,P2)
completely defines the trajectory of a ray in the four-dimensional phase space of position and slowness.

Following Popov and Psencik (1978, eq. 3.14) we define the reduced Hamiltonian in this phase space

Hy{q,p,s) = —h,/u?(s,q) — p* (31)

as !
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where as in the case of cartesian coordinates of the previous section, H, is the negative component of
the slowness along the curve, i. .. Ps = —H,, as may be easily verified by reference to (29). Inserting
this Hamiltonian in the canonjcal ray tracing equations (26) we find the ray tracing system in curve

centered coordinates:

d
o P (32)

ds 7/ —ipfi2

i—‘: - w,ﬁ + Vrh, /it —ip|12
where Vr denotes the gradient on the (91, ¢2) plane. Cerveny and Psencik (1979) derived an equivalent
expression by a more complex method. As long as the trajectory q(s), p(s) does not deviate beyond
the evolute of the reference curve, the system (32) is regular and rays may be traced by numerical
integration. As will be shown bellow the ray tracing system (32) is always linearized in order o
perform paraxial ray tracing. I am not aware of any examples of ray tracing using the full non-linear

system {32) although it may be convenient in the ray bending and continuity methods.

Th= ray tracing system (32) was derived for any reference curve. One particular curve of interest is
a ray that has been previously traced by some numerical method. In this case we define the coordinate
system around this reference ray as shown in Figure 4. Rays have some particular properties that
simplify the calculation of A,. The curvature of a ray is given by (17). This may be used to simplify

the expression for the scale factor. Since qg-t=10,
hy, =1 —ulq- Vu,
an expression that was derived by Popov and Psencik (1978).
7. PARAXIAL RAY THEORY

The solution of two-point ray tracing, the calculation of Geometrical spreading, Gaussian beams,
ete. become much simpler using the so-called paraxial ray theory, which is just a particular apphication
of perturbation theory to the ray tracing equations. We define paraxial rays (sce Figure 5) as those
rays that propagate in the vicinity of another ray that is taken as a reference. Suppose that we have
succeded in tracing a ray in a medium of slowness u(x}. We denote by [x0(5), pols)] the trajectory
as a function of s of this ray in phase space. In generalized coordinates this trajectory is written
vo(s) = [qo(s), po(s)], where gg represents the generalized position coordinates,py the generalized
slownesses, and gy, is the canonical vector, a vector in phase space. Because of the generality of
Hamilton’s theory we will derive the paraxial ray equations in generalized coordinates. Results for
particular coordinates systems may be determined by straightforward operations, A paraxial ray is

described by a perturbation of the ray trajectory in phase space:

q(s) = qo{s) + éq(s)  p(s) = po(s) + 6p(s) (33}

Tracing paraxial rays consists in finding the canonical perturbation vector [09,6p] in phase space.
These perturbations in the trajectory are due to small changes in the initial conditions of the ray at

the initial point of the ray s;. Let

bq(s0) =895 and  &p(sq) = épo (34)
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be the perturbations in initial conditions. Inserting the perturbation vectors (33), into> the canonical
ray tracing equations (20) and developing to first order we find the following linear system for the

calculation of paraxial rays:
dsq _ O°H . OH
ds ~ Opdq 1 ap2 P
dép 8 H aH
= = Gt a-tp
ds Hg? Opdyq

(35)

where all the derivatives of the Hamiltonian are calculated on the reference ray.

In order to find the paraxial ray trajectories the linear system (35) has to be solved numerically
together with the ray tracing system. Let us note however that since the system is linear all the paraxial
rays in the neighborhood of a certain reference ray may be computed by simple linear operations. In

order to see this we write the solution of (35) in the form of a propagator matrix (see, for instance,

Gilbert and Backus , 1966):
bq bqo
= P(s, 36
(ép) (5:50) (5Po) (36)

where P(s, s0) is the paraxial ray propagator from s to sq of the paraxial rays. This propagator has a
number of very useful properties, the most irnportant for us is that it may be easily inverted. Given
then the initial perturbations of position and slowness at sy, and knowing the propagator, the later
position and slowness of the paraxial ray are entirely determined by {36). The paraxial approximation
remains valid as long as the perturbation vector is small. The vahidity of this approximation is

unfortunately very difficult to establish in the general case of a heterogeneous reference medium.
7.1 BEAMS

The elements of the propagator P have a relatively simple physical interpretation if we introduce
the concept of a beamn. We define a beam as a one parameter family of paraxial rays such that the
perturbed initial conditions are related by:

[40] = €[po] (37)

where ¢ is a complex scalar that defines the shape of the beam. The scalar ¢ may be replaced by a

constant complex matrix, but we will not discuss this possibility since we will not use it here.

Let us introduce the following partition of the propagator matrix:

pesa= (1)

where, depending on the number of dimensions, @; and P; are submatrices or scalars. [nserting (37)
and (38) into equation (36) we find the following solution for individual paraxial rays in a beam of

parameter €:
bq = (eQ1 + Q2)épo = (Q1 +e—1Q4)d¢0 (39)6p = (ep1 + Po)épg = (P + e—1P)bqo
so that, finally, we may write ép = M(s, 50)8q, where matrix M is

M(s, 50) = (eP1 + Pa)(cQ1 + Qa) ™! (40)
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This matrix is also the tensor of second order derivatives of the travel time function # as will
be demonstrated bellow. From (37) we observe that the initial value of this matrix is simply

M(sg,s0) = €I, where I is the identity matrix.

The shape of a beam is controlled by ¢. Two exireme values of ¢ give simple fundamental ray
beams. For ¢ = 0 we get a point source since all the rays in the beam leave from the same point in
space go with slightly different values of p(sg). The set of paraxial rays forms a solid angle at the
source. This corresponds to the point source (see figure 6a). On the other hand, when ¢ = oo, 6py = 0
in (37), so that all the paraxial rays share the same initial slowness vector, but leave from slightly
different positions g(sg) = go + 6¢(s0) in space. The geometry of the beam with € = oo depends on
the coordinate system under consideration (Madariaga, 1984). For cartesian coordinates the paraxial
rays form what is sometimes called a Snell-wave, i.e. as shown in Figure 6b a wave such that all the
rays make a constant angle with respect to the (z,y) coordinate plane. In ray-centered coordinates,
the ¢ = oo beam corresponds, as shown in figure 6¢, to an initially plane wave. As we mentionned
before, complex values of € are legitimate provided that the corresponding travel times satisfy causality
conditions. This occurs for Im € < 0, in which case we get Gaussian beams as will be shown bellow.

Now that we have traced a bearn and its paraxial rays we have to calculate their travel times for

the paraxials. This is conveniently done using the curvilinear integral (21). We first write :
Ola(sa) qls1)] = bulso, 51] + 860 + 66 (42)

where 8 is the travel time along the central ray from go(sc) to qo(sy) and 66y and 86, are the travel
time perturbations at the initial and final point, respectively. From {21) the end point perturbations

are simply:
5
89 = f g(po + 6p) - déq (43)
¢
Replacing the relation ép = Méq in (43) and integrating we get:

66 = po - bq + 1/26q"Méq (44)

This is the second order Taylor expansion of the travel time 6 around the central ray. From (44) we
observe that M = VrV¢0 | so that M is the tensor of second order derivatives of the travel time with
respect to the (g, q2) variables. The second order terms are needed in the generation of Gaussian
beams and in paraxial approximations to the caleulation of synthetic seismograms. In most of the

following discussion we will consider point sources so that 66 in (42) will be zero.
GEOMETRICAL SPREADING OF A BEAM

Finally, in order to actually compute the ray amplitudes we need to calculate geometrical
spreading J. Iollowing Figure 7, we consider an clementary cross section of the beam at sy and
from each point on this cross section we trace a paraxial ray. As the beam propagates, the paraxial
rays may contract or dilate, so that the beam cross section at the end poini s is a measure of the
geometrical spreading. Consider as in Figure 7 two distinct paraxial rays denoted by their paraxial
position vectors é¢; and d¢;. At any point s along the beam, the cross section of the beam described

by these paraxials and the central beam is:

dS(s) = (bq1 x bq) - t (45)
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where t is tangent to the ray. Let dS(sg} be the initial beam cross-section at position sp along the
central ray (see fig. 5). We can follow the change in cross section as a function of s, tracing the
paraxial rays by means of the paraxial ray equations (39). At the curvilinear abcissz. s the paraxial

position vectors ¢, and &gz are given by:

61(5) = (@1 + €' Q2)bq1(s0)  bqa(s) = (Q1 + €' Q2)6g2(s0) (46)

where as usual ¢ is the beam parameter. Replacing these vectors in (43) we can find the cross section

dS at abcissa s:
dS(s) = Det(Q; + €71 Q2) cos ¢|6q1{s0)i1642(s0)| (47)

where ¢ is the angle between the normal to the plane defined by the vectors §g; and 8¢2 and the
tangent to the ray. Comparing (47) with the corresponding expression for the cross-section at the

initial coordinate sq, we get:

Cos

cosdo

dS(s) = Det(Q1 + ¢ 1Q2) dS(s0) (48)
finally we use the very well known result that the geometrical spreading J is just the ratio of the cross

section of the beam at s to the initial cross section:

cosg

J(S, SU) = DEt(Q] + 5'*1Q2)Cos¢0

(49)

This is a general expression for J that is independent of the coordinate system used to trace the rays.

Let us remark that the minors Det@; and DetQ2 of the propagator matrix P have a clear physical
meaning. Det Q; measures the geometrical spreading of a plane or Snell wave because in this case
€ = co. For a point source, € — 0, and J defined as in (49) becomes singular. For point sources we

redefine J so that:
cos¢

cos¢p

J= limg_.()% = DEtQQ (50)

This expression permits to calculate geometrical spreading for point sources from the propagator for
paraxial rays. This method of calculating J is more stable than the more traditional one that consists

in tracing several rays around the central ray, and calculating J by the ratio of cross sections.

Let us conclude this section by remarking that our derivation of the paraxial ray equations, the
travel time perturbation and geometrical spreading are independent of the coordinat~ system used to
trace the rays. It is equally valid for the original ray tracing system (16) as well as for the reduced

ray tracing systems (28} in cartesian coordinates, or (32) in ray centered coordinates.
8. RAY CENTERED COORDINATES AND DYNAMIC RAY TRACING.

'The expressions derived in the previous section for paraxial rays are much simpler in ray centered
coordinates, which were the coordinates used by Popov and Psencik (1978) in their derivation of
dynamic ray tracing. In ray centered coordinates the central ray is simply given by qp = pg = 0,
since the reference ray is the origin of the coordinates q andp. Thus in this coordinate system the
paraxial ray coordinates (33) have the simple expressions q(s) = 8q(s) and p(s) = ép(s). Ray tracing
of paraxial rays may actually be performed exactly using the nonlinear system (33). In (33) there

i no approximation in the region where the ray centered coordinate system 1s regular, i.e. inside a
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region limited by the smallest radius of curvature of the ray. In the paraxial approximation, where
6q and ép are considered to be first order perturbations, we use the system (35) which is obtained by
linearization of (32). In ray centered coordinates 9?H[0q8p = 0, so that (35) simplifies to:

%(! = u"E5p (51)%6_,E = —u?Véq

where V is the matrix of second order derivatives of the velocity field with respect to the ray centered
coordinates g;:

8%
0q:0q;
This expression was originally derived by Popov and Psencik {1978) from the Ricatti equation for the
wavefront curvature. Qur derivation shows that (51) is just a particular application of the general

paraxial ray approximation (35) to ray centered coordinates.

V=(uil owith V= (52)

For a heterogeneous distribution of velocity, the numerical solution of equation (51) can be
obtained simultaneously with the solution of the ray tracing equations (16). The only difficulty is
in the calculation of the matrix of second order derivatives of the velocity in (52). This requires that
velocities be interpolated with continuons second order derivatives. Local or global cubic splines are
the preferred method for tnterpolating the velocity field with this condition.

The dynamic ray tracing or paraxial system in ray-cetitered coordinates may be integrated and

the solution expressed as before in terms of a propagator matrix:

¢ 1’1)
y 2
\ Q? P?
where the submatrices @, P, are the propagators for "plane wave” initial conditions, while @5, P,
are the propagators for a point source. Most of the other resuits obtained in the previous section
apply with some slight modification to ray centered coordinates. The most important result is that
the travel time of a paraxial ray is given by

(s, éq) = 6(s,0) + 1/26q" Méq {53)

where (s,0) is the travel time along the central ray. Compared to the general expression (44) the
linear term in 6q has disappeared because in ray centered coordinates éq is by definition perpendicular
to py, which is parallel to the ray tangent. Looking at (53) we realize that the matrix M has a clear
physical meaning: it is the CGaussian curvature matrix of the wave front (s, 5¢) = constant. Matrix
M may be diagonalized in order to find the two principal radii of ecurvature of the wavefront. In
two dimensions, M is scalar and is simply the curvalure of the wavefront. The form (53) is a local
paraboloidal approximation to the wavefront = constant, for this reason Cerveny, Popov and Psencik
(1982) called it the parabolic approximation. In fact in order to derive the paraxial approximation
they incorporated the parabolic approximation directly into the ray ansatz (1) and then derived the
equations for ¢ and ép from the wave equation. In our opinion, the method used here is simpler and

has a clearer physical meaning.

Finally, geometrical spreading J is given by either {46} or (47) with cos ¢ = cosgy = 1, since for
ray centered coordinates the normal to the coordinate plane q is always parallel to the local tangent
to the ray t. Thus once the paraxial ray tracing propagator P has been calculated, travel times,
geometrical spreading, etc are easily calculated in ray centered coordinates.
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9. SEISMIC SOQURCES

The last element that we need to calculate ray theoretical seismograms using the frequency domain
expression (3) or its time domain counterpart (5) is the vector amplitude A and the source function
s(w). We write the excitation of P and S waves in the following form (Madariaga, 1982): For P waves:

1
= = Mgrgr(t 54
Ay t41rpoa3 s(t) rr(t) (54)

For S-waves: .
Ay = ".]—————41“()00::a S(t) = MRq(t) (55)

Where t is the vector tangent to the ray at the observation point, and M(t) is the moment rate tensor,
Mgpg 1s the radial component of the moment tensor in local spherical coordinates around the source.
Similarly Mg, is the tangent component of the moment tensor in spherical coordinates projected on
a plane perpendicular to the take off direction of the ray. Let to be the tangent to the ray at the
source, then the projection of M on the plane perpendicular to tq is:

M - to = Mguto + Mreqo

where qg the unit vector in the direction of tg x (M - tg). This unit vector points in the direction of
the shear component of M - ty. With this notation for the components of the moment tensor used in
(45), the source time functions may be rewritten as:

Mgr =1t Mg - tg
MRq:(I'MO‘tD

Vector q is the polarisation vector for the S-wave, it may be obtained by propagation of the unit vector
qo- 'The expressions in (54) permit to caiculate ray amplitudes in any elastic medium where the ray
tracing problem has been solved. The calculation of synthetic seismograms of far field body waves for
the study of source processes are one example of the use of ray synthetics in practical applications.
Calculation by ray theory is limited to rays that penetrate into the lower mantle, otherwise we would
have to deal with triplications and caustics due to the upper mantle discontinuities. For this reason
classical ray theory is limited to the calculation of synthetics in the range from 30° to 90°. At shorter
distances WKB (Chapman, 1978) or Gaussian beam summation (Madariaga and Papadimitriou, 1985)
provide a practical method to calculate synthetics. This kind of synthetic selsimogram is widely used

in order to study fault mechanisms and the distribution of asperities on the faults.
10. SPECTRAL METHODS.

The methods we have described so far are all based on the direci use of the ray theoretical
expression (3). This expression becomes singular or unstable under many practical circumstances.
For instance, as shown on Figure 8, in the vicinity of the caustic the geometrical spreading function
J tends to zero and changes sign once the rays have crossed the caustic. Near a caustic, ray theory
predicts infinite amplitude although we know that in reality amplitudes are finite around the caustic.
"This failure of ray theory comes from its inability to deal with finite frequency phenomena. Another
problem, also illustrated in Figure 8 is the extreme sensitivity of ray theory to small local perturbations

in the slowness field. This problem is due again to the assumption that frequency is infinite. At finite
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frequencies, small discontinuities shoulfd only affect waves with a wavelength that is similar or shorter
than the dominant wavelength of the diffracting object. At low frequencies, when the wavelength is
longer than the characteristic size of the heterogeneity, the efect of the perturbation is to generate weak
Rayleigh scattering, but the travel times, geometrical spreading, of the rays should not be severely
affected. Spectral methods provide a partial solution to this problem without loosing the physical

appeal and simplicity of ray theory.

In a spectral method, the field is not calculated directly from (3) but from a sum of beams of the
form (3). We say that the elastic wave field is projected from configuration space into a base of beams
with variable ray parameter. The best known of these methods is WKB for vertically heterogeneous
media. In this method, originally developped in cartesian coordinates, the source is developped into a
sum of Snell-waves (see figure 6b), then each Snell-wave is propagated independently and a seismogram
is calculated summing all the propagated Snell waves. This process is illustrated in Figure 9. Since a
setsmogram is calculated evaluating a sum of beams, it is much easier to control the frequency contents
of the final synthetic. Also, the problem with caustics is partially suppressed because the Snell waves
usually behave regularly near caustics in configuration space. Unfortunately, caustics may also appear
in the individual Snell waves and may render the calculation unstable. Appropriate combination of
both classical ray theory and WKB seem to be the best answer to problems with the stability of the
ray field.

Another method that has appeared relatively recently in the literature is the Gaussian beam
summation method. Just as with WKB, the source is expanded into a series of Gaussian beams
each of which is propagated independently. A synthetic is caleulated by the summation or stacking
of individually propagated Gaussian beams. The method is very similar to WKB, but presents the
additional advantage that Gaussian beams do not have caustics and may be calculated everywhere.

In the folowing we will briefly discuss these two methods.
11. THE WKB METHOD

The WKB method introduced by Chapman (1978) is probably the most widely used method
for the calculation of high frequency synthetic seismograms. Derived originally only for vertically
heterogeneous media, it was later extended to media with arbitrary heterogeneity (Chapman and
Drummeond, 1982). Its main limitation is that of ray theory: the heterogeneity of the medium should
be smooth in comparison to the wavelength under consideration. For simplicity of the exposition we
will develop the WKB method in a two dimensional medium, the three dimensional case is treated
by Chapman (1978). The starting point for the WKB method is Weyl’s integral in two dimensions or
the Sommerfeld integral in three dimensions. In order to simplify the presentation we consider a line
source in a homogeneous medium as a model problem. P wave radiation from this source is written

in the form of a Green function:
1 .
g(x, 1) = s Ag(t = x*/c) TP H(L — |Ix||/c) (57)

where ¢ = u—1 is the constant velocity of the medium. x is the position of the observer with respect
to the source, and the vector amplitude A, is parallel to the radial vector x, its scalar value depends
on the source under consideration, and will be discussed later. The two dimensional Green function

(57) has the classical inverse square-root singularity at the wave front. Its time Fourier transform is:

B(x,00) = i/4A0 H{  (w|x]|/c) (58)
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where 7 is the imaginary unit. The Fourier transform in (58) is defined as in (4). The Green functions
(57) and (58) are exact. In order to compare these solutions with ray theory we have to calculate

their high frequency approximation. Using the symptotic expansion of the Hankel function, we get:

1/2 _
g{x,w) = 1/4wA, [” ”] Aw)e*?a (59)
where the source function i/
Aw) = [g] e/ (60)

is the Fourier transform of the inverse square root pulse:
At) =72 H(1) (61)
The travel time is
B2 = x/c (62)

and comparing with (3) we observe that the geometrical spreading
Ja = ||x|} (63)

In (61} and (62) a subindex 2 has been added to  and J, in order to indicate that this is for
two dimensional propagation. With these definitions we observe that (59) is in the form of the ray
theoretical approximation (3) if in the latter we assume that the medium is homogeneous. The source
function s(w) in (2) has been replaced in (59) by AMw). We can calculate the time domain inverse of
(59) using (7). Since all the amplitude terms in (59) are real we get:

REL
1) = =40 | 2| ae-a) (64)

with 8 and J, given by (62) and (63).

This completes the demonstration that ray theory in a homogeneous medium is icentical to high
frequency asymptotics. In quantum mechanics these high frequency methods are usually designated
WKB approximations (see also Bleistein, 1984).

The spectral decomposition of (58) into plane waves is very well known and will be the starting

point for our development of the WKB method. By means of Weyl’s integral we can write (58) for
z > 0 in the form:

u{x,w) = ﬁ/ Aoei‘”(”r+”")dp/q (65)

for w > 0. The integral representation (65) is in fact the Fourier transform with respect to z of the
Green function (59). Equation (65) may be rewritten in order to show that it is in fact a superposition

of plane waves. Let us define position and slowness as usual:
x=(z,z2) and p=(p,q) (66)
Because of the eikonal equation, |{p|} = ¢—1, so that ¢ is not independent of p and may be written;

=(c?=p")"Y?  with  lm(g) >0 (67)
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Finally following the definitions in Figure 10, we can change the integration variable in (3) to the take

off angle ¢ defined by

_ singyg _ Cosgg
p= g = 00 (68)

where the angle ¢y should be taken along the countour £ in the complex ¢ plane shown in Figure
I1. This contour is the mapping of Real p axis into the complex ¢¢ plane. We then rewrite (65) in
the form:

glx,w) = :;;/;: Apc“Padg, (69)

where 13 = p - x is the travel time from the origin to the current point x of a plane wave that leaves

the origin in the direction p. (69) is plainly a sum of plane waves of amplitude i/47 Ay and phase 0,.

The plane wave decomposition provides an alternative way to calculate synthetic seismograms.
A problem with it is the presence of inhomogeneous waves. The two vertical branches of £ shown in
figure 11, represent inhomogeneous plane waves that propagate horizontally along the z = 0 line and
decrease exponentially with depth. These waves contribute to the near field of the Green function
(57) and may be neglected as long as the observer is not too close to the x axis. In order to see this
we remark that in the far field when |x|| >> 0, the main contribution to the integral (69) comes from
the vicinity of the stationary phase point:
M =c"}zcos ¢g — ysin do) =0 (70)
d¢a
Let us call ¢4 the value of the angle ¢p at the stationary point, salving (70) we find ¢ =
atan{z/y). ¢ is just the take-off angle of the ray that joins the source to the observation point x.
Using the stationary phase approximation in the spectral integral (69), we obtain the ray theoretical
solution (64). Thus a simple guess is that most of the contribution to a seismogram calculated using
(69) will come from take off angles ¢, close to $¢. For this reason we restrict our integral to the real
axis —m/2 < ¢o < 7/2 and calculate the time domain transform of (69). Let us consider an individual
plane wave in (69):

) .
= ~— Agetvialdo) 71
g(x!w) . 0t ( )

This plane wave may be transformed into the time domain using (d}:

g(x,t) = Z?%AURQ L _l 2] (72)

We observe that the plane waves that are used to generate a synthetic seismogram by the sum (69),
present a non causal behavicur. In fact the time signal in (72) is the Hilbert transform of a delta

function.

Using the Fourier transform (72} in the sum (69) we get. the WKB approximation to the Green

1 1
glx,t) = 77 Re {/c t__"g‘md%J (73)

This way of calculating the synthetics, doing first the time Fourier transform and later the sum over
the take off angle was introduced by Chapman (1984} and is the basis of the succes of the WKB

and the Gaussian beam summation method. As long as the inverse Fouricr transform {72) of the

function:

individual plane wave can be computed exactly, the plane wave sum can be easily computed. Let us
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finally remark that evaluating the integral (73) is not straightforward because of the singularity that

occurs when £ = 8.

This problem may be avoided by several different approximations described by Chapman (1984).
In the following and by analogy with Gaussian beams we will use the method we proposed in (5),
i.e. we add a small Imaginary part iAt to the plane wave phase # . The resulting Green function,
see Figure 11, is smoothed but the smoothing is perfectly compatible with the discretization path At.
More serious is the problem with the cut off phases indicated also in figure 11. These phases that
arrive before the geometrical onset of the Green function are due to the limitation of the integral (73)
to a segment of the real axis. This problems comes from the fact that all plane waves contribute with
the same amplitude to the WKB synthetic calculated using (73). Thus the arrest of “he integration
at a certain angle ¢, produces a rather large effect on the integral. One of the possible ways to reduce
the effect of these cut off phases is to filter the integral near the ends of the integration range, this
may be done by simple tapering of the amplitudes Ay or by more sophisticated techniques. Another

possibility is to replace the plane waves by Gaussian beams as will be shown in the next section.

The generation of the Green function (57) by the sum of plane waves is quite curious. The
individual waves that are summed in (73) have their peak amplitude near t = §;. Thus the contribution
of each plane wave in the sum will be concentrated around 6. But fly varies as a function of ¢p in
such a way that it it has maximum at ¢ = ¢4, the stationary phase point already calculated above.

Thus the maximum contribution of each plane wave occurs before the geometrical arrival time!

The WKB method can be easily extended to vertically heterogeneous media fo: which it was
originally proposed by Chapman. It may also be applied in laterally heterogeneous media where
Chapman prefers to call it the Maslov method, because in laterally heterogeneous media the plane
wave decomposition (65) is only asymptotically valid. However, since the same asymptotic methods
are used to write the propagation of the individual "plane” waves as to find the asymptotic Fourier
transform it is preferable to present the Maslov-WKB method as a simple extension of the plane wave

decomposition discussed above. This will be developped in the final version of the paper.
11. GATVJSSIAN BEAMS

As we mentioned above, one of the main problems with the calculation of the plane wave sum
(73) is the spurious cut off phases that appear when the integral is limited to a finite segment of ¢.
One succesful method for reducing the influence of these cut off phases is to u-» Gaussian beams.
Before introducing Gaussian beams we must rewrite the plane wave (70) as a beam. Refering to figure
11 we note that this expression may be rewritten in terms of the distance s along the ray leaving the
origin in the direction ¢¢. This ray plays the role of the central ray in the paraxial theory presented

in section 8. We can rewrite @5 in the simple form:
fr = s/c (76)

which is the travel time of the plane wave that passes through x. s is the distance along the central
ray and plays the role of the independent parameter s in ray theory., The set of rays associated with
this plane wave are parallel to the central axis. In the vicimty of the central ray we define the paraxial
zone. In this zone the ray centered coordinates of a paraxial ray is simply 6g = é¢q, ép = épy = 0

wich states the trivial fact that paraxial rays are parallel to the central ray. With ressect to the the
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paraxial theory developped above we observe that the plane waves that are used in the WKB integral
form what we called a plane beam. Since the medium is homogeneous the plane beam remains plane

as it propagates away from the source.

In Gaussian beam summation we replace the plane beams of the WKB method by Gaussian
beams. In order to construct Gaussian beams we slightly perturb the plane beam introducing a small

complex part in py. Refering to (31) in section 7 we take:
dpo = e—1d8qy = i68qq (77)

The small parameter § produces a fanning of the plane plane wave. For real ¢ the plane wavefront
deforms into a parabolic front and the paraxial rays tend to move away from the central ray. Let us
demonstrate this: (77) gives the initial conditions for the tracing of the paraxial ray that leaves the
source plane at a distance 8qq from the origin (see Figure 12). We can then trace this paraxial ray
with the help of the paraxial propagator {32). In a homogeneous medium this propagator takes the

simnple form:

1 -
Pls,so) = 7% (78)
0 I
so that the paraxial ray is given by (33):
b = (14 e e(s — 50)]6q0 and 6p = ¢ Logy = bpy (79)

Thus the paraxial ray is a straight line as one expects for a homogeneous medium, but the direction
of the ray differs from that of the central ray. Finally we can compute the travel time ¢ along the
perturbed beam:

0, = % + -;—M §q° (80)

where M the curvature of the wavefront is given by

(—1

= ' = 5§ — &g -1
M—m”[f+c( )]

For € > @ the radius of curvature M~! grows with distance from the origin and is zero for a
points — 55 = —¢/c. Thus as shown in figure 12 it appears as if the perturbed beam was coming
from a source situated behind the origin at a distance —¢/c¢ . The paraxial approximation for the
travel time replaces the spherical wavefront emanating from the focus at 2 = —¢/c by a parabolic
wavefront. In this sense the paraxial ray theory is a parabolic approximation to the wave equation. It
differs with respect to the parabolic approximation used applied geophysics (Claerbout, 1985) because

it is also a high frequency approximation.

We can now introduce Gaussian beams, They are directly obtained from the paraxial approxi-
mation {79) replacing € by a large imaginary value. The paraxial rays are complex and the travel time

fl3 is also complex. If we collect the results obtained so far we find that a Gaussian bearn is given by:
) .
glx,w) = 4—.]_1/26“”9"‘9“‘“9‘ (81)
T

where g and 8; denote the real and imaginary part of the travel time (80). For Im ¢ < 0, we can verify
that 9y > 0 and therefore (81) presents a Gaussian amplitude decrease in the direction perpendicular
to the central ray:

o whr _ c—l/?wIm(M)éqa
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so that the Imaginary part of the curvature of the wave front determines the attenuation of the beam

away from the central ray.

The last thing we need to calculate (81) is to determine J, but this is given by (49) for a beam
of arbitrary shape:
J=1+ete(s — s0) {82)

Thus replacing (82) and (80) in (81) and taking sy = 0 we have a simple practical way for
computing a Gaussian beam centered around a ray passing through the source situated at the origin
of coordinates. The calculation of these Gaussian beams is not much more difficult than the calculation
of a plane wave, the only additioan! difficulty is estimating the distance 8¢ from the observation point
to the central ray. This is not difficult to evaluate in the present problem but may be a serious
problem in heterogeneous media. In that case it would be preferable to use cartesian coordinates for

the calculation of Gausian beams. This has been discussed by Madariaga (1990).

We can now replace every plane wave in the WKB integral (73) by its corresponding Gaussian
beam. Since this is being introduce arbitrarily here one could in principle take any suitable value of
¢ for each ray. In practice however, ¢ should be constant for all rays when evaluating the Gaussian

beam sum. We get then

g(x,00) = ﬁ/AOJ“I”e‘””dg‘bg (83)

where J and # are the complex geometrical spreading and travel time determined above. Finally using

(5) we find the time domain Gaussian beam sum:

1 _ 1
g(x,t) = ERG [/ AyJ Uzmdqbg (84)

Gaussian beams synthetics are evaluated discretizing this integral. If one uses the broadening
parameter At introduced in (5) this discretization presents no stability problems. However in more
complex situation one has to insure an appropriate density of rays in order to avoid interference
problems in calculating it. An example of the calculation of a Green function is shown in Figure 13

where it is compared with the equivalent result obtained by plane wave summation {WKB).
Examples

A large number of examples of calculation of theoretical seismograms using classical ray theory
or Gaussian beam summation have appeared in the literature. Among the numerois publications
where the method has been used to generate realistic seismograms we can cite: Cerveny (1985),
Cormier and Spudich (1984), Nowack and Aki (1985), Madariaga and Papadimitriou (1985), etc.
These authors show that the Gaussian beam summation method can be used to solve many of the
problems encountered when using straigtiorward ray theory, without completely loosing the simplicity
and physical appeal of rays. Comparison with finite difference calculations by George et al (1987)
showed that the method works for caustics giving not only the right amplitudes in the illuminated
zone but also on the shadow regions. The same authors showed that edge diffraction and head waves
are difficult if not impossible to model with Gaussian beam summation unless special techniques are
used. Recently, White et al. (1987) made a careful study of the conditions of validity of the sum of
gaussian beams for several simple structural models. We refer the interested reader to these papers for

further information. We conclude presenting with an example of a realistic structure with five discrete
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reflectors presented in Figure 13. At the top of the Figure is a diagram of the model together with an
example of the ray tracing that is needed to obtain good precision in the Gaussian beam summation,
For the construction of the cross section at the bottom we have to calculate a series of reflected
rays from each interface. The presence of small kinks and imperfections in the interfaces creates
numerous caustics which would render impossible to calculate these profiles with classical ray theory.
Gaussian beams on the other hand can smooth these imperfections yielding continuous reflections in
the seismograms presented at the bottom. The calculation was carried o

ut In a minicomputer and
included several thousand rays.
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