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One of the most ptomising recent lines in searching for physical
precursors of earthquakes in seismic-prone regions is active
vibroseismic monitoring. The idea of utilizing artificial vibrational
oscillations in studying slow variations of physical properties of the
geological environment was first put forward by Russian
geophysicists [Alekseev, Nikolaev, Chichinin, 1974], and since
then this idea has been undergoing intensive development both in
Russia and abroad [Clymer, McEvily, 1981].

Among the most significant practical achievements in this field
one should note the recent publication [Karageorgi, Clymer,
McEvily, 19921 concluding a three-year-long study of the variations
. of seismic waves in the region of Parkfield, one of the possible
“focuses of an imminent strong earthquake in California.

Here we won't touch upon technical aspects of the creation of
powerful vibrators, the system control of them as well as recording
and transformation of sweep signals in the impulse form.

I would like to say that the most powerful in the world seismic
vibrators and, also, the unique recording and analyzing equipment
we have developed on the test site near Novosibirsk.

The experiments carried out on this test site demonstrate a high
degree of coincidence between the repeated vibro-effect events at
distances over 300 km. Let us note that a sweep-signal was within
the frequency band 0.5-7 Hz Thus, using the vibroseismic
rionitoring it is possible to study time-dependent variations of the
tensely-deformed state of rocks in seismic-prone regions.

However, here arises a question: What sort of variations in the
cynamic characteristics of seismic waves can Serve as precursors of
the possible earthquake?

At the present time, a certain number of the earthquake
precursors are known. For example, a change in the velocity ratio of

- and S- waves in the seismic-prone zone a few months before the
earthquake; rotation of compression axes in this zone, as well as
changes in the electroconductivity of the medium, and so on, The
above-mentioned and other effects can be explained in terms of
cilatancy of rocks. As known, the dilatancy means a nonelastic
increase of the volume of rocks due to the appearance of cracks and
their growth. In this case, the rock becomes anisotropic, and we
ceal with the so-called extensive-dilatancy anisotropy. We'll take
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tais physical model as a basis for construction of a mathematical
rmodel.

As you can find in a number of theoretical papers [Hoening
(1979), Hudson (1980), Nishizawa (1982), Thomsen (1988)], a
medium containing aligned allipsoidal cracks can be replaced by a
Fomogeneous transversely isotropic medium.

The transverse isotropy is a special case of anisotropy and is
cescribed by five independent elastic constants, whereas
anisotropy, in general, is described by up to 21 independent
constants. A medium having an axis of rotational symmetry, which
may be oriented in any direction, show a transverse isotropy. If this
~ axis is not vertical, this type of anisotropy is called the "azimuthal
~anisotropy". This kind of anisotropy is described by the system of
elastic equations for the anisotropical model.

Now, we must calculate these efficient modules so as to take
into account orientation and density of cracks, aspect ratio of the
cracks, changes of the crack-fluid content.

Several theories have been developed to calculate the effective
clastic constants of media containing aligned ellipsoidal cracks
[Nishizawa (1982), Hudson (1980, 1981)]. They are all based on
tae scattering of waves at the cracks. These theories have been used
to analyze the wave propagation in cracked media and to explain
the observed anisotropy. The basic assumptions of these theories
are that the dimensions of the cracks are smalil with respect to the
seismic wavelength, the cracks are in the dilute concentration and
kave small aspect ratios. Here we mean the ratio between the length
of an ellipsoidal crack and its width. The physical model study
shows a good coincidence of experimental results with theoretical
conclusions according to the Hudson model [Assad and
etc.(1993)].

A theory that is valid for large concentrations of cracks has been
proposed by Thomsen (1988) and is based on the work by Hoenig
(1979).

Let us consider the physical model of a crack medium that was
submitted by Hoenig (1979). It is the planar transverse isotropy in
which the cracks are randomly distributed in the plane parallel to

the plane YOX



Physical Model
of Crack - Induced Anisotropy
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Vp = 2000 mfsec
Vs = 1200 mfsec

¥p=3000 mjsec e = 0.05
Vs = 1700m{sec cla = [y]i
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Ray indic. compr. fluid = 1
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free boundary

Y 3-D MODELING IN ANISOTROPIC MEDIUM

Model of the medium

Cyq = 11.7-101Odyne/cm2
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free boundary

Fig. Snapshots of the vertical plane (@ = 80°) of three
displacement components at the fixed moment of time
for the anisotropic model of the medium.



