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Site effects on strong ground motion

FRANCISO J. SANCHEZ-SESMA

Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Apdo.

70472, Covoacan 04310, Mexico, D.F. Mexico

A review of some of the available methods 10 study th

e effects of site conditions on strong ground

motion is presented. The need of unified treatment of source, path and side effects in the

assessment of seismic risk is pointed out
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ENTRODUCTION

[t has long been recognized that site effects can
significantly affect the nature of strong ground motion. [n
some situations, ground motion amplification can
adequately be inferred using stmple one-dimensional
models. However, due to lateral vanations, the problem
must be dealt with as a spatial phenomenon.

Local conditions can generate large amptifications and
importanl spatial variations of seismic ground motion.
These effects are of particular significance in the
assessment of seismic risk, in studies of microzonation, in
planning and in the seismic design of important facilties
{Esteva, 1977, Ruiz, 1977). 1n particular, local
irregularities can be relevant in calculating the seismic
response of long structures (see Fig. 1) like dams. bridges
or life-line systems (e.g., Esquivel and Sanchez-Sesma,
1980; Ruiz and Esteva, 198!).

The effect of soil conditions in ground motion has been
observed in well-documented earthquakes {Sozen et af
1968, Jeanings. 1971)and in regression analyses of strong
motion data. For instance. there is significant evidence
that subsurface 1opography. ie., lateral heterogeneities; are
related to localized damage distribution in the Skopie,
Yugoslavia earthquake of July 26, 1963 ( Poceski. 1069). It
has been suggested that focusing of the wave energy, by
irregular interfaces, generated large motion amplification
in limited zones of the city tJackson, 1971). The same can
be said of the recent destructive Michoacan earthquake of
September 19, 1985. In this case the combination of site
effects with a continuous flux of energy from a distant
source was of disastrous consequences in Mexico City.
The phenomenon of local amplification in sedimentary
basins has been related to the formation of caustics Rial,
1984). Damage statsitics of buried utility pipes in the
Miyagiken-Oki, Japan earthquake of June 12, 1978 have
shown spectacular increase in the number of occurred
failures near the cut-and-fill boundary of a newly
developed area (Kubo and Isoyama, 1980). Such damage
has been associated with failures of the ground (Irikura,
personal communication).

Topographical effects have been invoked to explain the
high acceleration recorded at the Pacoima Dam (1.25 g)
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during the San Fernando, California earthquake of
February 9. 1971 {Trifunac and Hudson, 1971, Boore.
1973). For the aftershocks of the same earthquake, Davis
and West (1973) in a series of observations have found
significative local amplifications due to topographical
relef. {n a field study in the Appalachian Mountains using
distant mine blasts as sources, average amplitude ratios
between mountain top and valley sites were determined
(Griffiths and Bollinger, 1979). These average ratios
showed that the seismic wave amplitudes at the crests
were amplified by factors from 1.7 to 3.4. In Fig. 2 three
seismograms for the same event in the Powell Mountain

.area are shown. The positions of recording sites are also

displayed in the figure. Dealing ‘with  destructive
earthquakes, evidence shows that damaging effects tend
to increase where steep relief or complicated topography

{a}

Fig. ! Long structures at irregular sites: {a) dam:
(b) bridge: and (c) a lift-line system
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Fig. 2. Seismograms at three stations at the Powell
Mountain urea and location of the recording sites.
Epicentral distance was abowt 30 km. Topographic contour
interval is 200 fr 61 my{After Griffiths und Bollinger. 1979)
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15 present. Recent case histories were offered by the
November 23. 1980 Southern [ltaly earthquake. where
topography related increments of up to 2 degrees in the
MSK intensity scale have been observed (Siro. 1982).

As pointed out by Trifunac (1980). the strong
carthquake shaking of interest in earthquake engineering
falls in the frequency range from about 0.1 Hz to about
20Hz and since the seismic wave velocities near the
earth’s surface lie in the range from about 0.1 km.s to
about 3km s, it can be seen that the corresponding wave
lengths are from tens of meters to tens of kilometers.
Thus. the topographical and geological irregularities of
dimensions near to this range will have considerable
influence on the corresponding waves. It follows that the
extent and detail of local conditions required to study
their effects should be considered in terms of the wave
lengths assoctated with the periods of motion which are
more important for a particular analysis. For a tall
building, a dam or a bridge, for exampie, these local site
dimensions might be of several kilometers. On the other
hand, for suff structures or small buildings. these
dimensions can be from tens to hundreds of meters.

Although recent work has emphasized the physical
understanding of site effects so that quantitative
predictions can be made {Boore, 1983a), there is still lack
of criteria for dealing with the probiem taking into
account source, path and iocal conditions. Active
research 1s needed to predict more accurately the local
effects, given the source parameters. Indeed, it is
encouraging the recent progress on strong motion
prediction using mathematical modelling techniques
(Aki, 1982). Much of the research is concentrated on the
understanding of fault mechanics and wave propagation
in the Earth. 1t is generally accepied that high frequency
radiation, which controls accelerations, comes from very
localized parts of the fault. A powerful asymptotic theory
of high frequency radiation has been recently developed
(Madariaga, 1983). Applications of the theory are coming
te.g., Bernard and Madariaga, 1984). However, it should
be noted that the foci of future earthquakes are not
known. their locauen. mechanism and amount of
released energy can oniy be speculated in ‘terms of
regional seismicity models {Esteva, 1976). On the other
hand. the knowledge of geological details is generally
smail to justify the use of very refined models of wave
propagation, particularly for the high frequencies. [t is
then clear. in view of the mentioned uncertainties. that the
problem of seismic risk assessment must be dealt within a
probabilistic framework. A promising approach seems to
be the use of integral measures of intensity such as Arias’
(1970) combined with stochastic descriptions of the input
{Boore. 1983b) and simplified models of the local
irregularities (Sanchez-Sesma er al., 1986).

The aim of this work is to review the problem of
calculating the effects of topographical and geological
uregularities on ground motion grven some knid of
seismic waves as input. For this purpose the current
formulation of the problem. the known analytical
solutions and some of the available numerical methods
are briefly discussed. It is hoped that this work could serve
to stimulate discussion and interest on the problem.

FORMULATION OF THE PROBLEM

There is no doubt that the source mechanism governs the

Soil Dynamics and Earthquake Engineering, 1987, Vol. 6. No. > 125
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Fig. 3. Half-space with irregular surface and incident
elastic wares

way in which the released seismic energy is radiated in
space and lime. However, seismic waves, once emitted by
the source, are dependent on the mechanical properties of
carth materials and the heterogeneities encountered in
their path. This is aiso true dealing with irregular local
conditions. Moderate changes in mechanical impedances
or irregularities with size comparable to incident wave
lengths can generate significant amplifications and spatial
vanations of ground motion {Boore, 1972b).

Plane waves are reflected back and refracted forward as
they arrive at a plane interface. The amounts of reflected
and transmitted encrgy depend on the mechanical
properties of the media involved. Reflection and
refraction in elastic wave propagation can well be
described by geometrical means. Let us call diflfraction to
every change in the waves' path that can not be described
as reflection or refraction. To study diffraction of elastic
waves il is necessary to solve a boundary value problem
for the governing equations of linear clasticity (e.g.
Achenbach, 1973; Aki and Richards, 1980).

To fix ideas, consider an elastic, homogeneous and
isotropic half-space with an irregular surface as shown in
Fig. 3. Under incidence of elastic waves the irregularity
will difrract the incident waves (diffraction is frequently
called scattering). Diffracted waves must satisfy. together
with incident waves, the governing equations (Navier
equations) and the boundary conditions. Moreover. the
diffracted fields must satisfy the Sommerfeld (1949)
radiation condition at infinity. which means that the
diffracted ficlds must scatter to nfinity, ie.. no energy
may be radiated from infinity into the irregular region.
The Sommerfeld radiation condition has been extended
to elastic wave fields by Kupradze (1965).

ANALYTICAL SOLUTIONS

The simplest problems in elastic wave diffraction are the
two-dimensional SH-wave problems because they can be
analyzed scparately from other body waves. The
governing equation for this case is the scalar wave
cquation. Then, analytical solutions can be obtained for
geometries of the scatterer which allow separation of
vanables (Mow and Pao, 1971). Using this method. exact
solutions have been obtained for the diffraction of SH-
waves by canyons and alluvial valleys with semj-<circular
{Trifunac, 1971, 1973) or semi-elliptical shapes (Wong
and Trfunac, 1947a,b). Even with these simple modeis of
local irregularities, compiicated interference patterns
were found and the calculated surface dispiacement fields
varied strongly in space (see Fig. 4). Results are very
sensitive to incidence angle and frequency. Results for
alluvial valleys show the importance of the two-
dimensional behaviour gives much targer amplifications

than those obtained from unidimensional calculations.
These analytical solutions have shown the tmportance of
the probiem and they provide a check for numerical
procedures. .

A very simple result can also be obtained for two-
dimensional wedges of any angle under incidence of plane
or cylindrical of SH-waves. Using a representaticn of the
solution given by Macdonald (1902} it is possnl_)le to show
that the amplification (or reduction) coeflicient at the
vertex is given by 2 v, where va=internal angle of the
wedge (Sanchez-Sesma, 1985). Suprisingly. ampilifi-
cations larger than 2, v were found in other regions of the
surface.

For the more difficult cases pf P- or S¥V-incident waves
the orthogonal wave functions developed in classical
physics are not separable for the half-space surface due to
the coupling of boundary conditions. Lee (1982)
overcame this difficulty for a semi-spherical canyon by
expanding the spherical wave functions into a power
sertes which matched all the boundary conditions
successfully. However, this approach limited to small

{requencies. '
Under additional simplifying assum ptions othcr
analytical solutions have been obtained using

orthongonal wave functions. For an acoustic medium
exact expressions for the scattered fields generated by
incidence of P-waves on canyons of semi<ircular and
semi-spherical shapes have been obtained (Singh gnd
Sabina, 1977). The results however, are of small utility
because the acoustic assumption can hardly be met in real
cases. The problem of vertically incident P-waves upon a
semi-<llipsoidal three-dimensional scatterer has been
solved exactly for an elastic medium in which horizontal
displacements are restricted. Results for‘ vertical
displacement are in reasonable agreement- with tho§e
from more reliable computations for a truly elastic
medium (see e.g. Sanchez-Sesma, 1983). This is illustrated
in Fig. 5.

Ungder the assumption of small-slope irregularities a
perturbation solution has been obtained for the elastic
scattered field by two-dimensional geometries (Gilbert
and Knopoff. 1960). The approximation is based on
replactng the rregularity by an equivalent stress
distribution. An application of this method by Hudson

Displacement omphlude

wa/wh3
Fig. 4. Displacement amplitudes at points in the surface
of a semi-circular canyon. Incidence of harmonic plane SH
wares {After Trifunac, 1973)
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Fig. 3. Displacement amplitudes in a semi-ellipsoidal
surface cavity under vertical incidence of P waves. Vertical
displacements ure computed for a simplified elastic medium
in which horizontal motion s restricted. Comparison is
provided with compurtations for a truly elustic medium

{1967} deals with small-slope three-dimensional scatters.
With this approach reasonable estimates have been
obtained of the scattered Rayleigh waves as compared
with observations even in cases in which slope angles are
as large as 25° or 30° (Hudson and Boore. 1980).

The method of matched asymptotic expansions has no
restrictions on the slope of the irregularity. It is based in
matching the first terms of an outer expansion of the near
field with those of an inner expansion of the far field
(Sabina and Willis, 1975, 1977}, Although the method is
limited to very small frequencies. results are in qualitative
agreement with observations.

NUMERICAL METHODS

A powerful technique has been developed by Aki and
Larner {1970) to treat scattening of S H-waves by irregular
interfaces. In the Aki-Larner method. it is assumed
incidence of a plane single-frequency. The diffracted field
is represented by superposition of plane waves of
unknown complex amplitudes propagating in many
directions. Inhomogeneous plane waves are allowed. The
method is restricted to small-slope irregularities for
numerical reason only because it does not include

Site effects on strong ground motion: F. J Sanchez-Sesma

explicitly upgoing waves. Then, even if the representation
in terms of plane waves is complete. convergence to the
true solution can be very slow. The total motion 1s
obtatned from integration over honzontal wave
number. Under the assumption of horizontal periodicity
of the irregularity. the integral is replaced by an infinite
sum. Truncation of this sum and application of the
interface conditions of coatinuity of stress and
displacement in the wavenumber domain lead to a system
of linear equations for the complex scattering coeflicients.
This method has been applied by Bouchon (1973) to
study the effects of two-dimensional rrregular
topographies on ground motion for incidence of SH, SV
and P waves Figure 6 shows some resulls. An extension
of the method has been advanced by Bouchon and Aki
{1977a.b) to represent with this discrete-wave-number
technique near source seismic fields in a layered medium
with irregular interfaces. Another extension, now to time
domain calculations. has been developed to study the
seismic response of alluvial vallevs (Bard and Bouchon,
1980a.b) under incidence of SH, P and SV waves. The
Aki-Larner technique has been used by Bard (1982) 10
analyze the effects of two-dimensional elevated
topography on ground motion. An additional extension
of the method is due to Bouchon (1985) in which upgoing
waves are exphcitly included in the analysis, thus
ehminating the restriction of small-slopes. Calculations
forirregular layered media show a very good performance
of the extended method (Campillo and Bouchon, 1985).
The method has been used to model the fields generated
by real faults (Bouchon, 1979; Campillo, 1983). It can be
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Fig. 6. Normalized displacement amplitudes in the

surface of a ridge under incident SH waves. { Afier Bouchon.
1973
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Fig. 7. Generation of surface Rayleigh waves by surface
irregularities. Inboth cases the incident field consists of SV
waves. {After Ohtsuki, et al., 1984)

used to model ground motion considering together the
effects of source, path and local conditions. However, the
numerical computations involved may become very
expensive for many real cases.

The finite difference method is also a powerful tool in
clastic wave propagation studies {Alterman and Karal,
1968; Boore, 1972a). It has been applied to model two-
dimensional irregular interfaces (Boore er al.. 1971) and
ridges (Boore. 1972b) in the SH case and also for incident
P and SF-waves upon a sedimentary basin (Harmsen and
Harding. [981) and a step-like topography {Boore er ol ,
1981). Interesting results have been found concerning the
significant generation of Rayleigh surface waves by lateral
irregulanties. Recent work by Ohtsuki and coworkers
(Ohtsukiand Harumi, 1983; Ohtsuki er ., 1984a: 1984b})
confirm this fact. They have used a combination of finite
differences and finite elements. Figure 7 displays some
results which slow this important effect. For incidence of
P waves upon a surface slot the computations by llan
and Bond (1981) give good agreement with experiments.
It is found that the amplitude of the scattered Rayleigh
wave is, as expected, dependent on incidence angle. A
finite difference analysis of axisymmetric topographical
irregularities has been presented to study the effects of
vertically incident shear waves (Liao et al., 1980). Spectral
ratios were obtained and comparison with observations
gives reasonable agreement. The finite difference method
is theoretically unlimited to mode! details and nonlinear
behaviour of matenals, but the size of the problem can
easily exceed the capacity of major computing facilities.

The finite element method also allows a detaited
description of site topography and layering. With this
method it is possible to calculate the response of two-

dimensional soidl configurations with truly nonlinear
stress-strain relations (Strecter er al.. 1974: Joyner and
Chen, [975. Joyner, 1975). The major disadvantage of the
method is its low-frequency limit and high cost. Usually,
real time analysis must be shortened to avoid the
reflections from the artificial boundaries. The use of
different transmitting techniques can reduce the spurious
waves Lo some exient (e.g., Smith, 1974, 1975: Ayala and
Aranda, 1977: Clayton and Engquist, 1977; Castellani et
al., 1981: Liac and Wong. 1981). Successful criteria have
been developed for damping out the unwanted reflections
by means of nonuniform element size (Day, 1977} or by
combining finite clements with a boundary integral
representation of the conditions at the edges of the
studied domain (Franssens and Langasse, 1984). Finite
elements have been used to treat problems of irregular
layering (Lysmer and Drake, 1972; Drake, 1972; Ayala
and Aranda, 1977) and two-dimensional topographical
irregularities (Castellani er af., 1982) under idealized
conditions. Nevertheless, a realistic wave analysis can be
very costly.

Ray methods have also been used to study the ground
motion in sediment filled basins with irregular interfaces
le.g.. Jackson. 1971: Hong and Helmberger, 1977; Lee
and Langston, 1983; Rial, 1984) or dipping layers (Ziegler
and Pao, 1984).

An extension of ray theory based on a paraxial
approximation of the elastic solution has been recently
used to study many problems of wave propagaticn in
inhomogeneous media (c.g., Nowack and Aki, 1984:
Madriaga, 1984). These solutions are called Gaussian
beams because of the Gaussian shape of the wave
amplitude around a central ray. The high frequency
character of Gaussian beams place them as a very
promising tool to study site effects on strong ground
motion.

Experimental techniques can be very useful in
describing topographical or layering site effects. Using
polyurethane foam models King and Brune (1981 were
able to obtain results for sedimentary basins. Excellent
agreement was found with analytical solutions.

In rcecent years boundary methods have gained
increasing popularity. This fact is mainly due to the
availability of high speed computers. Boundary methods
are well suited to deal with wave propagation problems
because they avoid the introduction of fictitious
boundaries and reduce by one the dimensionality of the
problem. These facts yield numerical advantages.
Moreover. boundary methods can be used together with
the finite element method (Zienkiewics et al., 1977). Then,
the region modelled with finite elements can be smaller
(e.g.. Ayala and Gomez, 1979; Shah er al., 1982).

There are two main approaches to the formulation of
boundary methods: one is based on the use of boundary
integral equations (Cruse and Rizzo. 1968a b; Brebbia,
1978, Cole et al., 1978: Alarcon et al., 1979}, and the other.
on the use of complete systems of solutions (Herrera and
Sabina, 1978: Herrera. 1980a). The scattering of incident
SH-waves from two-dimensional irregular topographies
has been formulated with integral equations by Wong
and Jennings (1975) for arbitrarily shaped canyon-like
profiles and by Sills {1978} for ridges and mixed shapes,
This method has been applied with success to calculate
the effects of a dipping layer of alluvium on the
displacement field due to a SH-wave source on the surface
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Fig. 8. Displacement amplitudes on the surface of a
trigngular canyon with 45° slopes for different incidence
angles and normalized frequency n =05, incidence of SH
wares

twi

Fig. 9. Displacement amplitudes ar the free-surface.
Semi-elliptical allurial valley. Incidence of SH waves with
angles O and 60 degrees. Normalized frequency n=0.5

(Wong er al., 1977). Results compare favourably with
observations during a full-scale low-amplitude pro-
pagation test. A powerful approach which combines the
boundary integral equation method with finite differences
in time has been presented (Cole er aol., 1978) for
elastodynamic problems. The performance of the method
was found 10 be good in a simple numerical problem. A
boundary method has been developed and applied to
solve two-dimensional scattering of harmonic elastic
waves by canyons (Sanchez-Sesma. 1978, 1981; Sabina er
al., 1979; Sanchez-Sesma and Rosenblueth, 1979 Wong.
1979, 1982: England et al.. 1980; Sanchez-Sesma et al.,
1982a; 1985), alluvial deposits (Sanchez-Sesma and
Esquivel, {1979; [ze et al.. 1981 Dravinski, 1982a.b. 1983)
and ridges (Sanchez-Sesma and Esquivel, 1980; Sanchez-
Sesma et al., 1982b) for different types of waves and
shapes of the scatterers. The method consists of
constructing the scattered fields with linear combinations
of members of a complete family of wave functions
{Herrera and Sabina, [978: Herrera. 1984). These families
of functions, which are solutions of the governing
equations of the problem. can be constructed in a very

Site effects on strong ground motion: F. J. Sanchez-Sesma

general way, with single or multipolar sources having
their singulanities outside the region of interest.
Coeflicients of the linear forms thus constructed are
obtained from a least-squares matching of boundary
conditions. As pointed out by Wong (1982}, the method
can be considered as a generalized inverse one. He
suggested a procedure which improves the solution
numencally. A general framework for the method is given
by a recent algebraic theory of boundary value problems
{Herrera, 1979, 1980a.b: 1984). Figures 8. 9 and 10
illustrate typical results for incidence of SH-waves. Figure
Il shows the amplitudes of vertical and horizontal
displacements in the surface of a semicircular canyon for
incidence of Rayleigh waves. Results are displayed for
three different frequencies n=2a i, where 4 = wavelength
of the incoming waves,

The approach has been extended to three-dimensionai
problems (Sanchez-Sesma, 1983; Sanchez-Sesma er al.
1984). The case of incident elastic P, SV and Rayleigh
waves upon axisymmetric irregularities on the surface of
an elastic half-space was formulated using an azimuthal
decomposition. The diffracted fields were constructed
with mulupolar solutions of the reduced Navier
equations \n spherical coordinates (Takeuchi and Saito,
1972; Aki and Richards, 1980). For a semi-spherical
alluvial deposit and vertical incidence of P-waves a very
large amplification was found as compared with the flat
layer probiem. In Figs 12 and 13 the amplitudes of
displacements are shown for two three-dimensional
probiems. In both cases incidence of P waves is assumed
with normahized frequency n,=waaf=1. Figure 12
present the case of a semi-spherical canyon. Finally, an
example for a ridge appears in Fig. 13. The shape of the
ndge is given by = -h{1+2:°-322), where
E =+ pat<].

CONCLUDING REMARKS

The influence of topographic and geological irregularities
on seismi¢ ground motion has been briefly discussed and
some of the available methods to deal with the problem

Twl

X

b

Fig. 0. Displacement amplitudes at the free-surface.
Ridges with different aspect ratio h,b. Vertical incidence of
SH waves with normalized frequency n=05
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Iu’l ry -

x/a

Fig. 11, Amplitudes of vertical and horizontal
displacements at the free-surface. Semicircular canyon.
Incidence of Rayleigh wares with normalized frequencies
m=03,0.75, 1.0 (Poisson ratic 0 33)
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Fig. {2. Surface displacement amplitudes. Semi-spherical
canyon under incidence of P wares with incidence angle of
60° and normalized frequency n, = 1.0 (Poisson ratio (0.25)
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Fig. 13. Surface displacement amplitudes. Axisymmetri
ridge with h'a=0.5. Incidence of P waves with incidenc:
angle of 30° and normalized frequency ny=1.0 (Poisso
ratio 0.25)

were reviewed. They have been used 1o study variou
aspects of local effects. Discrete wave number and finit
differences allow the modelling of various types o
irregularities and provide physical understanding of sit:
effects as they are aimed to produce time signals of the
response. With the advent of supercomputers thei
capabilities are being extended both in the complexity o
the problems and in the possibility of dealing with higl
frequency signals. Ray methods including the use o
Gaussian beams seem to be powerful tools to deal witl

" high frequencies. On the other hand. boundary methods

which allow the study of three-dimensional local features
are still in the development stage. It is hoped that :
comparative study among the various methods will definc
in a clear way the advantages and limitations of each one

There is no doubt that local conditions play ar
important role in the spatial variation of ground shaking
and should be explicitly coasidered in the design of somnc¢
important facilties, as well as in microzoning. However
seismic hazard involves also the effects of source
mechanism and path of seismic waves. Thus. a complete
description of the problem is needed.
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ABSTRACT

Sinchez-Sesma, F.J. and Campillo, M., 1993, Topographic effects for incident P, 3V and Rayleigh waves. In: F. Lund
{Editor), New Horizons in Strong Motion: Seismic Studies and Engineering Practice. Tectonophysics. 218: 113125,

The topographical effects for incident P, SV and Rayleigh waves in an clastic half-space were studied using an integral
representation of the diffracted elastic waves in terms of singte-layer boundary sources. The free-boundary condition leads
to a Fredholm integral equation of the second kind for boundary sources. We used a discretization scheme based on the
numerical and analytical integration of exact Green's functions. This approach is called indirect BEM in the literature.
However, it provides far more insight on the physics of diffraction problems than the direct approaches. This is because
diffracted waves are constructed at the boundaries from which they are radiated. Therefore, this method can be regarded as
2 numerical realization of Huygens' principle. Various examples that cover extreme cases are presented. It is found that
topography may cause significant effects both of amplification and of deamplification at the irregular feature itself and its
aeighborhood but the absolute level of amplification is generally lower than about 4 times the amplitude of incoming waves.
These facts must be taken into account when the spectral ratio technigue is used to study topographical response..

Introduction

The effects of local site conditions may pro-
duce large ground motion amplification during
earthquakes and concentrated damage (see
Sanchez-Sesma (1987) and Aki (1988) for re-
views). During the last two decades significant
progress has been achieved both in the observa-
tion and in the evaluation of such effects. In
particular, the effects of topography on surface
ground motion have been observed and studied
from field experiments. Trifunac and Hudson
(1971), Davis and West (1973), Griffiths and
Bollinger (1979) and Tucker et al. (1984), among
others, discovered significant effects. However, as
pointed out by Bard and Tucker (1985) and Geli

Correspondence to. F.J. Sanchez-Sesma, Instituto de
Ingenieria, UNAM Cd. Universitania, Apdo. 70-472, Coyoacén
04510, Mexico D.F., Mexico.

et al. (1988), the observed amplifications. in the
field are systematically larger than the values
predicted using theoretical models (e.g., Bard,
1982). They suggested that the modeis should
incorporate layering, variations in wave velocities
and even irregular two- and three-dimensional
configurations in order to explain the observa-
tions more precisely. Bard and Tucker (1985)
have tested several such models and improved
the predictions but still showed amplifications
smaller than the observed ones.

Theoretical studies aimed at predicting site
effects are numerous. It is worth mentioning the
work by Trifunac (1971; 1973), who found analyti-
cal solutions for the response of semi-circular
alluvial valleys and canyons under incident SH
waves. Other analytical - solutions- have-been re-
cently obtained for shallow circular geometries
(e.g. Lee and Cao, 1989; Todorovska and Lee,
1992a,b). An exact solution for the incidence of
plane SH and SV waves upon an infinite, moun-

0040-1951 /93 /506.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved
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tain-like wedge has been obtained for certain
angles by geometrical means (Sdnchez-Sesma,
1990). For arbitrary geometries analytical solu-
tions are no longer valid. Therefore, numerical
techniques have to be developed. A recent compi-
lation of works on the numerical modeling of
seismic wave propagation in realistic media (Kelly
and Marfurt, 1990) gives a good account of the
state-of-the-art of the so-called domain methods.

Boundary methods have gained increasing
popularity. The boundary integral equation (BIE)
and their discretizations into boundary element
methods (BEM) have been usefu! in the study of
dynamic elasticity problems. Among the advan-
tages over domain approaches are the dimension-
ality reduction and the simple fulfillment of radi-
ation conditions at infinity. Excellent surveys of
the available literature on BEM in elastodynam-
ics are those of Kobayashi (1987} and Manolis
and Beskos (1988). The most popular BEM ap-
proaches are the so-called direct, because in their
formulation the unknowns are the sought values
of displacements and tractions. They arise from
the discretization of integral representation theo-
rems. It is worth noting that Wong and Jennings
(1975) used a direct formulation based on an
integral representation to study the seismic re-
sponse of arbitrary canyon geometries. A similar
approach was used by Zhang and Chopra (1991)

to consider the three-dimensional response of.

canyons.

In contrast, the indirect BEM, which formu-
lates the problem in terms of force or moment
boundary densities, is not as popular. This is
despite the fact that such densities can give a
deep physical insight into the nature of diffracted
waves. Moreover, the indirect BEM has a longer
history than the direct BEM and is closely related
to classical work on integral equations (see, for
example, Manolis and Beskos, 1988).

On the other hand, the combination of dis-
crete wavenumber expansions for Green's func-
tions (Bouchon and Aki, 1977; Bouchon, 1979)
with boundary integral representations has been
successful in various studies of elastic wave prop-
agation. Bouchon (1985), Campillo and Bouchon
(1985), Campillo (1987), Gaffet and Bouchon
{1989), Bouchon et al. (1989) and Campillo et al.

FJ. SANCHEZ.SESMA AND M. CAMPILLO

(1990) used source distributions on the bound-
aries, whereas Kawase (1988) and Kawase and
Aki {1989) used Somigliana representation theo-
rem. These two approaches are discrete
wavenumber versions of indirect BEM and direct
BEM, respectively. However, such procedures re-
quire a considerable amount of computer re-
sources. An alternative approach may be wel-
comed for many applications.

In this work we study the surface motion at
various topographic features for incident P, SV
and Rayleigh waves. This plane strain case can be
regarded as the simplest of a class of vector
problems of seismological interest. We use a sin-
gle-layer boundary integral representation of
diffracted waves. Therefore, our method can be
classified as an indirect BEM. In this approach,
diffracted waves are constructed at the bound-
aries from which they are radiated. Therefore, it
can be regarded as a numerical realization of
Huygens® principle (this is true for any indirect
method). This approach is, in fact, an improve-
ment over the boundary method, which has been
used to deal with various problems of the diffrac-
tion of elastic waves (see, for example, Sanchez-
Sesma and Esquivel, 1979; Sinchez-Sesma and
Rosenblueth, 1979; Dravinski, 1982; Wong, 1982:
Dravinski and Mossessian, 1987; Luco et al.,
1990). In its many variants, such a technique is
based upon the superposition of solutions for
sources with their singularities placed outside the
region of interest. However, this requires particu-
lar care and the trial and error process needed is
difficult to apply. particularly when many fre-
quencies are to be computed.

As the singularities of Green's functions are
integrable (e.g., Kobayashi, 1987, Manolis and
Beskos, 1988) we can put the sources at the
boundary and properly consider their effects. In
this way, the uncertainty about the location of
sources is eliminated and the linear system of
equations that arises from the discretization can
be directly solved. Therefore, our indirect BEM
approach retains the physical insight of the
sources method, with all the benefits of the ana-
lytical integration of exact Green’s functions. In
the applications reported here, we represent
diffracted fields with the superposition of the
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radiation from boundary sources using exact ex-
pressions of the two-dimensional Green's func-
tions in an unbounded elastic space.

In order to test the method, we compared
results with those obtained by Wong (1982),
Sanchez-Sesma et al. (1985) and Kawase (1988)
for the incidence of P, SV and Rayleigh waves
upon a semi-circular canyon on a half-space. We
found exceflent agreement with those results.
Moreover, we present various examples that cover
extreme profiles. We show that relatively simple
topographies may induce significant variations in
the ground motion at and around the irregularity.
We believe that this fact partially explains the
large relative amplifications reported in the liter-
ature {e.g., Geli et al., 1988). Our examples show
that, even though relative amplification due to
the topography is sometimes quite big, the abso-
lute level of amplification is generally fower than
about 4 times the ampiitude of incoming waves.
Such facts must be taken into account when the
spectral ratio technique is used to characterize
topographic effects.

Integral representation using boundary sources

Consider the domain, V and its boundary, §. If
an elastic matenal occupies such a region, the
displacement field under harmonic excitation can
be written {neglecting body forces) by means of
the single layer boundary integral:

u(x) = [$(£)G,(x.£)dS (1)

where u,(x) = ith component of displacement at
x; G, (x,£)=Green function, that is, the dis-
placement 1n the direction { at point x, due to
the application of a unit force in the direction j
at point £; $,(£) = force density in the direction
Jj. Therefore, ¢,(£)S is clearly a force distribu-
tion at the boundary. The subscripts in the differ-
entials indicate the space variable over which the
integration is performed.

This single layer integral, which can be related
to Somigliana identity (Sianchez-Sesma and
Campiilo, 1991), has been studied by Kupradze
(1963). He showed that the displacement field is
continuous across S if ¢,(£) is continuous along
s,
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This integral representation allows computa-
tion of stresses and tractions by direct application
of Hooke's law, except at boundary singularities,
that is, when x = £ on the boundary. By a limiting
process based on equilibrium considerations
around an internal neighborhood of the bound-
ary, it is possible to write, for x on § that:

L(x) = 18,(5) + [ &,()T,(2.£)dS, (2)

where ( =ith component of traction at the
boundary; T, { x,£) = traction Green function, that
is, the traction in the direction i at point x on the
boundary with normal, n{x} (assumed to be speci-
fied) due to the application of a unit force in the
direction j applied at ¢ The first term of the
right hand side must be dropped if x is at V. This
result was also found by Kupradze (1963). He
used a formal technique of singularity extraction,
which is now used to deal with the hypersingular
integral equations of dynamic elasticity (e.g.,
Bonnet, 1986, 1989).

Equations (1) and (2) are the basis of our
approach. Although indirect, it allows direct in-
terpretation of the physical quantities involved.
Expressions for Green's functions can be found

in the literature (e.g., Kobayashi, 1987; Sinchez-

Sesma and Campillo. 1991). It suffices to say here
that the singularity of displacements is either
logarithmic or 1/r for two-dimensional or three-
dimensional problems, respectively. Regarding
the tractions, such singularities are explicitly of
the form 1/r or 1/r7, respectively. In particular,
when the frequency tends to zero, Green's func-
tions lead to their static counterparts. These
properties are invoked below in connection with
our discretization scheme.

Diffraction of elastic waves by topography

Consider an elastic half space with a localized
topographic relief as shown in Figure 1. The
ground motion in this irregular configuration
comes from the interferences of incoming waves
with reflected and diffracted ones. It is also usual
to say that the total motion is the superposition
of the so-called diffracted waves and the free-
field:

u, = u'?+ (3)
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Fig. 1. Irregular half-space and incidence of P, SV and
Rayleigh waves.

where u!? = free-field displacement; that is, the

solution in the absence of the irregularity.

In this application the displacement free-field
18 that produced by incident plane waves and is
analytically extended to the parts of the topogra-
phy that are not included in the reference half-
space. This means that incoming and reflected
waves are assumed to exist for z < 0, fulfilling the
same analytical expressions (Navier equations)
they satisfy for z 2 0. Therefore, the free-field is
continuous everywhere,

According to our previous discussion, the
diffracted field is given by eqn. (1), which can be
written as;

W x) =fs¢,(§)cu(x.§)ds§ (4)
The traction-free boundary condition implies that:
rl'(lil) + t‘(dl =0 (5)

then, from eqn. (2), such conditions can be ex-
pressed by means of:

1o,(x) +fs¢,(§)1ﬁ,(x.f)d5 = - (6)

which is a Fredholm integral equation of the
second kind for the boundary tractions; that is,
those producing the diffracted field. This expres-
sion is discretized along a finite portion of the
boundary, §, which includes the topography and
the lateral flat parts. We have used values of
3L-5L (where L =surface length of the surface
anomaly). Assuming ¢,(£) is constant over each
of the N boundary segments with equal length
AS, leads to the system of linear equations:

N
2 ¢1(§!)‘:‘1(xu!§{) = __l::o, n=1N (7)

f=]
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where:

H £ - -‘S/Z
= 3 -+
'u(’tn"fl) -6116nl L,—AS/Z Tu(xn'f)dsf (8)
These integrals are computed numerically using
Gaussian integration except when n =/ In this
case we have:

’:;(‘r;vgn) = %6” (9)

because the integral in eqn. (8) for n =1/ is zero
as long as the discretization segment is a straight
line, which is the case assumed here. It can be
verified that, under this circumstance, the inte-
grand is a singular odd function on the segment.
Therefore, its Cauchy’s principal value is zero.
The value for ¢, in eqn. (9) can be interpreted as
half of the applied unit line force and means that
the force is distributed symmetrically for any two
half-spaces containing the line of application of
the load, regardless of its direction. This result
also corresponds to the static solution. Once the
values of ¢,(£,) are known, the diffracted field is
computed by means of:

N
u® =Y b,(£)8,(x.£) (10)
I=m]
where:
g,00.8) = [* V06, (x8)ds, (11)
£-A5/2

These integrals are also computed numerically
with Gaussian integration. except in the case when
x 15 in the neighborhood of £,, for which we
obtained analytical expressions from the ascend-
ing series for Bessel functions {(e.g., Abramowitz
and Stegun, 1972). Sanchez-Sesma and Campillo
(1591) presented an example for such expressions
when only the leading terms of the series are
retained. We considered up to quadratic terms,
which is enough if the number of segment per
wavelength is larger than about 6. For the ele-
vated portions of the relief the analytical exten-
sion of the free-field provides the boundary exci-
tation. In the case of incident Rayleigh waves, or
for SV waves with an incidence angle larger than
the critical one, the analytical extension gives
exponential growth of the extended field (the
incident plane SV waves, with an incident angle
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of 45°, having no mode conversion and unit re-
flection coefficient, do not present this effect). To
avoid this difficulty we choose to produce
Rayleigh waves by loading our irregular half-space
with a vertical force (e.g., Sinchez-Sesma and
Campillo, 1991). In this case, the excitation comes
from imposing vertical tractions in a small region
of the flat part of the free surface. This illustrates
well the wide potential applications of our
method. The surface load problem is well known
(Lamb, 1904). In this case. more than two-thirds
of the total energy is radiated as Rayleigh waves
(Woods, 1968). At the surface the relative amount
of Rayleigh waves is much larger.

Testing of the method and discussion

The accuracy of this approach has been gauged
by comparing results with those obtained by Wong
(1979; 1982), Sanchez-Sesma et al. {1985) and
Kawase (1988). The diffraction of P, 5V and
Rayleigh waves by a semicircular canyon has been
studied by Wong (1979; 1982) for a half-space
with Poisson. ratio of 1/3 and no attenuation
using a boundary method. Wong's (1982) results
were verified by Sanchez-Sesma et al. (1985) and
Dravinski and Massessian (1987), for a normal-
ized frequency 1 = 0.5, where 75 =wa/mh and
a = radius of canyon. In general, excellent agree-
ment was found for incident P and SV waves.
The larger difference occurs for Rayleigh waves
in the horizontal motion at the top of the rim of
the canyon: Wong (1982) predicted an amplifica-
tion of about 2.5 there, whereas Sinchez-Sesma
et al. (1985) gave a value of about 2. Figure 2
shows their results, together with our solution.

For a larger normalized frequency, n = 2 re-
sults by Wong (1982) and Kawase (1988) are
available for Rayleigh waves and for P and SV
waves with an angle of incidence of 0°. Kawase
(1988) used a boundary integral representation
combined with the discrete wavenumber method.
Sinchez-Sesma and Campillo (1991) compared
results for incident P and SV waves. Here we
restrict our comparisons to Rayleigh waves. Fig-
ure 3 shows our results for both horizontal and
vertical displacement amplitudes. We considered
a total discretization length of 5L, where L=ma,
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Fig. 2. Amplitudes of horizontal and vertical displacements

for incidence of harmonic Rayleigh waves upon a semi-Cir-

cular canvon. Poisson ratio is 1/3 and the pormalized fre-

quency n =105, Solid and dashed lines = horizontal, 4, and

vertical, w. components obtained in this study: squares =

results of Wong {1982); triangles = results of Sanchez-Sesma
et al. {1985).

and 15 segments per S wavelength. The solution
is stable, even when such parameters are reduced
to 3L and to 6, respectively. Wong's and Kawase’s
results are also shown. Excellent agreement is
found for both horizontal and vertical compo-
nents. However, small differences can be seen.
For instance, both Wong (1982) and Kawase
{(1988) predict amplitudes at the “incidence™ rim
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Fig. 3. Amplitudes of horizontal and vertical displacements
for incidence of harmonic Rayleigh waves upon a semi-cir-
cular canyon. Poisson ratio is 1/3 and the normalized fre-
quency n = 2. Solid and dashed lines correspond to horizoa-
tal, u. and vertical, w, components obtained in this study;
circles = results of Wong (1982); squares = results of Kawase
{1988).
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of the canyon that are somewhat larger than our
results. Generally, our results (see also Sianchez-
Sesma and Campillo, 1991) are closer to Kawase’s.
However, in some cases they approach those of
Wong. For some locations, both inside and out-
side the canyon, our results are between the
other two results.

These methods are approximate. The only way
to assess on their performance is through com-
parisons of results and with other procedures and
by comparing the assumptions and the character-
istics of each one. Sanchez-Sesma and Campilio
(1991) discussed these issues in detail. Here we
will give a brief account.

Both Wong (1982) and Kawase (1988) took as
their departure point Lamb’s (1904) integrals for
the half-space in frequency domain. Wong (1982)

FJ SANCHEZ-SESMA AND M. CAMPILLO

computed such integrals for compressional and
shear line sources and used them as trial func-
tions with the singularities “removed from the
region of interest”; that is, outside the irregular
half-space, inside the region left by the canyon.
He satisfied baundary conditions using a general-
ized inversion scheme, which guarantees good
results in a global sense. In contrast, Kawase
(1988) integrated analytically along the boundary
the expressions of the discrete wavenumber ex-
pansion, for which he assumed a horizontal peri-
odicity of ten times the diameter of the canyon.
In order to obtain reliabie results in the fre-
quency domain, Kawase first got time series and
then computed the frequency response. These
two methods have the shortcoming of the time-
consuming evaluation of Lamb’s integrals. Wong
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Fig. 4. Incidence of a plane P wave with incidence angle of 30°. Synthetic seismograms and frequency response for surface receivers
equally spaced between x= —2a and x = 2a at the surface of a iriangular canyon with a angle of dip of 60°. {a) Horizontal
component, ux, and (b) vertical component, uz. The incident time signal is a Ricker wavelet with central frequency w, = 1.5wB /a.
Amplitudes of honizontal {continuous line} and vertical (dotted line) surface displacements {c) for nine receivers against normalized
frequency and (d) for the central frequency of the Ricker wavelet for all the receivers against their horizontal location.
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(1982), as well as Sanchez-Sesma and Rosen-
blueth (1979} for instance, had to accept a certain
uncertainty about the optimum location and
number of sources.

In contrast, we had less sources of error. We
used the exact Green's function for the whole
space. which can be computed in a fast manner.
Our approach is aimed at obtaining only
diffracted waves; that is, those produced both at
the irregular boundary and at the free surface, by
means of boundary force densities, for which we
obtained either exact or analytical values at singu-
larities. Hence, this formulation can be seen as an
approximate numerical realization of Huygens’
principle (this is true for any indirect formula-
tion). For the numerical integration we used
Gaussian integration of three points per segment.

To examine edge effects due to the finite size

I/“: tiy

SY wave

45 degrees

N

Amphtude

2
wa/xB
Fig. 5. Incidence of a plane SV wave with incidence angle of 45° Synthetic seismograms and frequency response
receivers equally spaced berween x = —2ag and x = 22 at the surface of a triangular canyon with an angle of dip of *
in Fig. 4.
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of the discretized boundary we performed several
tests and found that, for the range of frequencies
studied, it suffices to discretize a total length of
3L . where L is the surface length of the topo-
graphic feature. The comparisons presented here
have been computed for total discretization
fengths of 3L and 5L and the results are virtually
the same. This implies that edge effects have
little or no influence in our computations and
shows that only the discretization of a relatively
smalt part of the free boundary is needed. We
consider this fact to be a significant advantage of
our approach. Sédnchez-Sesma and Campillo
(1991) verified this interpretation. They com-
puted the phase of diffracted waves and observed
that, for both components, the phase variation
with space shows slopes consistent with the ex-
pected outgoing nature of such waves.
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Examples

In order to show the range of effects caused by
topography, we present various examples that
cover extreme geometries. We choose from a big
set of results a sample that, being of reasonable
dimension, allows the salient characteristics of
such effects to be described. Other examples can
be seen in Sinchez-Sesma and Campillo (1991).
Our results are displayed in both frequency and
time domains for various canyons and mountains
under incident P, SV and Rayleigh waves. A
Poisson coefficient of 1/4 was selected and no
attenuation was assumed. We present five exam-
ples:

(1) A triangular canyon with A = 1.732 a, where
a = surface half-width (angle of dip 60°) under
incident P waves with an angle of incidence of 30°
(Fig. 4).
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{2} A triangular canyon with A = 0.577 a, where
a = surface half-width (angle of dip 30°) under
incident SV waves with an angle of incidence of
45° (Fig. 5).

(3) A semi-elliptical canyon with a maximum
depth of 3 times the half width (h = 3a) under
incident SV waves with an angle of incidence of
45° (Fig. 6).

(4) A triangular mountain with an angles of
dip of 45° for incident Rayleigh waves {(Fig. 7).

(5) A semi-elliptical mountain with a maximum
height of 2a under incident SV waves with an
angle of incidence of 30° (Fig. 8).

For these examples the discretization was car-
ried out over a total length of 3L, where L =
surface length of the topographic feature. The
relatively small size of the discretized region is an
advantage of our formulation. We used 15 seg-
ments per S wavelength.
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Fig. 6. Incidence of a plane SV wave with incidence angle of 45°. Synthetic seismograms and frequency response for surface .
receivers equally spaced between = —4a and r = 4a at the surface of a semitelliptical canyon with maximum depth of 3a.
(a)-4d)as in Fig. 4.
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Fig. 8. Incidence of a plane SV wave with incidence angle of 30°. Synthetic seismograms and frequency response for surface
receivers equally spaced berween 1= —d4a and x = 44 at the surface of a semi-elliptical mountain with maximum height of 2a.
(a)-(d) as in Fig. 4.

Results are displayed in Figures 4-8. Each
figure contains four plots: synthetic seismograms
for horizontal and vertical components. frequency
respanse for selected receivers and spatial varia-
tion at a given frequency. Computations were
performed in the frequency domain and synthetic
seismograms where computed using the FFT al-
gorithm for a Ricker wavelet with central fre-
quency w, = L578/a for 101 receivers equally
spaced between x = —4a and x = 4a for the
semi-elliptical profiles and between x = ~ 24 and
x =2a for the tnangular ones. It was assumed
that 2a/B = | s in order to define the time scale.
The actual scale 1s Bt/2a. The results in the
frequency domain are presented against wa/wg
and correspond to nine equally spaced surface
receivers (out of the 101 for which we computed
the synthetics). For the frequency corresponding
to the central one of the Ricker pulse, we dis-

played the amplitude of both horizontal and ver-
tical displacements against space.

For the triangular mountain the incident
Rayleigh wave is generated with a uniform verti-
cal load applied over a length of 0.25a centered
at x = ~25a. The frequency spectra clearly show
the logarithmic singularity at small frequencies.
The vertical displacement for a static load is, in
fact, logarithmic in r {Love, 1944) and can have
an arbitrary additive constant. Therefore, for the
purpose of plotting the frequency dependance of
displacement amplitude, the zero frequency val-
ues correspond to wa /7B = 0.005. However, both
synthetics and results in the frequency domain,
for wa/mB > 1 correctly describe the effects of
topography upen the incidence of Rayleigh waves.
This can be seen on the synthetics which show
the appropriate amplitude of the incident wave.

Figures 4 and 5 display the responses of the
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deep and shallow triangular canyons for incident
P and SV waves with incidence angles of 30° and
45°, respectively. For the deep canyon large varia-
tions in both space and frequency plots can be
seen. The synthetics show diffracted Rayleigh
waves with a criss-cross pattern. For the shallow
canyon the synthetics show minor effects. In fact,
a small-amplitude Rayleigh wave is produced at
the left rim. Frequency domain results also show
large variations. In both cases, and for a wide
range of frequencies, relative amplifications or
de-amplifications are larger than 20. However,
maximum amplification is of about 2.5 times the
amplitude of the incoming wave. Sdnchez-Sesma
and Campillo (1991) studied other incidences and
found that the absolute maximum of response is
generally lower than about 4.

Figure 6 illustrates the surface motion of the
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deep semi-elliptical canyon for incident SV waves.
Again, a great variability emerges as a conse-
quence of the superposition of incoming and re-
flected-diffracted energy. In the synthetics, the
first arrivals at the right flat part clearly show.
both a delay and a reduction of amplitude that
indicates a shadow zone and, thus, diffraction. In
the figure the reflected SV wave is clearly seen
along the left canyon's wall. This wave precedes
diffracted creeping Rayleigh waves that propa-
gate along the canyon's surface. These waves are
produced at the corners and bounce back and
forth berween them. Early and late emissions of
diffracted Rayleigh phases are also clearly seen in
the flat part of the model. Results near the left
rim seem to confirm the theoretical prediction of
null motion at the vertex of a quarter space under
the incidence of a plane SV wave propagating
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Fig. 7. Response to a nearby vertical load. Except at low frequencies. results correctly describe the effects of an incor
wave. Synthetic seismograms and frequency responsc for surface receivers equally spaced between x = —2a and
surface of a tiangular mountain with unit slopes. (a)-{d) as in Fig. 4.
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along the bisector angle (Sdnchez-Sesma. 1990).
The responses of the deep elliptical canyon to
various types of incident waves show the appear-
ance of creeping Rayleigh waves (see Sinchez-
Sesma and Campillo, 1991).

Figure 7 shows a mountain with unit slopes
under incident Rayleigh waves. Maximum ampli-
fications do not exceed the leve!l of 2 times the
horizontal amplitude of the incident wave. As
shown in the figure, the diffraction of Rayleigh
waves mainly produces a backward-propagating
phase of the same type. Figure 7¢ shows that the
effect of the near-source terms of the applied
load dominates at low frequencies.

In Figure 8 the surface motion of the semi-
elliptical mountain for incident plane SV waves
and 30° is illustrated. This is an extreme model
that shows the wide potential applications of this
approach. A great variability in the amplifications
in the frequency domain is again present. At one
receiver amplifications reach more than 5 times
the amplitude of incident waves but the absolute
level of amplification is, for this example, gener-
ally lower than about 3 times the amplitude of
incoming waves. Time domain results show signif-
icant interference patterns, due to creeping waves
along the curved part of the surface and the late
emission of Rayleigh waves.

Conclusions

A method for computing the diffraction of P,
SV and Rayleigh waves by an irregular topo-
graphic feature in an elastic half-space has been
presented. It is based on a direct integral repre-
sentation of the diffracted elastic fields in terms
of single-layer boundary sources. A discretization
scheme based on the numerical and analytical
integration of exact Green's functions for dis-
placements and tractions is employed. Our for-
mulation can be seen as a numerical realization
of Huygens' principle; that is, the diffracted waves
are constructed at the boundary from which they
are radiated. In addition to the physical insight
gained with this method, it appears to be accu-
rate and fast,

The results correspond to a relatively simple
set of conditions, namely:
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(1) the incidence of a plane wave (or the
application of a vertical load in the neighbor-
hood),

(2) the assumption of an elastic half-space with
a Poisson ratio of ;

(3) a symmetrical shape for the irregularity.

Nevertheless, they display significant aspects
of the response of topographic features. One of
those is the spectacular amplitude of creeping
waves and, as its counterpart, the large increase
in the duration of the motion on the irregular
topography.

Cur results confirm the large variability of site
effects, reported in the literature with respect to
frequency, incidence angle and location of re-
ceivers. They show that variability is not re-
stricted to the topographic feature: its presence
strongly affects nearby locations. They also show
that the interaction of elastic waves produce com-
plex amplification and de-amplification patterns.
For example, Bard and Tucker (1985) observed
significant amplifications at some underground
sites and concluded that they were due to free
surface reflections. We believe that, despite the
relative simplicity of our models, our results give
a glimpse of the effects that the real topographic
feature may induce. They present very large rela-
tive amplifications with values that, in many cases,
can be larger than 20.

The plots of the frequency response at various
locations show why simple spectral ratios cannot
account for the seismic behavior of topographies.
The large variability in the spectral content of
ground motion in both frequency and space sug-
gests that, in order to interpret the data, we
cannot rule out the need for a quantitative model
and careful assessment of the type of incoming
waves as well. Therefore. the selection of refer-
ence sites and the windowing of the records are
crucial for characterizing topographical effects by
means of spectral ratios. For windowing data, a
polarization analysis, such as that of Bernard and
Zollo (1989), can be useful. In any event, our
results (those shown here and in Sidnchez-Sesma
and Campillo (1991)) show that the absolute level
of amplification is generally lower than about 4
times the amplitude of incoming waves.
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SUMMARY

A boundary integral formulation is presented and applied to model the ground motion on alluvial valleys under incident
P. S and Rayleigh wases. [t is based on integral representations for the diffracted and the refracted elastic waves using
single-laver boundary sources. This approach is called indirect BE A in the literature as the sources’ strengths should be
obtained as an intermediate step. Boundary conditions lead o a system of integral equations for boundary sources.
A discretization scheme based on the numenical and analytical integration of exact Green’s functions for displacements
and tractions is used. Various examples are given for two-dimensional problems of diffraction of elastic waves by soft
elastic inclusion models of alluvial deposits 1n an elastic half-space. Results are displayed in both frequency and time
domains. These results show the significant influence of locally generated surface waves 1n seismic response and suggest
approximations of practical interest. For shallow alluvial valleys the response and its resonant frequencies are controlled
by a coupling mechanism that invoives both the simpte on¢-dimensional shear beam model and the propagation of
surface waves.

INTRODUCTION

The effects.of local topographic and geological conditions may generate amplification of ground motion and
concentrated damage. The last two decades have seen significant progress in the evaluation of such effects
(sec References 1 and 2 for recent reviews) and dramatic examples of their reality as well (see
c.g. References 3-6).

Boundary element methods (BEM) have gained increasing popularity. Recognized advantages over
domain approaches are the dimensionality reduction, the relatively casy fulfilment of radiation conditions at
infinity and the high accuracy of results. Excellent surveys of the available literature on BEM in elas-
todynamucs are those of Kobayashi~ and Manolis and Beskos.® The most popular BEM approaches are the
so-called direct ones because in their formulation, the unknowns are the sought values of displacements and
tractions. They arise from the discreuzation of mtegral representation theorems. In contrast, the indirect
BEM. which formulates the problem in terms of force or moment boundary densities, is not as popular. This
is despite the fact that such densities can give a deep physical insight on the natuce of diffracted waves.
Moreover. the indirect BEM has a longer history than the direct BEM and is closely related to classical work
on integral equations (see ¢.g. Reference 8).

On the other hand, in a pioneering work, Aki and Larner? introduced a numerical method based on
a discrete superposition of homogeneous and inhomogeneous plane waves. Using this technique, Bard and
Bouchon!°~!? studied alluvial valleys and pointed out the significant role of sediment-induced surface waves
in the valleys response and the resonant characteristics of these configurations as well. The Aki-Larner
technique is the departure of discrete wave number approximations. The combination of discrete wave
number expansions for Green’s functions'? with boundary integral representations has been successful in
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vanious studies of elastic wave propagation. In some of them, source distributions at the boundaries are used
te.g. Reference 14). whereas others make use of the Somigliana representation theorem (c.g- References 5
and 6). These are discrete wave number versions of BEM, indirect and direct, respectively. [n a recent work,
Papageorgiou and Kim*® applied the discrete wave number direct BEM to study the propagation and
amplification of SH waves in a model of Caracas Valley. Their results correlate well with observations during
the 29 July 1967 earthquake and even suggest that amplifications were larger than the previously estimated
ones.

The combination of BEM with discrete wave numbser is particularly attractive: the singularities of Green's
functions are not present in each one of the terms of the discrete wave number expaasion. The integration
along the boundary effectively makes the singularities to vanish and improves convergence as well. However,
such procedures require considerable amount of computer resources. An alternative approach may be
welcomed for many applications. Such an alternative could be the BEM., either direct or indirect, with
analytical Green's functions for the fuil space. Zhang and Chopra'® applied a direct BEM to model the
ground motion at a three-dimensional (3D) topography.

In this work the indirect BEM is applied to study ground motion on afluvial valleys under incident P,
S and Rayleigh waves. It is based upon the integral representation of the diffracted elastic waves in terms of
single-layer boundary sources. In our approach, diffracted waves are constructed at the boundaries from
which they are radiated. Therefore, it can be regarded as a numerical realization of Huygens’ principle. This
is, in fact, an improvement over a boundary method that has been used to deal with various problems of
diffraction of elastic waves (e.g. References 17 and 18). In its many variants, such technique is based upon the
superposition of solutions for sources with their singulanties placed outside the region of interest. However, in
the applications, the location of sources requires particular care and the trial-and-error process needed is
difficult to apply, particularly when many frequencies are to be computed. In our approach, the uncertainty
about the location of sources is eliminated. Therefore, our indirect BEM approach retains the physical
insight of the sources method, with all the benefits of analytical integration of exact Green's functions. In the
applications reported here, we use exact expressions of the two-dimensional (2D) Green's functions in an
unbounded elastic space,

The method has been applied by Sanchez-Sesma and Campillo*® to study the diffraction of P. SV and
Rayleigh waves by topographical irregularities in an elastic half-space. Excellent agreement was found with
published results. Ramos-Martinez and Sanchez-Sesma 2° applied the method to simulate the response of
alluvial valleys and validated their results by comparing them with those obtained by Kawase and Aki.'*
A successful application of this approach to three-dimensional soil-structure dynamic interaction has been
recently proposed. *!

In what follows, the single-layer boundary representation of elastic wave fields is described and applied to
compute the respoanse of various models of alluvial deposits for incident elastic waves in a half-space.
Comparisons are provided with both the exact?? and the aumerical ** solutions for a semicircular soft
inclusion under incident SH and SV waves, respectively. The response of a semielliptical valley is thea studied
in frequency and time domaians for incideat Rayleigh waves. So is done for a shallow soft valley under vertical
incidence of SH and SV waves. In this case, transfer functions are given in a frequency-space description
which suggests approximations of practical interest. These allowed the identification of a coupling mechan-
ism that controls the response and its resonant frequencies. It involves both the simple one-dimensional (1D)
shear beam model and the propagation of surface waves. Time domain results are combined to produce
a quasi-3D time response in which locally generated Love and Rayleigh surface waves produce rotating
polarization patterns.

INTEGRAL REPRESENTATION USING BOUNDARY SOURCES

Consider the domain ¥ and its boundary S. If an elastic material occupies such a region, the harmonic
displacement field can be writien, neglecting body forces, by means of the single-layer boundary integral

ui(x) = I ¢1(¢)th(x! 6) ds( (l)
s
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where u,{x) is the ith component of displacement at x, G,,(x, J}1s Green's tensor, i.¢. the displacement in the
direction i at point x due to the application of a unit force in the direction j at point J and (&) is the unknown
force density in the direction j. Therefore, ¢,(3)dS is clearly a force distribution at the boundary. The
subscripts in the differential element indicate the space variable over which the integration is performed. This
single-layer integral. that can be obtained from the Somighana identity.'? has been studied by Kupradze**
from the point of view of potential theory. He showed that the displacement field is continuous across Sif
@,3) is continuous along $. This is clear if we consider that G, (x. }) has an integrable singulanty at x = {. In
its scalar 2D version {SH waves] this representation is called the Kirchhoff -Helmholtz representation {see
Reference 25).

This integral representation aliows computation of stresses and tractions by direct application of Hooke's
faw except at the boundary singularities, i.e. when x =  on the boundary. By a limiting process, based on
equilibrium considerations around a neighbourhood of the boundary. it is possible to write, for x on §, that

1,x) = cep,(x) + J‘ @ (3T 4x, )dS, 2)
5

where ¢, is the ith component of traction at the boundary and ¢ = + 05 for a smooth boundary. The signs
+ or — are used if 1,{x) corresponds to the interior domain or to the exterior one, respectively, relative to
S (these interior and exterior domains are clearly defined once the direction of the normal vector on S is
specified: it always points towards the exterior region), T,(x, ) is the traction Green's function, ie. the
traction in the direction i at point x on the boundary with normal a(x) tassumed to be specified and pointing
outside if x is at ) due 1o the application of a unit force in the direction j applied at §. The first term on the
right-hand side must be dropped if x is not at S. This result has also been found by Kupradze. la its scalar
version, the result appeared first in a paper by Fredholm in 1900 (see Reference 26).

Equations (1) and (2) form the basis of our approach. Although indirect, it allows a direct interpretation of
the physical quantities involved: Expressions for Green's functions can be found in the literature
(e.g. References 7. 27 and 19). It suffices to say here that the singulanty of displacements is either loganthmic
of 1.7 for 2D or 3D problems, respectively. Regarding the tractions, such singulanties are explicitly of the
form 1 r or 1 rl. respectively. In particular. when frequency tends to zero. Green's tractions lead to their
static counterparts. These properties are invoked below in connection with our discretization scheme.

DIFFRACTION OF ELASTIC WAVES BY AN ALLUVIAL VALLEY

Consider the elastic half-space, E. with an ailuvial valley. R, as shown in Figure 1 under incidence of elastic
waves. The free-surface boundanes of regions £ and R are denoted by ¢, £ and ¢ R, respectively. The
interface ¢,E = ¢;R is the common boundary between them. The ground motion in this irregular configura-
tion comes from the interferences of incoming waves with reflected, diffracted and refracted ones. It is also
usual to say that the total motion in the half-space is the superpositian of the so-called diffracted waves and
the free field:

uf =ul” +ul® 3)

,E(M) R{K)

Royieigh

"”’ B € (L_‘.x'

Figure | Haif-space, E, with an elastic inclusion, R, and incidence of P.S and Rayleigh waves. The discretization alocg the interface, the
free suface of inclusion and portions of the flat surface of the half-space gves L. K and 1M segments, respectively.
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where u,°' = free-field displacement, ie. the solution in the absence of the irregularity. According to our
previous discussion. the diffracted field is given by equation (1) which. with appropriate superscripts to
indicate the region of validity, can be written as

! x) =J‘ @5)GEIx, £)dS, 4)

{E

The refracted elastic fields on the inclusion R can be written as

" (x) = f 613G 3)ds, (5)

en

The traction-free boundary conditions imply that
040" =0 on ¢ {6)

and

" =0 on &R 7)

where t,"' = tractions of refracted field. Then. from equation (2} such conditions can be expressed by means
of

OS¢ fixy +f PHITEX )dS, =0 (8)
2€
and
- 0%5¢kx) + [ M T, 5)dS, =0 )
o oR
On &3¢ = ¢,,. continuity of displacements and tractions implies
H:O} - u:dl = ullrl (lO)
I:Cll - r:d} - r:n (ll)
and these conditions can be expressed by
A
[ eF5IGEN 21ds, - OMIIGRI I1dS, = — Py {12
o CE T JOR
and
O-5{afix) + ¢rix)) +j ¢HIITEX, &) dS, —f @ 1EITRx, 21 dS, = — 1,(x) (13)
2E ir

Equations (8), (9), (11) and (12) constitute a system of integral equations for boundary sources, ie. those
producing the diffracted and the refracted fields. These expressions are discretized along a finite portion of
the boundary ¢E that includes the interface topography and the lateral flat parts and along ¢R, according to
the definition of each integral.

DISCRETIZATION

In order to solve the above system of integral equations, we have to discretize them. Let us assume the force
densities ¢,(J) constant over each of the boundary segments with equal length AS along each appropriate
boundary. Assume that 2, £ and K are the number of segments (elements) along the discretized part of the
flat surface on both sides, the irregular interface and the free surface of region R, respectively, as depicted in
Figure 1. It becomes clear that the total number of equations is 4M + 4L + 2K, which is the same as the
number of unknowns.



P.S AND RAYLEIGH WAVES 283

To clanify ideas, let us write the discretized versions of equations (I} and (2) (N =M + L + M)

v

wix) =Y o9, 5 (14)
=1
where
1 +AS 2
‘:;{xv ¢l) = -[ Gi;‘xo ‘)ds: (15)
5 ~AS 2
and
N
f.(x) = Z ¢}(£l}‘u{xv :l) (16)
ta]
where, for x = x,, we have
2+ A8 2
‘lj{xl'l ':l'} = Ccsuéll + JA le(x.ll é)dS: (17)
fi-852

The integrals in equation (15) are computed numerically with Gaussian integration, except in the case when
x is in the neighbourhood of ,, the midpoint of segment, for which we obtained analytical expressions from
the ascending series for Bessel functions (see e.g. Reference 28). Sanchez-Sesma and Campillo 1? presented
an example for such expressions when only the leading terms of the senes are retained. We considered up to
quadratic terms, which is enough if the number of segments per wavelength is larger than about six. The
integrals in equation (17) are also computed numerically using Gaussian integration except when x, = £,. In
this case, we have

'I}{xl' én) = Céijv “8)

because the only contribution to the integral in equation (17) for n =1 comes from the free term. The
coninbution from the tractions Green's tensor is null because the discretization segment is a straight line and
&, is the midpoint. In fact. it can be verified that. under this circumstance. such part of the integrand is
a singular odd function oa the segment. Therefore. its Cauchy’s principal value is zero. The value for t;; in
equation (18) can be interpreted as half of the applied unit line force and means that the force is distnibuted
symmetrically for any two half-spaces containing the line of application of the load, regardless of its direction.
This result also hoids for the static Green's function.

Equations (84 (9} (11} and (12) are discretized i a similar manner. This leads to a linear system of
4M + 4L + 2K equations with the same number of unknowns. The system is solved using Gauss method.
Once the values of ¢,{3,) are known, the diffracted field is computed by means of the appropriate
discretizanon of equations (4) and (5).

TESTING OF THE METHOD

The accuracy of this approach in its application to topographical irregularities has been verified by
Sanchez-Sesma and Campillo!® by comparing results with published solutions *°~>! for the diffraction of P,
SV and Rayleigh waves by a semicircular canyon. Excellent agreement was found for both horizontal and
vertical components of surface displacements.

Comparisons are provided here with both the exact*? and the numerical** solutions for a semicircular
soft inclusion under incident SH and SV waves, respectively. The model response is studied for a normalized
frequency n = 10, where n = wa/'nf; and a = radius of valley. Material properties are pp/pg = 2/3 and
Ba Be = 1,2 for mass density and shear wave velocity ratios, respectively. Figure 2 displays the surface
amplitudes for a horizontal incidence of a plane SH wave. Trifunac's?? exact solution is given by symbolis.
The agreement is excellent. Figure 3 shows the horizontal and vertical surface displacement amplitudes for
an incident SV wave. Dravinski and Mossessian?? results are marked with symbols. Some small differences in

12)
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Figure 2. Ampiitudes of qonizontal antiplane displacement ¢ for oblique incrdence (v = 30°) of harmonic SH waves upon a semicircular

valley Materal properes are yy oy = 23 and f¢ B¢ = | 2 for mass denwity and shear wave velocity ratios. respectively. Normalized

frequency n = 1. Solid bne corresponds to results obtained in the present study, while solid symbois correspond to Trifunac's ¢ exact
solution.

the horizontal componeat can be seen. Note that in this case both techniques are approximate. In any event,
these results show significant differences between the respanses of the same model to different types of
incident waves.

The results presented here were obtained using 2 discretization length of 2na (two times the perimeter of
the interface) for each of the flat parts, and 10 segments per § wavelength. The displacements are virtually the
same even when such parameters are reduced to na and to 6, respectively. This implies that edge effects have
little or no influence in our computations and shows that, apart from the discretization of part of the [rec
boundary, there is no need of fictitious or absorbing boundaries. Sanchez-Sesma and Campillo'? verified
this interpretation. They computed the phase of diffiracted waves and observed that the phase variation with
space shows slopes consistent with the expected outgoing nature of such waves.

EXAMPLES

A deep semielliptical soft deposit under incident Rayleigh waves

In order to illustrate a complete set of results, we study the response of a semielliptical valley in both the
frequency and time domains for incident Rayleigh waves (Figure 4). The maximum depth is 0-5 times the
half-width (h = 0-5a) Material properties are pa/p, = 1 and 8, /B = 1;2 for mass density and shear wave
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10.0 12.0

Amplitude
4.0 6.0 B.0
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Figure ). Amplitudes of honzontal and verucal displacements (3, w) for incidence of harmensc Ravieigh waves upon a semicircular

valles Matena! properties are oy pp = 2 3 and 3, §, = |  for mass densaty and shear wave veloaity ratios. respectively. Normalzed

frequency # = 1. Solid and dashed lines correspond to results obtained in the present study. »hile solid and open symbols correspoad to
the sumencal results of Dravinski and Mossessiap. *?

velocity ratios, respectively. Poisson ratios of 1 4 and 1 3 were selected for the half-space and the valley,
respectively.

For 2 normalized frequency n = 1, Figure 4 shows the amplitude of displacements vs. space. Figure 5
displays the horizontal and the vertical displacement amplitudes for selected receivers along the free surface
between x = — 22 and x = 2a, where a is the half-width of valiey. These plots are, in fact, transfer functions
with respect to the [ree-field horizontal component and are given against the normalized frequency
n = wa nBE. Large varability can be seen for the receivers with absolute amplification of about three for
both components. However, relative amplifications reach values of about 18 inside the valley, with respect to
some external points.

Note that maximum absolute amplifications at the valley’s centre appears for a normalized frequency
n = 09. This is in good agreement with the Rial's*? asymptotic theory and Bard and Bouchon®? results on
the resonant eigenfrequencies in sedimentary basins. The predicted value for the fundamental mode of a deep
semielliptical valley with the same shape ratio under in-plane SV excitation is given approximately by
n,/no = 1-8, where no = 05 is the resonant frequency of the 1D shear model applied at the basin’s centre. The
amplitude is consistent with the values predicted by Bard and Bouchon. *?

From frequency domain results, we computed synthetic seismograms using the FFT algorithm for
a Ricker wavelet with central frequency w, = 2rfl;/3a; thus, the characteristic period of the Ricker pulse is
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Figure 4. Ampliudes of horizontal (continuous line} and vertical (dotted line} displacements for incidence of Rayleigh waves upon
semuellipucai alluvial valley. Matenial properues are py pp =t and A, B, = 1 2 for mass density and shear wave velocity ratios.
respectively. Poisson ratios are { 4 and | 3 for regions £ and R. Normalized frequency g = 10,

fp = 3a f¢. In Figure 6 such time series are plotted for 51 receivers equally spaced between x = — 24 and
© = la. [t was assumed that 2a f; = 1 sec. in order to define the time scale. The actual scale is Bet 2a.
Figure 7 displays the same results for only 1 receivers in the same range by means of polarigrams, ** which
are plots that display displacement vectors shifted along the time scale. [n our example, horizontal
displacement u goes along with tme. whereas vertical displacement —w runs along the stations. These
resuits show that even a relatively mild heterogeneity can generate important variations in both amplitude
and polanzation of ground motion.

A shallow parabolic soft deposit under incident § wares

In this example, our aim is to present some results for incident S waves. both anripiane SH and inplane SV
ones for a very soft shallow parabolic valley and study the mechanisms of generation of surface waves and the
resonant characteristics. The maximum depth is 0-05 times the half-width {h = a 20) as shown in Figure 8.
Matenal properties are pp/pe = 1;2 and BrBe = 14 for mass density and shear wave velocity ratio,
respectively. Poisson ratios of 1.3 and 0-49 were selected for the half-space and the valley. The /8 ratios are
then 2 and 714, respectively.

Itis clear that we can consider the incidence of a plane § wave with a given incidence angle ; and arbitrary
polarization 8 (see Figure 8) by the simple combination of SH (6 = 0)and SV (6 = x.2) responses. Each one
is be modulated by sin @ and cos 9. respectively. This allows.one to study how the propagation of Love and
Rayleigh surface waves, which produce the antiplane and inplane components, interact and control the
polarization of the horizontal motion. '

Computations were again performed in the frequency domain. Horizontal displacement amplitudes u and
v are shown in Figure 9 for vertical incident SH and SV waves, respectively. A great variability of
amplifications in frequency domain can be seen. It is larger for the SH case. In both cases, the horizontal
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Figure 6. Incidence of a harmonic Rayleigh wave upon a semielliptical

villey. Synthetic seismograms for 51 surface receivers equally spaved be-
tween v = — 20 and v = 2a al the surface; (a) and (b) horzontal and

vertical componenis, v and w. respechively. The madent time signal 1s

Figure 5. Incidence of & harmonic Rayleigh wave upon a semielhiptical vatley

Amplitudes of surface displacements for 1| recgivers against normalized fre-

quency: (a) horizonlal displucement and (b) vertical displacement.

a Ricker wavelet with central frequency w, = Iafl, 3u.
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Figure 7. Incidence of 2 harmonic Rayleigh wave upon a semielliptical vailey. Synthetic polarigrams for 11 surface receivers equally
spaced between x = — 2aand x = 2z a1 the surface. Horizontal and vertical component, u and — w, are plotted along time and stations
scales, respectively. The incident time signal is 2 Ricker wavelet with central frequency @, = 218, 3a.

v,2 049

—p
X ¥ =0333

Figure 8. Soft alluvial valley with parabolic uterface under incxdence of plane S waves. Incidence and polarization angles are represented
by y and 8. respectively. Matenal properties are pp pg = 1.2 and B, f; = 1.4 for mass density and shear wave velocity ratios,
respectively. Powsson ratios are 1.3 and 0-49 [or regions E and R

amplification reached more than 25 times the amplitude of incident waves at some receivers. This happens for
frequencies larger than about 5 = 2. Note that the 1D shear model predicts a maximum amplification of 16,
and, for the centre of the model, that would occur at n = 2-5. However, lateral interferences from surface
waves strongly modify that. On the other hand, vertical motion (not shown) is significantly excited for
frequencies larger than about 5 = 2, giving a value of 10 for n = 3-75. In any event, the horizontal motion

dominates the valley's response for the range of frequencies studied.
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Figure 9. [aadence of a plane S wave with incidence angle of 0° Frequency response {or surface receivers equally spaced between
x = — 1-25a and x = 00 at the surface of a shallow parabolic valley (a) SY case and (b} SH case.

Apart from the large amplifications, these plots of frequency response suggest a rather chaotic behaviour.
However, the corresponding contour maps of transfer functions in the frequency-space domain (f-x) of
Figures 10 and 11 reveal a fine structure in which lateral propagation plays a significant role for frequencies
higher than the one that controls the 1D response at the centre. Figure 10 shows such a map for vertical
incidence of SH waves. The maximum amplifications for normalized frequencies larger than n = 2-5 occur at
the borders of a portion that grows with frequency. Indeed, if we consider that a first resonant frequency of an
associated 1D shear model with the local thickness h(x) is given by fo = B /4h(x), which, for this model, can
be written as

ne = 25(1 — (x/a)*]~? 21)

therefore, the borders of the excited central portion for a given frequency 7 > 2-5 occur approximately at
x = + a(l — 25/7)V'*. Outside this region, amplification is moderate. The amplification inside can be very
large with a clearly defined resonant behaviour. This is clear from the peaks that appear all along the map.
The number of peaks grows with frequency, but for certain frequencies there are few or no peaks at all. One
reasonable explanation for such peaks comes from ray theory. Consider that some rays exist that, after many
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Figure 11. Contour map of transfer function u in the frequency-space doman ( f-x) for vertical incidence of SV waves upon a shailow
parabolic valley. # = normalized frequency.
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Figure 12 Ray diagram inside the parabolic valley. The vertical scale was enhanced.

bouncings up and down inside the valley, describe a total length ¢, as shown in Figure 12, In agreement with
Rial's**?* asymptotic theory, we found that a condition for resonance implies that 27 = i(2m + 1}, where
i = 2nfly 'wis the wavelength, and m = 0, I, 2, . .. For / fixed, the resonant [requencies are defined. In our
study. 7 is allowed to vary, so the resonant frequencies come accompanied by vanations in the size of the
resonant region. Amplifications come as quanta, with clearly defined jumps. This phenomenon can be
explained if we consider that f[rom a given zone of ‘local’ resonance, wave propagation is stimulared towards
deeper parts. Then, amplifications are also controlled by surface waves. In fact, it can be shown by means of
frequency-wave-number diagrams ( -k, where k = w:¢ is the wave-number, ¢ is the phase velocity) that the
lateral resonant patterns are formed by surface waves.’®?”

Figure 11 displays these results for the horizontal displacement amplitude u under vertical incidence of SV
waves. The response patiern, even with the mode conversions that occur, is similar with fewer maxima than
in the SH case. This can be explained considering the different behaviour of dispersion curves of Love and
Rayleigh waves in this model (see Figure 13).

SURFACE WAVES

’OI _
T Fayleigh
— yrelq
8-
- 6 .
3_’-. Love
3
T 4r
2
0
o 10 20 30 40

Frequency. n

Figure | 3. Dispersion curves of surface waves for 2 1D model with a depth of 005 times the half-wadth of parabolic deposit and the same
physical properties.
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Although in these computations we have used a very small material damping (Q = 500), the results suggest
that practical approximations can be found to describe the response of shallow, soft alluvial deposits in terms
of surface waves. In fact, for flat alluvial basins, a simple approximation allows one to deal with 3D
configurations, at least for small frequencies.

Finally, we computed synthetic seismograms from frequency domain results by using the FFT algorithm.
The time variation of an incoming wavefield is given by a Ricker wavelet with characteristic period
ty = 051, where to = 2a/8;. For an incidence angle y = 0, Figure {4{a) and (b) shows the synthetics for SH
and SV waves, respectively. These results can be combined to produce a quasi-3D response with the
horizontal motion given by the inplane u and antiplane o components, respectively. Figure 15 shows the
particle motion and polarigrams for sites across the valley when the polarization angle is 8 = 60°. The soft
layer response produces rotating horizontal polanzation patterns.

Stations, u

Stations, v

Figure 14. Synthetic seismograms (1) v1. v(2) for incidence of (2} SV and (b) SH waves, respectively, in $1 statioas (from —~ t-2%a 10
1-254) across the surface of the 2D shallow parabolic valley. The incident time signal is 2 Ricker wavelet with ceatral lrequency
w, = 2xfy/a
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Figure 15. Horzontal polarigrams and partick motioa for 11 stations (from — 1-25a to 1:25a) across the 2D shallow parabolic valley
model Vertical incidence of S waves with polarization angle @ = 60°.

CONCLUSIONS

An indirect boundary integral formulation for dynamic elasticity has been presented. It is based upon the
integral representation of the diffracted elastic waves in terms of single-layer boundary sources. Although this
approach is called indirect BEM in the literature, it provides far more insight into the physics of diffraction
problems than does the direct approaches. This is because diffracted waves are constructed at the boundaries
from which they are radiated. Therefare, this method can be regarded as a numerical realization of Huygens’
principle. From boundary conditions, a system of integral equations for boundary sources is obtained.

A discretization scheme based upon the numernical and analytical integration of exact Green's functions for

displacements and tractions is used. In addition to the physical insight gained with this method, it appears to
be accurate and fast.

Some examples are given for 2D problems of diffraction of elastic waves by soft elastic inclusion models of
alluvial deposits in an elastic half-space. A semielliptical soft deposit was studied for incident Rayleigh waves
and a complete set of results show that even a relatively mild heterogeneity can generate important variations
in both amplitude and pelanzation of ground mouon.

A very soft shallow deposit was analysed for incident SH and SV waves. Very large amplifications were
found and the contour maps of transfer functions in the frequency-space domain { f-x) reveal a fine structure
in which locally generated surface waves play a significant role for frequencies higher than the one that
controls the 1D response at the centre. The maximum amplifications occur at the borders of a portion that
grows with frequency. Such a frequency corresponds to the ‘local’ 1D shear model resonance. As wave
propagation is stimulated towards decper parts, amplifications are also controlled by surface waves. These
results suggest that practical approximations can be found to describe the response of shallow, soft alluvial
deposits in terms of surface waves, Love and Rayleigh for the SH and SV cases, respectively.

Finally, the responses in time domain are combined to produce a quasi-3D motion. As expected, the
propagation of Love and Rayleigh surface waves interact and control the polarization of horizoatal motion.
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Three-Dimensional Scattering by Two-Dimensional Topographies

by H. A. Pedersen, F. J. Sdnchez-Sesma, and M. Campillo

Abstract Three-dimensional seismic responses of two-dimensional topogra-
phies are studied by means of the indirect boundary element method (IBEM).
The IBEM yields, in the presented form, very accurate results and has the ad-
vantage of low computational cost. In IBEM, diffracted waves are constructed
in terms of single-layer boundary sources. The appropriate Green’s functions
used are those of a harmonic point force moving along the axis of the topog-
raphy in a full space. Obtained results are compared against those published by
other authors. Examples of simulations are presented for different geometries,
for different types of incident wave fields, and, in particular, for different arrival
angles to the topography to quantitatively study three-dimensional effects of the
scattering. The accuracy of the results makes it possible to analyze them in both
the time and frequency domains. Frequency-space representations allow iden-
tification of diffraction and interference patterns in the seismic response of the
topography. Synthetic seismograms are obtained by Fourier analysis. Using time-
space domain representations, the nature of each of the scattered waves are
identified in terms of, for example, creeping waves and reflected compressional

waves.

Introduction

Surface topography has been reported to produce
significant . site effects (e.g., Davis and West, 1973;
Griffiths and Bollinger, 1979; Bard and Tucker, 1985).
These effects take the.form of a relative amplification of
seismic signals recorded at the top of a mountain with
respect to a reference station located at the base of the
mountain. The relative amplification can be significant
over a large frequency interval. Knowledge of these ef-
fects is important for the prediction of ground movement
close to topographic features.

Two-dimensional topographic effects on wave fields
have been numerically modeled by a number of authors.
Analytical solutions have been found for simple geom-
etries (Trifunac, 1973; Lee and Cao, 1989; Todorovska
and Lee, 1990, 1991). Bouchon (1973), Bard (1982),
and Geli et al. (1988) have used techniques based on the
method proposed by Aki and Larner (1970) to model
topographic effects. A large number of simulations have
been performed with techniques based on representation
theorems. These methods include the direct boundary
element method (BEM) (Wong and Jennings, 1975; Zhang
and Chopra, 1991), the indirect boundary element method
(IBEM) (Sénchez-Sesma and Rosenblueth, 1979; Wong,
1982; Luco et al., 1990; Sinchez-Sesma and Campillo,
1991, 1993), and combinations of integral representa-
tions with discrete wavenumber expansions of Green'’s
functions (Bouchon, 1985; Kawase, 1988; Pei and Pa-

pageorgiou, 1993a). While BEM directly finds the un-
known tractions and displacements, IBEM searches a force
distribution for which the radiated field satisfies the
boundary conditions. Displacements are obtained by su-
perposition of the radiation from these sources. A more
detailed discussion of the use of these methods in site
effect simulations can be found in S4nchez-Sesma and
Campillo (1993).

While theoretical models predict significant scatter-
tng by topographies, they have not yet quantitatively ex-
plained observations (e.g., Bard and Tucker, 1985; Geli
et al., 1988). Some observations seem to show both higher
and more broadband amplification than predicted by nu-
merical simulations. To evaluate whether topographic
effects alone can account for the observed amplifica-
tions, it is necessary to extend the numerical simulation
to geologically more realistic models, taking into ac-
count the three-dimensional character of real topogra-
phies and the presence in nature of all types of incident
wave fields.

Different attempts have been made to extend the
simulation of scattering by two-dimensional structures
from pure two-dimensional scattering (incident wave field
perpendicular to the structure) to three-dimensional scat-
tering (incident wave field with an arbitrary arrival angle
to the structure). In particular, to study the diffraction
by a canyon, Luco et al. (1990) use IBEM and locate
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sources off the surface of the canyon to displace sin-
gularities in the Green’s functions from the surface. In
this approach, sources must be carefully located to avoid
numerical problems and the location off the surface leads
to an approximate solution. Pei and Papageorgiou (1993a)
simulate the scattered wave field across a canyon by us-
ing half-space Green’s functions to solve the boundary
integral equation on the surface itself. While more ac-
curate, the latter method has a high computational cost
as a result of the calculation of half-space Green’s func-
tions. Three-dimensional scattering by two-dimensional
structures has also been treated in the case of alluvial
valleys (Khair er al., 1989; Khair er af., 1991; Liu er
al., 1991; Pei and Papageorgiou, 1993b).

In this article we present a method to simulate three-
dimensional scattering by ridge and canyon structures of
arbitrary shapes. The IBEM, with full space Green's
functions, is used to create the scattered wave field. By
using compact expressions of Green's functions appro-
priate to the problem, kighly accurate results are pro-
duced for a low computational cost. The method, there-
fore, makes it possible to perform a large number of
simulations for the study of how different parameters in-
fluence the scattering and for the study of three-dimen-
sional effects due to the obliquely incident waves. It is
possible, in particular, to quantitatively model observed
site effects on topographies because the arrival angle of
the incident waves on the structure can be taken into ac-
count.

The article -is organized as follows: first; a brief in-
troduction is given to IBEM, and then compact expres-
stons for Green’s functions are derived for use in the
simulations. The theoretical part is concluded by a dis-
cussion of the implementation of the method. Results
from applying the method are compared against those
from other approaches, and finally, examples are pre-
sented of simulations performed for simple geometries.

Integral Representation of Elastic Wave Fields

The IBEM is based on an integral representation of
wave fields. Neglecting body forces, the displacement
field in 2 domain V with boundary § occupied by an
elastic material can be written (see Sanchez-Sesma and
Campillo, 1991)

I“l(x) = f’f’;‘(g) Gr}(xv ;)ds{v (l)

where u{x) is the ith component of displacement at x.
The term G(x, §) is the Green’s function; i.e., the dis-
placement in direction { at x due to a point force in di-
rection j applied at the point L; ¢(Z) is the force density
in direction j at L. The term ¢({)dS; is therefore a force
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distribution on S. The integration is performed over the
space variable £.

Equation (1) shows that if G; is known, one stmply
needs to find the force density §; on the surface S to
calculate the displacement at any point in V. Further-
more, the displacement field is continuous across S if ;
is continuous on § (Kupradze, 1963). When displace-
ments u, are known, it is possible to calculate stresses
and tractions by applying Hooke's law. Special care must
be taken at boundary singularities. The contribution of
the singularity to the traction equals half the surface force
applied, assuming a smooth boundary (e.g., Kupradze,
1963),

rr'(x) = Cd’i(x) + f¢;(§)ﬂ;{x- g)dsl,'! (2)

where 7(x) is the ith component of traction at X; ¢ equals
0 if x is outside S, ¢ equals 1/2 if x tends to § from the
inside of V, and ¢ equals —1/2 if x tends to § from the
outside of V. T(x, {) is the traction Green's function;
i.e., the traction in direction i at point x of a point source
in direction j applied at point {. The T} is found by ap-
plication of Hooke's law to equation (1).

In the following sections, the displacement and trac-
tion Green's functions are first derived for use in finding
the three-dimensional scattered field for a two-dimen-
sional structure. Then, the procedure used to solve the
problem of three-dimensional scattering by a two-di-
mensional topography is defined.

Green’s Functions for Moving Point Sources
in an Elastic Medium

The geometry of the problem is shown in Figure 1.
A two-dimensional structure that is infinite in the di-

Geometry of the problem of scatter-

Figure 1.
ing by two-dimensional topographies. (a) Hori-
zontal plane; definition of azimuth ¢. (b) Vertical
plane; definition of incidence angle 6.
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rection of the y axis is considered. The problem of
three-dimensional scattering of plane waves by a two-
dimensional structure is somewhat simpler than the full
three-dimensional problem; at two cross sections per-
pendicular to the y axis the wave field will be identical
but shifted in time. Point sources moving parallel to the
y axis are therefore used to represent the diffracted field.
This approach has also been used by Luco et al. (1990).
The incoming wave arrives with an azimuth ¢ relative
to the structure and an incidence 8 to the vertical axis
(see Fig. 1). It propagates with a velocity ¢. The wave
has an apparent velocity ¢’ along the y axis

[
¢ = — (3)

" sin ¢ sin #

The scattered wave field can be expressed by point sources
that move paralle! to the y axis with a constant velocity
¢’ along the interfaces of the model. In the case of a
topography, the point sources move along the free sur-
face.

To derive compact expressions for traction and dis-
placement Green's functions for these moving point
sources, one can start by solving the same problem for
an acoustic medium. The solution g’ to the inhomoge-
ncous scalar wave equation for a fixed point source at
the origin is given by

— k
g = exp (iwt) E(p—(—r—-—l-r—), €Y

where w is the circular frequency, k = @/V is the wave-
number, V is the acoustic wave propagation velocity, and
r is the distance to the point source. This scalar Green's
function can be expressed with a decomposition into plane
waves (Weyl integral, see Aki and Richards, 1980)

1
g’ = exp (jwr) —
2mr

" 7 exp (~ikx — iky —
f f exp (—ik.x — iky — ¥z) dedk, (5)
—_0 — % .Y

where &, and k, denote the x and y components of the
- wavenumber k = (&, &, iy)". ‘The vertical wavenumber
¥ is defined as

Y= VIE +E - (@/V)] real(Z0. (6)

The Green's function g is searched for a moving point
source. To obtain g, the influence of the source is in-
tegrated over all positions € along the y axis, taking into
account the position of the source:
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N € 1
g= f de exp (iw(: - —;)) —
- c 2T

_fm f exp (~ikx —ik(y & = A
3 i &
et 4

(7)

Integration over the space variable € and substitution of
v as a/fc’ gives

of S

exp (—ikx — ¥z}
Y

-exp (—ik,y) dk.dk,, (8)

.

ignoring the factor exp (iwr). Integration over k, yields

f” exp[—ikx — ivy — VIE + (w/c')? — (w/V)2]] dk
g= -
= VE +(w/c'} = (w/V)

9)

Rearrangement of equation (9) leads to

8 = iexp (—ivy)
fw exp [—ikx — iV(0/V) - & — vl]] dk
- Viw/Vy -8 - )

(10)

with

-V £0.

Im[V(w/V) - &

This integral is the plane wave decomposition of the wave
field radiated by a moving point source. It can be ex-
pressed using Lamb’s (1904) representation for Hankel
functions as

g = mexp(—ivy) HY (VI - vV R) (11)

with

R=V&-xP+e-127, (12)
where (x', z'}) is the source location in the (x ~ z) plane.

It is possible to express directly the equivalent of
equation (11} for an elastic material with density p by
(Morse and Feshbach, 1953; Pao and Varatharajulu, 1976)
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Gu’(x' g) = {ksg:(x’ g)au

dmpw?

62
+ —— [g:(x, O — &,(x, l.'.)]}. (13)
8x,6x;

where indices 5 and p refer to shear and compressional
waves, respectively.

The insertion of equation (12) in equation (13) gives
the required displacement Green’s functions. As dis-
cussed earlier, traction Green's functions can be ob-
tained by applying Hooke’s law. The compact expres-
sions for the Green’s functions are given in the Appendix.

These expressions were validated by comparison with
well-known expressions of Green's functions in three di-
mensions. The spatial Fourier transform over y of the
latter provides G (x, k,, z, w) by replacing &, by w/c’.

Implementation of the Method

In implementing the method, the total wave field is
assumed to be the superposition of the diffracted field
and the “free field” «®; i.e., the field in the absence of
the irregularity. The definition of the free field is ad-
dressed later in this section.

Under this assumption, equation (1) becomes

u{x) = u;(x) + j $, ()G {x, L) dS;. (14)

At the free surface, tractions vanish. Denoting tractions
of the free field ¢°, this condition gives

i
Eu’l.(X) + fu’l,({)T.,-(x. 0 dsg= —ei(x).  (15)

This continuous integral must be replaced by a discrete
one for computer-based analysis. Again, the methodol-
ogy of Sinchez-Sesma and Campillo (1991) was fol-
lowed: the surface is discretized into N segments of equal
length As. For each frequency, N is chosen so that As
is much smaller than the wavelength of the shear waves,
Consequently, the force density ¢.(x) is chosen to be
constant on each of the segments. Testing of the discre-
tization parameters showed that five segments per wave-
length is sufficient to ensure accurate results. A finite
portion of the surface is discretized. A discretization of
five times the length L of the irregularity, as used in the
results presented here, yielded results within a few per-
cent of those obtained by discretizing 3L of the surface.

A discrete version of equation (15) can be used to
find the surface force (L) on each segment. The eval-
uation of the traction at the center of each segment leads
to the system of linear equations
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-

N
S G @x, 0 = —12x) n=1,N (16)
=1

where

Lt arr2

1
Ilj(xns L) = 5 5|‘;6nl + j

Loz

The integral in equation (17) is evaluated by Gaussian
integration, except when n = /. In this particular case,
it is calculated analytically by using ascending series for
Bessel functions (e.g., Abramowitz and Stegun, 1972).

Once (L) has been found by resolution of the sys-
temn of equations (16), the displacement at any point can
be evaluated by the following discrete equivalent of
equation (14):

N
u(x) = u2x) + D, P L)gi(x. L), (18)
i=1

where

Lt aan
gﬁ(x: ;l) = f Glj(x: g)d‘gC' (19)

L-an

If x is located on the surface, the integral is again eval-
uated by analytical expressions over the segment on which
x is located. Gaussian integration is used on other seg-
ments.

This section is concluded by a short discussion of
the definition of the free fields u® and . In the examples
presented in the next sections, a free field is used that
includes the reflection of the incoming wave on the free
surface of the half-space. For ridges, this field is ex-
tended analytically to the points on the ridge that are
located outside the reference half-space. This procedure
has the advantage of reducing boundary effects due to
the truncation of the model; the surface forces 4, will
decrease in amplitude toward the limits of the model be-
cause the effect of the irregularity decreases. On the other
hand, the analytically extended field is both nonphysical
and noncausal. For strongly antisymmetrical ridges, we
encounter problems in the form of noncausal arrivals when
we use the half-space reference field. Use of the full
space free field solves these problems but introduces ar-
tifacts in the form of reflections on the boundary of the
model.

For canyons, analytical expressions for Rayleigh
waves are used to define the free field. The problem of
defining the free field for incoming Rayleigh waves on
ridges is not addressed, as the exponential decrease with
depth of the amplitude of Rayleigh waves leads to nu-
merical problems for high frequencies when the analyt-
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ical expression is extended upward. For the two-dimen-
sional case, the Rayleigh waves can be simulated by a
vertical point load applied far from the topographic relief
(S4nchez-Sesma and Campillo, 1991).

Validation of the Method

The two-dimensional case is a limiting case of the
method (¢ = (). In this case, the Green's functions listed
in the Appendix arc equivalent to well-known two-di-
mensional compact expressions for Green's functions
(e.g., Sdnchez-Sesma and Campiilo, 1991). Our results
agree with those of Sdnchez-Sesma and Campillo (1991)
for the two-dimensional case where the two methods are
strictly equivalent. As Sinchez-Sesma and Campillo
{1991) have compared their results to those of other au-
thors, the two-dimensional case is not addressed further
here, and the reader is referred to S4dnchez-Sesma and
Campillo (1991).

Literature on three-dimensional scattering by two-
dimensional topographies is scarce. We compared our
results with those of Luco et al. (1990) using the model
depicted in Figure 2. The topographic irregularity is a
semi-circular canyon of radius @ in a homogeneous half-
space. The half-space is characterized by a shear-wave
velocity 8 and a compressional-wave velocity a = 28.
Figure 3 shows the comparison with Luco et al. for an
incident P wave arriving with an azimuth of 45° and an
incidence angle of 45° for three normalized frequencies
n where

n= v (20)

For n = 1, the shear wavelength equals the diameter of

the canyon.

The agreement between our results and those of Luco
et al. (1990) is generally good. Especially at low fre-
quencies, the agreement is excellent, while small dif-
ferences arise at higher frequencies. The level of am-
plification and deamplification are slightly different across
the topography, while the general shape of the curves is

similar.

- 2a —

a=28
Qs-Qp-100.

Figure 2. Model of the semi-circular canyon
used in the simulations.

Numerical Results

Parameters for simulations of a wave field scattered
by a two-dimensional topography include the geometry,
the elastic parameters of the model, the type of the in-
cident plane wave (P, SV, SH, Rayleigh), its azimuth P,
and incidence & with respect to the z axis. Simulations
were performed for incident P, SV, SH. and Rayleigh
waves (except for Rayleigh waves incident on a ridge).
Selected results are presented here for simulations with
two simple geometries (semi-circular canyon, semi-cir-
cular ridge) and two types of incident waves (P and SV
waves). Results will be presented in both the space-time
(x, 1) and in the space-frequency (x, B) domains for —2
= x/a = 2, where a is the radius of the canyon or the
ridge. The normalized frequency 7, defined previously,
is used. Simulations were carried out between 7 = 0 and
1 = 6.4. Traces in time were obtained by convolution
with a Ricker wavelet of central frequency n = 2, fol-

amplitude

) 00 T ) ) T T

amplitude

m 00— " , . ,

— o
¢ wmy
— payy
o wmy

amplitude

& wmr

(<) 00

Figure 3. Example of comparison of obtained
results with those of Luco er al. (1990). Contin-
uous lines, dotied lines, and dashed lines; our re-
sults. Solid circles, open circles, and triangles; Luco
et al. (1990}). (a} p = 0.5, (b) 3 = 1, and (c) n
= 2.
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(d) x/a

Figure 4.  Spectral amplitude of total horizontal displacements across the semi-
circular canyon. Incident wave field, SV wave with 8 = 45°, (a) ¢ = 0°, (b) ¢
= 30° (c) ¢ = 60°, and (d) ¢ = 90°.

(c) x/a ) x/a

Figure 5.  Same as Figure 4 for vertical displacements.
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lowed by an inverse Fourier transform. The amplitude
scale is the same in all synthetic seismograms shown in
this article.

Semi-Circular Canyon

In the case of the semi-circular canyon, the model
presented in Figure 2 was used with only one difference
compared to the previous simulations: in the following,
the quality factor for shear and compressional waves is
1000. Figures 4 and S show the (x, 1) image of the wave
field across the canyon for an incident SV wave with
incidence 8 = 45° and differing azimuths (¢ = 0°, 30°,
60°, and 90°). Figure 4 shows the total horizontal dis-
placement and Figure 5 the vertical displacement.

As the azimuth increases, the amplitude of the scat-
tering changes. Figures 4 and 5 show that for small and
intermediate azimuths (¢ = 60°), it is dominated by scat-
tering generated by the edge of the canyonatx/a = —1.
The vertical displacement for ¢ = 90° shows clearly how
the scattered field across the canyon is the result of in-
terference between scattered waves generated at the edges.
Spectral amplitudes generally seem to decrease as the
azimuth of the incident wave increases.

The synthetic seismograms for the four azimuths
(Figs. 6 through 9) show that the scattered field is mainly
composed of creeping waves across the canyon, while

4 M —— e
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3
-
A
E
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-2 -1 [+] 1 2
(c) x/a
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outside the canyon the scattered waves are mostly Ray-

leigh waves and waves reflected by the surface of the
canyon. The general image seems to be the same for all
azimuths, but the relative amplitudes and the apparent
velocity of the diffracted waves are strongly dependent
on the azimuth. Diffraction is less for an azimuth of 90°,
but amplitudes can nevertheless be high at specific points
because of the interference of waves. Even when the in-
cident wave field has displacements only along the y and
z axis, the scattered field has significant displacements
on the x component.

The apparent velocity of the diffracted waves can be
understood by considering the meaning of ¢’, the ap-
parent velocity along the y axis, in a simplified way us-
ing Huygen’s principle. The ¢' can take any value be-
tween ¢ and infinity, where ¢, is the Rayleigh wave
velocity in the half-space. The source emits S and P
waves, with velocities ¢ and ¢,. If ¢’ is greater than c,,
the field of the moving point source corresponds to
supersonic waves. This sitvation is illustrated in Figure
10a. The resulting wave front moves with an angle ¢’
to the y axis, where

cos¢'=cL:'B=£°—"—Esin @ sin ¢. 21
c ¢

x/a

Figure 6.  Displacement amplitudes across a semi-circular canyon. Incident wave
field, SV wave with ¢ = 0° and @ = 45°. (a) Synthetic seismograms, «u,, (b)
synthetic seismograms, u,, and (c) spectral amplitudes for 5 = 2,

I
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Figure 7. Same as Figure 6 with ¢ = 30°. (a) Synthetic seismograms, u,, (b)
synthetic. seismograms, &,, (¢) synthetic seismograms, u,, and (d) spectral am- -
plitudes for n = 2.
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Figure 8. Same as Figure 7 with ¢ = 60°.
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Figure 9. Same as Figure 7 with ¢ = 90°.

Figure 10. Simplified wave field radiated by a
source moving with constant velocity ¢ in medium
of wave propagation velocities V. g. (2) ¢ > Vap,
)= Vog (©)c< Vg and (d) Vg < c < V,.

The apparent velocity ¢, along the x axis of this wave
front is consequently

Cap
. = . 22
¢ sin @' (22)

The use of these simple formulas to explain the apparent
velocity of the diffracted waves was verified in several
examples. They also explain why the scattered wave field
almost equals the superposition of the two-dimensional
in-plane and out-of-plane solutions (Pei and Papageor-
giou, 1993a) when the incident waves arrive almost ver-
tically (8 is small).

There is clearly a singularity when ¢’ equals ¢, or
cg. This is illustrated in Figure 10b. The singularity is,
in fact, weak, as the Green's functions near the source
can be integrated. Sirnulations with ¢’ slightly smaller
and greater than ¢, and cg confirmed that there is no
particular effect to expect in practice in that particular
situation. The wave field of the moving source when
¢' < ¢ is illustrated in Figure 10c. No plane wave is
created and the wave field presents a “Doppler effect.”
The absence of a clearly defined wave front may explain
why diffraction seems to decrease for large azimuths.
When ¢z < ¢’ < ¢,, the situation is a mixture of the
supersonic and the subsonic case, as illustrated in Figure
10d.

Semi-Circular Ridge

The various parameters of the model of a semi-cir-
cular ridge are identical to the model of the semi-circular
canyon, the models differ only by the sign of the topog-
raphy. In this section, we show examples of scattering

c3
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(c) . x2 () x/2

Figure 11. Spectral amplitude -of horizontal displacements across a semi-cir-
cular ridge. Incident wave field, P wave with 8 = 45°, (a) ¢ = 0°, (b) ¢ = 30°,
(c) ¢ = 60°, and (d) ¢ = 90°.
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by the ridge of a plane P wave with an incidence ¢ of
45° to the z axis.

Figures 11 and 12 show resuits of these simulations
for various azimuths of the incident P wave (¢ = 0°,
30°, 60°, and 90°). Total horizontal displacement is shown
in Figure 11 and vertical displacement in Figure 12. For
all azimuths, the interference is significant. Apparently,
scattered waves are created by both edges of the canyon
and the interference pattern is very complicated. The
amplitude of horizontal displacement is far from being
symmetrical over the ridge when the azimuth is small;
it is generally greatest near the far corner of the ridge
(xfa = 1).

The synthetic seismograms for ¢ = 0° and 90° are
shown in Figures 13 and 14, respectively. Analysis of
the apparent velocities of the scattered waves indicate
that creeping shear waves are generated at both edges of
the ridge. The P waves are reflected away from the ridge
at x/a = —1 and into the ridge near x/a = 1. The time
duration of the signal is long because scattered waves
bounce back and forth across the ridge.

Conclusions

An indirect boundary element method was presented
for calculating the three-dimensional scattered wave field

4 T T T T
..... . ]

amplitude
0

. :
OFI...LI..‘.L‘.L,I....L

_ of plane waves inci

“phy. Results were ?“ S
domains for two topographies of |
cirf:ular canyon and a semi-Circular ridge. The s
noise ratio of the synthetic seismograms was in gene
very low, so it was possible to interpret not only the
amplification of the incident waves, but also the nature
of the scattered wave field. The interpretations are based
upon analysis of particle motions and apparent velocities
of the waves. The total scattered wave field presents a
complicated pattern of amplification and deamplification
because it is the result of interference between different
scattered waves: Rayleigh waves, reflected compres-
sional and shear waves, and creeping waves. The com-
plexity does not seem (o change considerably when the
incident plane waves arrive outside the symmetry axis
of the topography. The points where amplification or
deamplification occur change as a function of geometry,
azimuth, incidence angle, and type of incident wave field,
but the general level of amplification does not change
significantly. Of all the simulations that we performed,
the maximum spectral amplification of displacement was
4.9 (for Rayleigh waves, the reference value is the hor-
izontal motion, which is assumed to be unitary). The
simulations also showed that there is, in practice, no paf-
ticular effect when the incident wave field is such that
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Figure 13. Displacement amplitudes across a semi-circular ridge. Incident wave

field, P wave with ¢ = 0° and 6 = 45°. (a) Synthetic seismograms, u., (b)
synthetic seismograms, u,, and {(c) spectral amplitudes for 7 = 2.
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Flgure 14. Same as Figure l3lwilh ¢ = 90°, (a) Synthetic seismograms, u,,
(b) synthetic seismograms, k,, (c) synthetic seismograms, u,, and (d) spectrat

amplitudes for n = 2.

there is a singularity in the Green's function for a mov-
ing point source.

Our results indicate that in the three-dimensional case,
as in the two-dimensional one, the wave field scattered
by a topography is significant over large distances. Of
course, the introduction of damping in the model will
diminish this effect; nevertheless, it is not surprising to
find extreme values of spectral ratios between the top
and the base of mountains. Peaks in the spectral ratio
are expected for frequencies where deamplification takes
place at the reference siation; there is no theoretical evi-
dence, however, of broadband amplification at any lo-
cation on the topography.

We needed to make only one approximation for the
impiementation of the method: we divided the topogra-
phy into a number of segments, each with a constant
force distribution. Tests showed that five segments per
wavelength is sufficient to obtain a good accuracy of the
results. In this way, performing each of the simulations
presented here requires only a few hours CPU time on a
medium-sized workstation (IBM Risc 6000, 9 Mflops).
The low computation time means that the method can
be extended to more complex problems, such as scat-
tering of plane waves by alluvial valleys or propagation
of crustal phases across large structures. Direct use of
the method presented in this article could be parametric
studies or modeling of observed topographic effects.
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Appendix

Green's Functions for a Moving Point Source in
an Elastic Unbounded Medium

Consider a point source moving in a homogeneous
isotropic elastic unbounded medium with density p, Lamé
constants ¢ and A, and shear- and compressional-wave
velocities a and 3, respectively. The point source moves
with velocity ¢ parallel to the x; axis along the line through
(x7, 0, x3). The observation point is situated at (x;, x;,
x;). The term i* = —1, 1 = time, w = circular frequency,
and H? is the Hankel functions of the second kind and
order m. Other notations used are

R=V ~ 2+ (-2,
X~ X
R

with

Imag(Q) = 0; imag(K) = 0

11 o1
A= (; - —2) HE(QR) + (E’ + ;3) HP(KR)
11 11
B = (; *;5) HPQR) - (E - ;—2) HP(KR)
11 11
C=+]=—-=HPKR) - y[— -~ < HPQR)
; ~ (KR) il Q
11 I
E= (E - ;) H(KR) - (; - ;) H(OR)

e 2
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D(z) = zHP(2).

The Green's functions for harmonic time dependence
exp (iwr) of the moving point source can be expressed
by the following compact forms:

1
G, = % [8,A — (2y,y; — 8;)B] exp (—iuxy),

_ R LR S
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SEISMIC RESPONSE OF THREE-DIMENSIONAL
ALLUVIAL VALLEYS FOR INCIDENT P, S AND RAYLEIGH WAVES

By

Francisco J. Sanchez-Sesma and Francisco Luzén

ABSTRACT

A simplified indirect boundary element method (BEM) is presented. It is used
to compute the selsmic response of three-dimensional alluvial valleys under
incident P, S and Rayleigh waves. The method is based on the Integral
representations for scattered elastic waves using single layer boundary
sources. Thls approach is called indirect BEM in the literature as the
sources strengths should be obtained as an intermediate step. Scattered waves
are constructed at the boundaries from which they radiate. Therefore, this
method can be regarded as a numerical realization of Huygens' principle.
Boundary conditions lead to a system of integral equations for boundary
sources. A simplified discretization scheme is used. It is based on the
approximate rectification of the surfaces involved using circles for the
numerical and analytical integration of the exact Green’s function for the
unbounded elastic space. Various examples are given for three-dimensional
problems of scattering and diffraction of elastic waves by soft elastic
inclusion models of alluvial deposits in an elastic half-space. Results are
displayed in both frequency and time domains. These results show the
significant influence of locally generated surface waves in seismic regponse

and evince three-dimensional effects.

INTRODUCTION

Since the ploneering studies of Akl and Larner (1970) and Trifunac
(1971, 1973) a great deal of work has lead to a reasonable understanding of
the physical basis of the site amplification problem. Most of the research
effort has been concentrated on 2-D problems. This has allowed some
explanation to observations. However, in order to improve the quantitative
account of site response, modeling should consider the 3-D nature of the

problem.



In fact, some strong motion records in Mexico City, recorded during the
Michoacan earthquake of 1985, show clearly large amplifications beyond the
level predicted using simple 1-D shear models (Sanchez-Sesma et al., 1988;
Kawase and Aki, 1989). This strongly suggests significant lateral effects of
three-dimensional nature. On the other hand, the new accelerometric network
of Mexlico City Valley has recorded extensively selsmic ground motion from
coastal events. The spatial variability and polarization of observed ground
motion have been Iinterpreted as three-dimensional effects (Pérez-Rocha et
al., 1991; Sanchez-Sesma et al., 1993b).

The seismic response of three-dimensional elastic features has been
dealt with wusing 1) multipolar expansions of wave functions {(e.g.
Sanchez-Sesma, 1983; Lee, 1984; Eshragi and Dravinski, 1989; Sinchez-Sesma et
al., 1989; 1993b; Mossessian and Dravinski, 1990), 2) ray theory (Lee and
Langston, 1983), 3) the Aki-Larner method (e.g. Horike et al., 1990; Ohori et
al., 1990; Jiang et ail., 1993), 4) the finite element method (e.g. Toshinawa
and Ohmachi, 1992; Li et al., 1992, Rlal et al., 1992), S) the finite
difference method (e.g. Olsen and Schuster, 1991; Frankel and Vidale, 1992:
Yomogida and Etgen, 1993; Frankel, 1993}, 6) the boundary element method
(e.g. Jiang and Kuribayashi, 1988; Luco et al., 1990; Shinozaki and Yoshida,
1992; Kim and Papageorgiou, 1993; Kawano et al., 1993; Pedersen et al.,
1993), 7) hybrid techniques (e.g. Khair et al., 1989:; Mossesian and
Dravinski, 1992; Hisada et al., 1993; Kato et al., 1993), and 8) asymptotic
methods (Rial, 1989).

The most realistic simulations to date are those of finite differences.
The recent paper by Frankel (1993) on the response of the San Bernardino
Valley, California, to nearby earthquakes illustrates well thls fact. The
other techniques have been used to understand basic effects and have been

restricted to simple configurations, usually axisymmetric ones.

In the last two decades boundary methods have galned \increasing
popularity. In particular, the boundary integral equation approaches and
their discretizations into boundary element methods (BEM) have produced
successful solutions to various problems in dynamic elasticity. Recognlzed
advantages over domaln approaches are the dimensionality reduction, the

relatlvely easy fulfillment of radiation conditions at infinity and the high
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accuracy of results. Excellent surveys of the avallable literature on BEM in
elastodynamics are those of Kobayashi (1987) and Manolis and Beskos (1988).
Basically the BEM formulations can be direct and indirect. In the former, the
unknowns are the sought values of displacements and tractions. This
formulation arlses from the discretization of reciprocal Integral
representation theorems. In contrast, the Indirect BEM formulates the
problems in terms of boundary densities which should be obtained as an
intermediate step. Both formulations are related and it can be shown that
they are mathematically equivalent (see e.g. Sinchez-Sesma and Campillo,
1991). However, we favor the indirect one as it leads to simple, intuitive

visuallization of problems.

Perhaps the first application of an integral formulation (a direct one)
to study topography-related selismic amplificationis 1is due to Wong and
Jennings (197S). They studled the seismic response of arbitrary canyon
geometries under incident SH waves. A similar approach has been used by Zhang
and Chopra (1991} to consider three-dimensional response of a canyon in an

elastic half-space.

On the other hand, the combinatlion of discrete wavenumber expansions for
Green’s functions (Bouchon and Aki, 1977; Bouchon, 1979} with boundary
integral representations has been successful In varlous studles of elastic
wave propagation. Bouchon (1985), Campillo and Bouchon (1985), Campillo
(1987), Gaffet and Bouchon (1989), Bouchon et al. {(1989) and Campillo et al.
(1990) used source distributions on the boundaries whereas Kawase (1988),
Kawase and Aki (1989) and Kim and Papageorgiou (1993) used Somigliana
representation theorem. These are discrete wavenumber versions of BEM,
indirect and direct, respectively. However, such procedures require
considerable amount of computer resources. An alternative approach may be

welcomed for many applications.

In this paper we present a simplified indirect boundary element method
and apply it to simulate the seismic response of arbitrary shaped
three-dimensional models of alluvial valleys. It is clear to us that some of
the posibilities of both finite-differences and finite-elements to model
complex configurations are not available yet in a BEM formulation. On the

other hand, there is a wide class of problems for which the information on



geometry and properties have large uncertainties, so simplifying assumptlions
are in order. In such circumstances, a full fledged finite-difference
analysis may be quite expensive as compared tec a simple BEM study. This is

the motivation for the present research.

Our method is based upon the integral representation of the scattered
(diffracted, reflected and refracted) elastic waves in terms of single-layer
boundary sources. Therefore, it can be classified as an indirect BEM.
Scattered waves are thus constructed at the boundaries from which they
radiate. Hence, it can be regarded as a numerical reallzation of Huygens’
principle (in fact, this is true for any indirect method). This approach is
in fact an improvement over a boundary method that has been used to deal with
various problems of scattering and diffraction of elastic waves (see e.g.
Sanchez-Sesma and Rosenblueth, 1979; Sanchez-Sesma and Esquivel, 1979; Wong,
1982; Dravinski, 1982: Dravinski and Mossessian, 1987; Luco et al. 1990)}. In
its many varlants, such technique is based wupon the superposition of
solutions for sources with thelr singularities placed outside the region of
interest. However, this requires particular care and the trial and error
process needed is difficult to apply, particularly when many frequencies are
to be computed.

As the . singularities of Green's functions are integrable (see e.g.
Kobayashi, 1987; Manolis and Beskos, 1988) we can put the sources at the
boundary and properly consider their effects. In this way, the uncertainty
about the location of sources is eliminated and directly solve the linear
system of equations that arises from the discretization. Therefore, our
indirect BEM approach retains the physical insight of the sources method,

with all the benefits of analytical integration of exact Green’s functions.

A similar formulation applied to study three-dimensional soil-structure
dynamic Interaction has been recently proposed (Auersch and Schmid, 1990). In
its 2-D version, the method has been applied by Sanchez-Sesma and Campillo
(1991} to study the scattering and diffraction of P, SV and Rayleigh waves by
topographical irregularities in an elastic half-space. Alluvial valleys were

dealt with by Sianchez-Sesma et al. (1993a) and Luzén et al. (1993).

In what follows, the single layer boundary representation of elastic



wave flelds ls described and applied to compute the response of wvartous
models of alluvial deposits for incident elastic waves in a half-space.
Comparisons are provided with other numerical solution for a soft
hemispherical inclusion wunder incident SH waves. The responses of
three-dimensional valleys are then computed in both frequency and time

domains for incident P, S and Rayleigh waves.

INTEGRAL REPRESENTATION USING BOUNDARY SOURCES

Consider the three-dimensional Euclidian space and a continuous surface
S, finite or infinite. If an elastic material occupies this 3-D domain, a
harmonic displacement field can be written, neglecting body forces, by means

of the single-layer boundary integral
u (%)= IS¢J(€)GiJ(x,€)dS€ (1)

where ul(x) = ith component of displacement at point x, Glj(x,E) = Green
function of the whole space, t.e. the displacement in the direction 1 at
point x due to the application of a unit force in the direction J at point £,
¢J(E)=force density in the direction ). Therefore, ¢j(£)ds€ 1s clearly a
force distribution at the surface S. Subscripts in the differential indicate
the space variable over which the integration is performed. This single-layer
integral, that can be obtained from Somigllana identity (Sanchez-Sesma and
Campillo, 1991), has been studied by Kupradze (1963) from the point of view
of potential theory. He showed that the displacement fleld 1is continuous
across § if ¢J(E) 1s continuous along S.

This integral representation allows computation of tractions by direct
application of Hooke's law except at boundary singularities, i.e. when x=€ on
surface S. By a limiting process based on equilibrium considerations around a

neighborhood of the boundary it is possible to write, for x on S, that

t(x) =c ¢ (x)+ JS¢J(€)T!j(x,€)dSE (2)

where t1= tth component of traction at a smooth boundary, c=0.5§ if x tends to

S from inside and ¢=-0.5 if x tends to S from outside, le(x,€)= traction



Green functlon, i.e. the traction in the direction i at point x on the
boundary with normal n (x) (assumed tc be specified and pointing outside if x

is at S} due to the application of a unit force in the direction applied at
E. The first term of the right hand side in equation 2 must be dropped if x
is not at S. Equations 1 and 2 are the basis of our approach, which allows
direct interpretation of the physical quantities involved.

3-D GREEN'S FUNCTIONS IN UNBOUNDED SPACE

In a homogeneous isotropic elastic unbounded medium, the Green functions
for harmonic time dependence exp(iwt), where 12=—l, w=circular frequency and

t=time, can be expressed in the following compact form

Gl)(x.E) = {fzal} + (fl—fz) 117J]/4npr (3)

where 7J=(XJ-€J)/F, r2=(xl—€l)2+(x2-§2)2+(x3—£3]2. Here and in the sequel
p;pBZ, A+2u = paz. A.u = Lamé’s constants, p=mass density, 6l1=Kronecker’s
delta, k = w/B8 = S wavenumber, q = w/a = P wavenumber, 8 = S-wave velocity,

and « = P-wave velocity. We define f1 and f2 as
ft=(82/a2)[1-12/(qr)—2/(qr)2lexp(-1qr)+[iZ/(kr)+2/(kr)2}exp(-1kr) (4)
f2=(82/a2)Ii/(qr)+1/(qr)2]exp(-iqr}+[1-1/{kr)—1/(kr)2]exp(~1kr) (5)
which have the constants 1 and (1+(8/a)2)/2, respectively, as limits if w or
r tend to zero. The corresponding Green tractions are gliven by
2
le—[(gl—gZ-ZgJ) 711’7knk te, 71”, * g 71"1 ‘g, T 6111/4nr {6)
with functions gJ. 1=1,2,3, expressed as

2
= /7 -

g, { krAlJ + BIJ + Clj/kr + Dlj {kr)“lexp(-1kr)

s (7)
+ -

+{ krAzj + sz + Czj/kr DZJ/(kr) lexp(-iqr).
Coefficlents of this expression are given in Table 1. 1In equations 3 and &
the usual summation conventlion for subscripts is assumed. We may use Iin what

follows the usual correspondence for axis' names: X =X, X, =y and X, 72

by



respectively, Alsc u1=u. u_=v and u =w. Similar expressions for Green's

functions have been presented by Auersch and Schmid (1990) using vector
notattion.

Equations 3 and 6 allow a direct view of the singularities at the point
of application of the force. The singularity of displacements is 1/r. This 1is
clear from equation 3. Regarding the tractions the singularity is explicitely
of the form 1/r. In particular, when frequency tends to zero these equations
lead to their statlc counterparts (see e.g. Love, 1944). These properties are

used below in connection with our discretization scheme.

SCATTERING AND DIFFRACTION OF ELASTIC WAVES BY AN ELASTIC INCLUSION

Consider the elastic half-space, E, with an elastic inclusion, R, as
shown in Figure 1 under incidence of elastic waves. The free-surface
boundaries of regions E and R are denoted by als and aIR, respectively. The
interface azE = aza is the common boundary between them. The ground motion in
and around this irregular configuration comes from the interferences of
incoming waves with scattered ones (reflected, diffracted and refracted). It
is usual to say that the total motlon in the half-space Is the superposition
of the free-fileld and the so called scattered or diffracted waves:

E (o) {d)
= u

+ u (8)
1 i 1

u

where u:°)=free—fied displacement, i.e. the solution 1in the elastic

half-space in absence of the irregularity which for incident plane waves can
be given analytically. The terms “scattering" and “diffraction” are used
loosely as synonymous. The former s suitable to name waves "scattered” by an
object (with an implicit high frequency meaning) whereas the later refers to
the waves that smoothes out discontinuitlies of a geometrical descriptlion of
wave field (which are stronger in low frequencies). An analysis of equation 8
may reveal that the free-field term includes "reflected" waves that never
could be generated. Instead of leaving a hole in the free-fleld reflected
wave term we choose a continuous description as we know that the effect of
the irregularity decreases with increasing distance and the discontinuity of
the reflected wave asymptotically disappears. Therefore, some waves are

needed to locally cancel out some others and to smooth possible



discontinuities. We call them “scattered” or "diffracted" waves. The cholice
is a matter of taste. What we really have to care is to fulfill fleld
equations and boundary conditions. The former are satisfied by construction
as the Green's functions are solution of the equations of dynamic elasticity.
Boundary conditions of continuity of displacements and tractions along the

interface and those of traction null at the free surface must be enforced.

According to our previous discusslon, the diffracted or scattered fleld
s given by equation 1 which, with appropriate superscripts to Indicate the

region of validity, can be written as

{d}
u

. (9)

(x) = | #1(8)G] (x,§)ds

5 ) £

Refracted elastic flelds on the inclusion R can be written as

u'lx) = f o (E)G® (x,€)ds.. (10)
! ! 1) 3
R
The traction-free boundary conditions imply that
t” +t¥ =0 on 8 E (11)
(r}
and tl =0 on alR (12)
then, from equation 2 such conditions can be expressed by means of
E E E
0.5¢ (x) + ¢ (E)T° (x,£)dS_= 0 (13)
t 5E B! £
R R R
-0.5¢ (x) + ¢ ()T (x,£)dS_= 0. {14)
! 3R L) £

In equation 13 it is considered that free field tractions on alE are null.

On the interface azs = aaR continuity of displacements and tractions implies

]
u:°}+ u:d)= u:r on azs (15)

¢ Lt e E (16)
i 1 i 2
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and these conditions can be expressed as

E E R R (0}
- G ,E)dS,. = - 7
J.6E¢J(E)Gu(x.5)dss L2 (6] (05 = - (17)
E E . LE E _ R R - 4@
0.5(85 (x)+¢5(x)] + J‘aE%(e)r”(x.e)dsE aRnﬁJ(&)TU(x,E)dSs £ (18)

equations 13, 14, 17 and 18 constitute a system of Integral equations for
boundary sources, i1.e. those producing diffracted and refracted fields. These
expresslions are discretized along a finite portion of the boundary 8E that
includes the interface topography and part of the lateral flat free-surface
and along 8R, according to the definition of each integral. The extension of
the discretized flat part in the applications reported herein typically have
a width a which is the characteristic horizontal dimension (radius) of the
elastic inclusion. Therefore, the discretization of free-surface 1s extended
up to a radius of 2a. The number of unknowns will be made clear in the next

section.

DISCRETIZATION

In order to solve this system of Iintegral equations we have to
discretize them. The discretizatlion of a surface is a well-known problem and
several algorithms are already available (see €.g. George, 1991). In any
event, the choice of the discretization scheme depends upon the problem and
the mathematical formulation to be used. For instance, in many applications,
triangular elements are used to discretize surfaces (e.g. Manolis and Beskos,
1988; Brebbia and Dominguez, 1992).

In this work we present a simplified scheme and discretize the surfaces
using circles of various sizes that approximately cover the boundaries. This
might be regarded as a crude cholce. However, it allows keeping the
formulation simple and relatively easy to implement by practicioners. This
choice has been guided by the fact that the integrals of Green functions on
circles can be easlly obtained in a closed form. In order to partially
overcome the effects of our approximate discretization we used at least four

aligned boundary elements per shortest wavelength.



Let us assume the force densities ¢J(E) constant over each of the
boundary clrcular elements, each with surface 1:.51 and centered at point E:
along the appropriate boundary. Let M, 2L and K be the number of elements of
the discretized part of the flat surface, of the irregular interface and of
the free surface of region R, as depicted in Figure 1. It is clear that the
total number of equations is 3M+6L+3K which ls the same as the number of
unknowns. To clarify ideas, let wus write the discretized versions of

equations 1 and 2:

ul(x) =1¥1¢J(El)gij(x.€l] {19)
where
g, ,( x €)= Iclj(x,g)dsg. (20)
AS
1
and
N
tl(xn} =l§l¢j(ﬁl)tljixn.ﬁl) (21}
where
t, (x .§) - 0.55 & - J.T”(x,E)dSE. (22)

AS
1

The integrals in equation 20 are computed numerically, except In the case
when x {s in the neighborhood of ﬁl. for which we obtained analytical
expressions. In partlicular, for x = 51, i.e. at the center of a circle of
radius R, it is possible to show that

J'c”(x,sg)ds6 = ((F,;*F)8, + (F,F )nn] /au (23)

AS
1

where Fk. k=1,2, is simply the Iintegral of fk from 0 to R and n = ith
component of the normal vector at the element. For x not at the center we
performed analytical integration in polar local c¢oordinates and considered

the ascending power series of t‘l and fz. Up to cubic terms were retalned and
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this is enough if the minimum wavelength is at least four diameters.

The integral in equation 22 is also computed numerically except when
xn=El. In this case, we have

= 24
I 0.58 (24)

because the only contribution to the integral in that equation for n=1 comes
from the Dirac's delta term. The contribution from the traction Green’'s
tensor TU ls null as long as the element is circular and flat, which 1is the
case assumed here. In fact, from equations 6 to 7 it can be verified that,
under this circumstance, such part of the integrand 1s a singular function on
the element and its Cauchy's principal value_ls Zzero. The value for ti] in
equation 24 can be interpreted as half the applied unit point force and means
that the force 1is distributed symmetrically for any two half-spaces
containing the point of application of the load, regardless of its direction.

This result also holds for the static solution.

Once the values of ¢J(El) are known, the scattered fields are computed

by means of the appropriate discretization of equations 10 and 11.

TESTING OF THE METHOD

The accuracy of this approach is tested here for a problem that has been
verified extensigely. Sanchez-Sesma et al. (1989) used multipolar wave
expansions in spherical coordinates and studied a hemispherical alluvial
basin under oblique incidence of SH waves. Their results have been reproduced
by Ohori et al. (1990), by Toshinawa and Ohmachi (1992}, by Shinozaki and

Yoshida (1992), among others. Therefore, we regard these results as
trustworthy.

Comparisons are provided here for oblique incidence of plane SH waves.
The model response is studied for a normalized frequency wu=1.0, where
n=ua/nBE and a=radius of valley. Material properties are set to be pR/pE=1
and BR/B£=O'45 for mass density and shear wave velocity ratios, respectively.
Polsson coefficients were assumed vs=0'25 and vR=O.30. The discretizatlion lis

extended horizontally up to a radius of 2a. Figure 2 displays the surface
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amplitudes for the three components due to a plane SH wave with an incidence
angle =30 degrees, with respect to the vertical and azimuth zero (¢=0).
Displacement amplitudes are plotted along the y=0 from x=-2a to x=+2a, and on
line x=0 from y=-2a to y=+2a, where a Is the radius of the hemlspherical
inclusion. Sanchez-Sesma et al.’s (1989) results are given by symbols and our
solutions by dashed and solid lines. The overall agreement is good. There are
small discrepancies which are probably due to our discretization scheme. We
tested the discretization for the so-called "transparency test" in which the
properties of the inclusion are set equal to those of the half-space. The
maximum error in this case is smaller than S per cent the amplitude of
particle displacement of the incoming wavefield. The same test was performed,

and was satisfactory, for the examples that follow.

EXAMPLES
1. Cylindrical soft deposit under Incident SV waves

In order to illustrate a complet set of results and analyze the 3-D
effects we study the response of a cylindrical valley under oblique incidence
of SV waves (as depicted in Figure 3) in both frequency and time domains. A
radius of 4 km and depth of 1 km were assumed. Material properties are Bn=1
km/sec, BE=2.5 km/sec, Va=ve=1/3 and Pa=Pe A quality factor of 20 was
considered for both P and S waves inside the valley. No attenuation was used
for the half-space. An angle of incidence 7=30 degrees was assumed. Given the
Polsson ratio of the half-space, this incidence is "critical®. This means
that, in order to satisfy free boundary conditions for the half-space, a
horizontally propagating plane P wave must be assumed in addition to the
reflected SV wave (see e.g. Aki and Richards, 1980). Critical incidence in
this case produces at the surface an amplification of 2v¥3 for the horizontal

displacement whereas the vertical motion is null.

Figures 4 and 5 show the contours of displacement amplitudes u and w for
surface recelvers along the x-axis, between x==8 km and x=8 km, against
frequency. These f-x diagrams display the transfer funcion (relative to the
amplitude of incident waves) for all receivers and provide a good description
of the frequency behavior of the valley. The plots also evince lateral

resonances, which sometimes are clear when a series of peaks are more or less
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evenly distributed in space for a given frequency. This 1is true for
two-dimensional confligurations (see e.g. Sinchez-Sesma et al. 1993). However,
in three-dimensional problems space resonant patterns tend to be more
complicated. The recent papers by Rial (1989) and Rial et al. (1992) point
out this fact. In any event, the maximum amplitudes appear in the "rear" side
of valley, i.e. the side oposite to the incidence, at least for thetlower
resonant frequencles. The refracted waves along the x-axis, although

complicated, have a good portion of Rayleigh waves generated at the edge,

For other slice, the one along the y-axis, Fligures 6, 7 and 8 present
the corresponding contours for u, v and w. As expected, they are symmetrical
(v is asymmetric but the plot is for amplitude) and show complex interactions
of the refracted fields inside the softér material. For instance, a
slgnificant amount of horizontal component u along the y-axis is composed by
Love waves. This is due to the tangential motion induced by the incident
fleld at the valley's extremes in x=0. In this case the spatial resonant
patterns that appear at frequencies of about 0.3 and 0.4 Hz can be explained

in terms of Love waves.

The maximum amplification of u is of about 15 for a frequency of about -
0.28 Hz, which is slightly larger than 0.25 Hz, the 1-D shear resonant
frecuency for a flat layer (see Jiang and Kuribayashi, 1988). The large
amplification 1is associated to the Iincoming plane SV wave. However, this
amplification relative to the horizontal free-field surface displacement is
of about 4.33, nearly twice the impedance ratioc. The shifting of the
fundamental rescnant frequency and the localized increase of amplification

are lateral effects.

From frequency domain results we computed synthetic seismograms using
the FFT algorithm for a Ricker wavelet with central frequency fp=0.33 Hz thus
the characteristic period of the Ricker pulse is tp = 3 sec. In Figure 9 such
time serles are plotted for 48 receivers equally spaced between x=-1.82a and
x=1.74a. The amplification effect seen in the frequency domain is also clear

in the synthetlcs.
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2. Irregular valley under incident P, SH, SV and Rayleigh waves

We present here some results for a closed irregular alluvial valley. The
soft material is, horizontally, within a region for which the conditloens r<a
and R>b hold, where r’ o= x% yz and R® = (x-a)2+ yz. In other words, the
valley zone 1s limited by two circumferences of radii a and b, where a>b, as
depicted in Fligure 10a. In this reglon the gecmetry of the interface between

the sediment and the half-space is given by
2 2 2
fix,y) = h(b"-R")[1-2a{a-x)/R"] (25)

where h is a parameter that controls the valley depth. The choice of this
analytlcal expression is arbitrary (it is inspired by the Weber's solution
for the Salint-Venant stress function for thé torsion of a bar of circular
cross section of radius a with a circular groove of radius b). We selected
b=0.7a and h=0.4/a; thus the maximum depth is of about 0.25a. Figure 10b
displays the level contours of the interface whereas Figure 11 shows a
perspective of this profile. The free surface of both the alluvial deposit
and the half-space is assumed flat. The discretization is extended up to a
radius of 2a. The value for a is set to be 4 km. Material properties are Bn=1
km/sec, B£=2 km/sec, vn=0.35, E=0.25 and pR=0.8pE. A quality factor of 100
was assumed for both P and S waves inside the valley. Agaln, the half-space

has no internal attenuation.

We consider the incidence of plane waves of the P, SH, SV and Rayleigh
types, all with an azimuth ¢=0. An incidence angle y=30 degrees with respect
to the vertical is assumed for body waves (for the SH incidence results for
¥=60 degrees are also presented). We computed synthetic seismograms and
assumed for the incoming wave a Ricker wavelet with a characteristic perlod
tp=3 sec. Results are portrayed in Figures 12 to 16 where the non zero
components are shown along the x or y axes, respectively. These results
present very Interesting patterns of interference of the refracted waves
inside the basin and, in some cases, significant emission of waves is
observed. In fact, the incidences of P, SV and Rayleligh waves produce forward
and backward scattering of Raylelgh waves by late emission after refracted
waves bounce back and forth in the sediment. Some emission of difracted SH

energy (for instance u along the y-axis) can be observed but the geometrical
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attenuation is very strong.

The cases of SH Incidence show significant late emission of scattered SH
pulses. In particular, for =60 degrees the forward difraction has an
amplitude comparable to the input motion as shown in Figure 16. This is a
consequence of the irregular shape of our valley in which refracted waves of
Love and Rayleigh types are generated continuously at the edge in such a way
that they are focused near the "bump”. This focusing also give rise to
spectacular amplification inside the basin,

DISCUSSION

Our cholce of the Green's function for the unbounded space lead us to
explicitly consider the half-space free surface boundary condition of null
tractions. We deal with the problem aproximately by treating only a finite
portion around the inclusion. The discretization is extended up to a radius
of 2a. Therefore, we must expect some spurious waves coming from the model's
edge. However, our synthetics appear to be free of such an effect. This is
partially due to our choice to include the free-field. In our formulation,
such part of the solution satisfies the free surface boundary condition by
construction. We did several tests. For instance, if we cancel the reflected
waves and let the excitation with only incident waves, the edge effects can
be very strong. Moreover, some extensive numerical tests in 2-D problems
showed that scattered waves in the lateral strips of models were esentlally
outgoing waves explaining the small edge effects (Sanchez~Sesma and Camptillo,

1991). Owing to a stronger geometrical attenuation, we can see that in 3-D
problems such edge effects are smaller.

The approach presented herein is general. It can be extended to deal,
for example, with a layered half-space. Of course, in such a case both the
free-fleld and the scattered waves should be constructed using the
appropriate Green’s functions.
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CONCLUSIONS

A simplified indirect boundary element method has been presented and
applied to study the seismic response of three-dimensional alluvial valleys
of arbitrary shape for incident P, S and Rayleigh waves. The method is based
upon the integral representation of scattered and diffracted elastic waves in
terms of single layer boundary sources. Such waves are constructed at the
boundaries from which they radiate. This method can be regarded as a
numerical realization of Huygens' principle. From boundary conditions a
system of lntegral equations for boundary sources is obtained. An approximate
discretization scheme based on the numerical and analytical integration of

exact Green's functions for displacements and tractions ls used.

Various examples are given for tﬁree—dimensional problems of
scattering and diffractlon of elastic waves by soft elastic inclusion models
of alluvial deposits in an elastic half-space. We found significant effects
of three-dimensional nature in our models. Complicated patterns arlse for
surface displacements even in simple axisymmetric cases. In some cases the

generatlon of Love and Rayleigh surface waves can easily be seen.

Synthetics for the Irregular valley evince a variety of complex
patterns. Focusling of .energy, at least for the central frequency selected for
the - Ricker pulse, generally takes place at the deeper parts. Very large
amplification was found for incident SH waves. Significant forward scattering
was observed and it 1s interpreted as due to the geometry of our alluvial

basin and the constructive interference of variocus refracted waves.

Although azimuthal variations were not studied, our results show that
they can have important effects. Impedance contrast and basin geometry are
among the issues that require attention. It is too early to give more precise
conclusions. Meanwhlle, this method can be used and extended to deal with

practical situations and to calibrate more powerful procedures,
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Table 1 Coefficients of Equation 7

2 3
A, 0 0 -1
3 3
AZJ -ip/a i(2g” /e -B/a) 0
B, 4 -2 -3
B,, -48°%/a%-1 48°%/a%-1 28°%/a°
C,, -112 16 i6
2) 1128/« -i68/a -168/a
D, -12 6 3
12 -6 -6
2)
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FIGURE CAPTIONS

FIGURE 1. Half-space, E, with a three-dimensional elastic inclusion, R, and
incidence of P, S and Rayleigh waves. (a) Plan view that shows the reglions,
the contour lines of the interface 62E and an incident plane SH wave from the

depth along the x'-~axls with azimuth ¢. (b) Cross section along x' that
tllustrates the incidence of P, SV and Rayleigh waves. For the first two
types of waves the incidence angle y 1s depicted. The discretization along

the interface azR = azE. the free surface of inclusion alR and a portion of

the flat surface of the half-space als gives 2L, K and M elements,
respectively.

FIGURE 2. Amplitudes of displacements u, v and w at the surface of a
hemispherical alluvial valley for oblique incidence (y=30°) of harmonic SH
waves. Normalized frequency w=1 .Material properties are given in the text.
The amplitudes for u,v and w of the present study are given with dash, solid
and dotted lines, respectively, while open symbols (squares, circles and
triangles, respectively) are from Sanchez-Sesma et al. (1989).

FIGURE 3. Cylindrical alluvial valley under oblique incident SV waves. The
radius of 4 km and depth of 1 km were assumed. Material properties are given

in the text. The angle =30 degrees corresponds to the “"critical” incidence,
glven the Poisson ratio of the half-space.

FIGURE 4. Contours of horizontal displacement amplitude u for surface

receivers along the x-axls against frequency. Cylindrical valley under
Incidence of SV waves at the critical angle,

FIGURE 5. Contours of vertical displacement amplitude w for surface receivers

along the x-axls against frequency. Cylindrical valley under incldence of SV
waves at the critical angle.

FIGURE 6. Contours of horizontal displacement amplitude u for surface

recelvers along the y-axis against frequency. Cylindrical valley under
incldence of SV waves at the critical angle.

FIGURE 7. Contours of horizontal displacement amplitude v for surface

recelvers along the y-axis against frequency. Cylindrical valley under
incidence of SV waves at the critical angle.

FIGURE 8. Contours of vertical horizontal displacement amplitude w for

surface recelvers along the Y-axls against frequency. Cylindrical valley
under incidence of SV waves at the critical angle.
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FIGURE 9. Synthetic selsmograms for u, v and w at 48 receivers equally spaced
along the x or y axes. The range of x or y 1s between -1.82a and 1.74a,
where a = 4 km. Cylindrical valley under incidence of SV waves at the
critical angle. The incldent waveform is a Ricker wavelet with characteristic
period tp = 3 sec.

FIGURE 10. Irregular three-dimensional alluvial valley. (a) The softer
material is limited by two circumferences of radil a and b, where a > b and
ls represented by the shaded area. Here b = 0.7a and @ = 4 km. (b)
Topographic contour levels of the valley’s basement.

FIGURE 11. Perspective view of the irregular valley's basement. Incidence of
pPlane P, SH, SV and Rayleigh waves, all with an azimuth $=0. Incldence angle
7 with respect to the vertical for body waves.

FIGURE 12. Synthetic seismograms for u, v and w at 48 recelvers equally
spaced along the x or y axes. The range of x or y is between -1.82a and
1.74a, where a = 4 km. Irregular valley under incidence of P waves at y=30
degrees. The incident waveform is a Ricker wavelet with characteristic period
of tp = 3 sec.

FIGURE 13. Same as Figure 12 but incidence of SV waves at 7=30 degrees.
FIGURE 14. Same as Figure 12 but incidence of Rayleigh waves,
FIGURE 15. Same as Figure 12 but incidence of SH waves at y=30 degrees.

FIGURE 16. Same as Figure 12 but incidence of SH waves at 7=60 degrees.
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