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SUMMARY

The use of parametric curves to define velocity models in seismic traveltime
tomography 15 proposed. This approach provides increased flexibility in shaping the
velocity models because it allows inversion for both velocity and grid point
adjustments. The method 15 applied 10 a data set generated from a I-D profile
having sharp discontinuities. The results are compared with those obtatned from
other methods currently in use for traveltime tomography. It is found that large
gradients and discontinuities can be retrieved with improved accuracy and that
instahilities caused by non-opumal prior selection of the inversion grid can be
avoided. The results appear to be robust when the sizes of both data and model
spuce are reduced which makes the method appealing for the solution of targe-scale

tomographic problems.

Key words: crustal models, model parameterization. seismic inversion.

1 INTRODUCTION

The goal of seismue tieelime womoeraphy s to recener the
tree Earth's veloaty structure, However. the Barth displays
4 vanety of 32D inhomogeneities that are ditficult 1o moded
accurately even when the data set his enough resofveny
power 10 resolve them This difficuity dernves mainly trom
the nabilitv  of  the model  parametenzabon andsor
discretization 1o shape properly the rrwe velocy muodel
{(Michelena & Harns 1991) In fact. both paramcetenzation
and discretization are generaliv held lixed throughout the
inverston so that the veloaty adjustments alone (or any
other coefficient depending on the adopted tvpe of basis
function expansion) may not be sufficient for accurate
shaping of the true velocity ficld. For example. a first-order
discontinuity which finds the velocity grnd mesh ll-
positioned for its imaging will produce artificial fluctuations
or other effects (depending on the adopted basis functions)
onto the resolved model. This is a well-known problem
which is commonly alleviated by the introduction of dense
grid meshes and the selection of more accurate interpolation
schemes (e.g. Sambndge 1990). Nonetheless. these ‘cures’
may not be optimal hecause: (1) the larger size of the
parameter space can make the inversion computationally
intractable: (2) the tnversion needs to be closely monitored
and regularized to avord the isurgence of artefacts; (3)
whilst providing increased flexibility in shaping the velocty
modets, denser grid meshes still do not nsure optimal

positioning of the inversion grid points; and (4) prior
welection of a4 basis function for parameterization constrains
the resulting models (o the degree of continuity offered by
the selected basis functions

Ldeallv. it would he desirable to vary the grid spacing and
the parameterization locally, the local adjustments being
Pised on the resolving power of the data set and on the
presence of large gradients. Recently, Michelena & Harris
{19913 have proposed the adoption of ‘natural pixels’ whose
caleulation denves from the geometry of the ray paths, to
obviate the ¢ prion selection of the inversion gnd. The
quality of the images obtained with their method is
comparable to that obtained with standard constant-velocity
pixel parameterizations, but their technique has the
advantage of decreasing the number of the maodei
parameters by two orders of magnitude.

In this paper, an approach based on the use of parametric
curves to define the velocity model is pursued. This
approach, which is commonly adopted in computer graphics
design, has at least two features relevant to tomography.
First, it offers increased flexibility in defining the model grid
spacing with any type of basis function. This can be
especially useful when 3-D grids are used in that the user is
not obliged to duplicate particular grid geometries on
parailel sections of the model. Secondly, this approach
allows inversion for the position of the grid points so that it
is possible to use a smaller numbear of grid peoints and benefit
from the reduced number of parameters in the model space.
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To thes regard. Zelt & Smith (1992) have investigated the
inversion for both velocities and laver houndaries in thair
analvsis of crustal refractuon/wide-angle reflection data sets.
Although they do not use parametiic curves. their model
parameterization offers increased flexabiiity n shaping the
btocks of the velocity model. Relving heavily on the use of
secondary phases in the determination of the layer boundary
depths. their method appears well swited for their type of
data. whereas the method proposed here s primarily
designed for first-arrival data which are commonly used in
earthquake seismology and cross-hole set ups.

Use of parametric curves has been recently introduced 1in
seismology by Moser, Nolet & Snedder (1992) for thery
two-point bending ray tracer. In this paper. the feasibitivy of
this approdch for -0 model veloaty inversions s explored.
and the results are compared with o standard techmyue
which solves solely for velocity adjustments using fixed grid
geometries (e.g Thurber 1983)

METHOD

Parameterization

A laterally homogeneous. vertically varving velocity profile
can he represented in parametnic form as a 2-D polynomial
curve

A [N
Qu) = E Pplu)= E |20} vt (1
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where P, = (z,. v,) are the control vertices of the curve. that
is. 2, is the vertical position of the grid pomnt and t, 15 1ts
associated velocity, p,{u) are the bases functions adopted for
the nterpolation and u s the parameter which vanes
between a mummum. . and a maximum. .. The
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are used as hasts functions. To avoid unphyvsical tlucteanons
of the veloaity model, the sequence of vertex depth values,
(i =1, ... N}ismposed to be non-decreasing.

Partial derivatives

To solve the inverse probiem, we must deterrine the partial
derivatives of the velocity profile with respect to the position
of control vertices, P,.

Equation (1} establishes that the velocity profile Q(u) is a
running average of the control vertices P, weighted by the
basis functions. p,(«). The two components of Q{u) are

A
Z=Z()= > 1pu)
]

T o 1 A T A T R S (3

and
b9
Vo=V(e)= 2 votu)
(=1
=0+ -+, —ay, -y, o+ 0 (4)

We solve for u eq. (3)
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and substitute into (1) to obtain
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Eq. (6) can be differentizted with respect to z, and v, so that

Vi) i, — U,

T e - e ) (7)
32, LA

and

2V

—31@ = o) ()

Equations (7) und {8) provide the partial derivatives
needed for the determination of the control vertex
adjustments in the non-lincar iterative inversion.

Inversion

A solution to the non-linear inverse problem can be
abtained by local lincarnization and adopting an iterative
inversion scheme. The residual 6t (i.e. observed-calculated
times} of each phase arrival used in the inversion can be
expressed to the first order as follows

~ A
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where ¢1s the traveltime determined with the current model,

= Er . .

Teand = are the partial denvatives of the traveltime with
23 -

respedt 1o the control vertices, and &z, dw, are the control
vertex adjustments to the current velocity model that we
seck. The partiad denvatives of the traveltime with respect
o the control vertces dre.
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where ds is an infinitesimal element along the ray path.
Given M residual times, we can write the problem in
matrix form as follows

st=A| B}[:::] (12)

where Ot is a vector of dimensions M, A and B are the
matrices of partiat derivatives of the traveltimes with respect
to the control-vertex positions having individual dimensions
M x N, and &z, ov are N-dimensional vectors.



Equation (12} represents a classic mverse prablem which
can be solved using least-squares techrmigues  Flowever, we
note that this inverse prohiem v of mixed tvpe because we
solve s.lmultancously for twao sets of pammc-[crn Muitipara-
meter inversion is often a difficult task because inappropri-
ate relative scaling of the different parameter tvpes may
retard and bhias convergence in non-linear and iterative
schemes (Kennett, Sambridge & Witiamson 1988). Far this
reason. | have adopted the “subspace method proposed by
Kgnnett er al. (1988). This techague is hased on a local
mimmization on 4 local subspace spanned by a limited
number of vectors in model space  The husis vectors are
npportunely chosen alony the directions deternuned by the
varkations of the mishit tunctional and by the addiional
vectors representing the rate ol change of the gradient
partitions. [ refer to the exhaustive -Licscnp[zon- ot the
methodology given in Kennett o wf s paper for details.

APPLICATION

I have apprased the technique using 4 sinthetie data set
generated from the model shown in Fig lib) This modei
was caleulited uming the parametne curves formalism ot ey.
{1k which the Tinear basis functions have been replaced by
cubic B splimes. It displays two abrupt seloany variations
located at 2.5 und 3.75km. with a strong lincar gradient
interconnecting them (.85 ') A third smoother discon-
tnuity wis antroduced at 7.5 km which. however, attains a
velrocuty gradient of approximately 105 ' ac its Hexural
pomnt (see Fig. lb). Similar veloaty profiles are found in
places where a soft alluvium is deposited above a hard-rock
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hasement—difficult geologic structures to be imaged with
existing traveltime-inversion algorithms.

The source-receiver geometry consists of nine receivers
and twenty sources {Fig. la). The sources were placed along
4 vertical array at (.3km interval and between 0.5 and
10 km depth.

All the ray path calculations were made using the
conjugite gradient bending ray tracer introduced by Moser
er al. (1992). Uniformiy distributed random noise ranging
between +0.01 s was added to the traveitimes which were
used as input data in the inversion.

Inversions

We show the results obtained using linear  B-splines
interpolation for both parametric {i.e. [Z(u). V(u}j) and
NON-PArametric (stundard) velocity-depth Sfuncrion
representations (e, V(Z)). In order to appraise the
technique, the nversion has been repeated using four
different grid spacings—3.0, 2.0, 1.0 and 0.5km. It should
be understood. however, that these spacings were free to
change when the parametiic tormalism was used. The
results obtaned with the entire data set are displayed in Figs
2 to 4 and summarized in Tabe [. For conciseness, the
resuits obtained with the 2 km spacing are shown only for
the mversions that adopted the depleted data sets.

The initisi model used for al inversions consists of a
constant  gradieat of 0.25s7' (Fig. 1b). Traveltimes
calculated with this initial model produced a root-mean
square value (RMS) of the residual times misfit of 0.035s. It
was also found that. in order o avoid poor convergence of

Source-Receiver geometry & True and Initial models

Y (km)
2

-10 0 10 20 30
X {(km)

Z (km)

b ."'.EDJ
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Figure I. (11 S COTCCCIver ge . . -

”IEI; I !t’ L .‘;m:)ru reecner geametry adopted for the tests. § s the positon ol the vertical aeray of sources which were set equally spaced at
- 1: Ltf aly Ll\:un 0 5 and 1t km depth. R recerver locistions at the surtace 127 = ) (h) The dotted line corresponds 1o the true velocity
1] ' H l N - ~ . . +

F:' . ¢ ”“J was used to caleulate the traveltimes used as input data set for the snversion. the solid hine defines the initial model used for all runs
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vertical grid-spacing = 3.0 km

1 1% (0)
0.0 oad N\
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N 75': N 7.5:
P ]
10.0 10.0
12,54 12,5
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Figure 2. [nversion resulis when the end Spading was set o Y hmo tag Inversion results oblaimed with the parametric curves formalism; (b)

inversion results obtanned with standard veioc -depth tuncrion techmagues having fixed grid-pomt posiions. The doteed line is the frue velocity

protike of Fig b

the aterative inversion, some amount of row weighting was
needed. In practice. both seaduasl time and  distance
weghting was apphed. Rows whose travettime residuats fell
i the range 0.1 < or=0.15s were lincarly down-weghted
from one to zero and. similarly. for epicentral distances in
the range between 15 and 30 km.

Figure 2(b) shows the resutts of the velocity-depth
function inversion when the grid spacing was set to 3 km.
This coarse vertical spacing of the grid pomnts inhibits the

inversion and the RMS does not decrease beyond 0.029s.
Adding values of damping ranging between one tenth of the
targest eigenvalue and the largest eigenvalue to the matrix
of partial derivatives produced nearly identical results.

The results obtained with the parametric formalism are
shown in Fig. 2(a). This technique produces a model that
closely matches the true one down to depths of abeut 7 km.
AL greater depths the resolving power of the data set
decreases and the inversion procedure is not capable of

vertical grid-spacing = 1.0 km

Z (km)

V (km/s)

Figure 3. (Gnid ~pacine ol 1km See the caption 1o Fig. 2 tor detagls.

1-.40]
004 Y
2.5
£ 5.0
i -
N
]
b
10.0]
12.5
T L T T [ T T T T l L L T T ] T 1 T T
3 4 5 5 7
V (km/s)
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vertical grid-spacing = 0.5 km

V (kmvs)

Figure 4. (nd spacing ot 1H3hm See the caplion to o 2 toe detwls.

accurately recovening the true model feaving the veloaty
values there nearly unchanged. It was found that veloctty
{v) damping values approximately two orders of magnitude
smaller than those applied for grid {z) adjustments were
needed for proper convergence of the algorithm (i.e. 0.001
versus 0.1 times the largest eigenvalue for velocity and gnd
adjustments, respectively).

Figure 3 shows the results obtained when the gnd spacing
was set to | km. The fit to the true model obtained with the
velocity-depth function method improves but the inversion
still has difficuity in retrieving the sharp velodaty corner at
2.5km depth. Converselv.  the  parametric formalsm
produces a very good fit to the true moedel in Fig. 4, the
gred spacing has been decreased 10 0.5 km oand the results
obtained with the two methods are nearly comparable. In
fact, the velocny-depth function technigue. while producing
some spurious oscillations. 15 now capable af recovenng the
true  model  with  reasonable

principal features of the
could have  been

accuracy. The spurious
mitigated by applying some smoothing operator 1o the

oscillations

Tabde 1. Final RMS residual times obtamed wab the parametre
(PAR} and the standard veloaty-depth function (V-D} representis-
tions. The ininal RMS was i all cases 0.035 5.

RMS DATA MISFIT (s)
Grid Spacing (km) PAR
3.0 0.011
2.0 0.008
1.0 0.008
0.5 0.008

V-D
0.029
0.027
0.021
0.007

1", (b}
o =
2.5
E 5.0-:
:" -
Ny sd
10.0
12.5
—T T T T T T T T T T rTTT
1 4 5 [ 7
V (kim/s)

matrix of partial derivatives, However, the purpose of these
tests was to compare the performance of the two inversion
techniques under nearly identical a priori conditioning.

The results obtained using the parametric technique in
these last two tests provide an explanation for the
occurrence of oscillations in the velocity-depth function
results. Before doing this, it should be clarified what is
meant for resolving power of the data set. Given a
source—receiver geometry, the resolving power is closely
related to the degree of model determinacy. Williamson
(1990 points out that, while increasing the number of model
parameters.  the model determinacy  decreases but  the
inversion  progressively exploits more of the information
contamed 1n the data set. Depending on the rank of the
matnix of partial denvauves at the increase of the model
parameters. the inversion as commonly defined as fully
over-determmmed . mixed-(under- over-) determined and fully
under-determined ¢see also Menke 1984). Owing to the
non-linearity of seismec inversions, noise in the data and
mnaccuracy of the ray tracers, the mixed- and under-
determined nversions have to be closely monitored and
properly damped by various means according to preconcep-
tions about the final model. In practice and with standard
methods, an increase in size of the parameter space results
in a decrease of the scale length of the parameterization
{e.g. smaller constant velocity pixels) and the associated ray
coverage per parameter (e.g. pixel) decreases. It follows
that the resolving power of the data set onto the parameters
is similarly decreased.

In the test examples above, it appears that the main cause
for the instabilities near the velocity discontinuities is the
mispositioning of grid nodes with respect to those needed to
recover the true structure. In these circumstances, the input
data have information about the true location of the
discontinuity but the positioning of the grid mesh inhibits its
recovery. At this stage. standard inversion methods may, for
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vertical grid-spacing = 2.0 km, 10 & 5 sources

0.0
4 x
1 x
254 x
] x
1 x
—
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009 ™
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Figure 5. Inversion resulls abtwined with parametne curves using depleted data sers and 2.0 km mual vertical grid spacing. (a) 10 equally
spaced sources (spacing interval of Fkm: (b S equally spaced sources (spacing interval of 2 km). in both cases, the uppermost source was set

at 5 km o deprh. The verucal position of the sources s marked by crosses

example, overshoot the velocity of one grid point and, at the
subsequent iteration, complete the minimization by
perturbing the velocities of the neighbouring grid points
while attempting to compensate also for the previous
overshooting. This effect is magmfied when the number of
grnid points s large because the data set has dimimished
resolving power and the resulung models are more prone to
instabiltties (e.g. Fizo 4b) o These  osalluvons can be
mitupated, however. by adding o smoothing  operator.
Conversely. this problem does not occur when the sertical
gndding 1s coarser. but in these cases the imversion s unable
t procecd te.g bFigo 2hy The smalt setoaty fuctuations
abservable i the parametric formalism results o1 B 4a)
are also caused mainly by the dimimished resolving power of
the data ser.

Another way to decrease the resolving power ot the data
set 15 by reducing the size of the data space. In Fig. 304
show the results of the parametric inveesion when only {0
and 5 sources of the ongimnal data ~et (e 14 and 2.0 km
spacing aiong the vertical array of sources. respectively)
were used and the mital grid spacing was set to 2km. The
technique resolves well the frue model in both data depleted
inversions. When the same data sets were used as inputs for
the standard velocity-depth inversion with 0.5 km spacing
(i.e. the only one capable of reproducing the main features
of the true model), the reduced resolving power of the data
sets combined with the large number of parameters to be
determined, caused the inversion algorithm to stop at its
first iteration. Similar results were obtained with values of
damping ranging between 1125 and 10 times the largest
eigenvalue of the singular value decomposition of the matrix
of partial dersvatives.

DISCUSSION

The main advantage of the parametric method presented in
this study lies in the greatly reduced number of grid points
needed to model accurately an unknown velocity structure.
In fact, parametric curves allow the velocity model to *shape
itself” and find, where the resolving power of the data set is
sufficient. the optimal position of its control vertices. The
reduced number of grid points results in a significant saving
i computation tme  While  doubling the number of
parameters (in the 1-1) cases), the parametric method
appeitrs 10 muike opumal use of the increased size of the
model space by adjusting the position of the control vertices
to enable accurate retnieval of any velocity profile, avoiding
the mstabilities caused by fixed discretization grids. It shouid
he noted that use of the “subspace method™ avoids inversion
of firge-scale matrices attogether, the entire problem being
projected into & small-dimensional subspace (Sambridge
1990)). Therefore. doubling the size of the model space is not
really a burden.

Damping 15 a factor that can severely affect any
non-linear, iterative inversion. In the parametric inversion,
it was found that when the initial gndding is coarse (i.e. 3
and 2 km in our test) it is preferable to apply larger damping
to the node (z) adjustments than to the velocity (v)
adjustnments. When the initial grid spacing was reduced,
nearly identical damping of node and velocity adjustments
was needed for proper convergence.

Selection of the imitial grid spacing appears less
troublesome than with standard methods because the true
velocity  discontinuities  are recovered even with rather
coarse spacing (e.g. Fig. 2). Successive inversions with finer



grid spacing should confirm the initial results while adding
more detall. However, occurrence of some small Auctua-
tuons near the discontinuities remains an inevitable burden
when the grid spacing is chosen too fine (e.p. Fig. 4a)
although very dense inversion meshes are not required with
the parametric techmigque. In order to maintain model
determinacy, 11 appears more advantageous o select
intermediate values of initial grid meshing {e.g. see Fig, 3),

The inversion results with the depleted data sets indicate
thal the method 1s robust (see Fig. 5) which can lead again
to sigmificant saving in computation time

In the application of inversion alwonthms to observed
data. the only quanuty that can be monitored o provide an
estimate of the goodness ot the it o the true model 15 the
RMS of the residual nmes. Maodels that generate RMS
residuals within the estimated errors of the data wet are
generally chosen as reasonsble answers to the inverse
problem. Table 1 shows that all the inversions using the
. parametnie method result i models having RMS vatues that
fall within or close to the nowse vilue of .01 s added to the
put data. [n contrast. only the 0.5 km spacing inversion
with fixed nodes was capable of converging to RMS values
within the notse levet

The method presented here adopts hinear B-splines basis
functions but, i principle. higher-arder basis could be used.
For example. parametric curves which adopt cubic B splines
are widely used in computer graphies (e Bartels. Beatiy &
Barsky [987) because they provide increased flexibility in
shaping objects. Prehminary inversions using this class of
curves and an  approximate  solution  for the partial
derivatives of the traveltime with respect to the control
vertex positions, yield encouraging results.

Use of parametric curves also appears quite suitable for
2-D and 3-D geometries. In fact, existing algorithms are
generally limited by the use of simple and repetitive grid
meshes while the extension of the present methodology 1o
the 2-D and 3-D cuses is capable of meeting the degrees of
freedom needed tor modelling existng geologmeal structures
{Micheling, in preparation).
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Finally, the results of this study show that existing
methods may suffer heavily from vertical undersampling
owing to the often coarse a priori imposed discretization.
This burden can be obviated with the method presented
above.

ACKNOWLEDGMENTS

The author is indebted to F. Bocchio for discussions on the
method and to W, Foxall, 1. Marson and an anonymous
reviewer for caretully reading the manuscript and providing
suggestons.

REFERENCES

Bartels, R H.. Beany, J. C. & Barsky., B. A.. 1987. An
imtroduction w Splines for use in Computer Graphics and
Geomewrie: Maodeling, Morgan Kaufmann Publishers, [nc, Los
Altos. Caldornia

Kennett, Bo L N Sambridpe, M. 8. & Williamson, P. R.. 1988
Subspace methods for large inverse problems with multiple
parameter classes, Geaphys. J. Ine, 94, 237-247,

Menke, W., 1984 Geophyvyical data analysis: discrete inverse theory,
Academuc Press, FLondon.

Michelena, RO & Harns, 1. M., 1991, Tomographic traveltime
mversion using aatural pixels, Geophysics, 56, 635-644.

Moser, T. I, Nolet, (6 & Snieder. R., 1992, Ray bending revisited.,
Bull sewm. Soc. Am., 82, 259-288.

Sambridge, M. S.. 199 Non-linear arrival time inversion:
constraining velocity anomalies by seeking smooth models in
3-D., Geophyy J Inr. 102, 653-677.

Thurber, ¢ H. 1983, Earthquake locations and three-dimensional
crustal structure in the Coyote Lake area, Central California, J.
geophys Kes., 88, 8226-82136.

Willlamson, P R.. 199, Tomographic inversion in reflection
sersmology . Geophvs 1 Ine, 100, 255-274.

Al U0 A & South, BB 1992, Seismic traveltime inversion for
210 crustad velociy structure, Geophys. J. i, 108, 16-34.



An adaptive-grid formalism for traveltime
tomography

Alberto Michelini

Istituto di Geodesia e Geofisica,
Universita di Trieste,

Via dell’Universitd, 7, 34127 Trieste, Italy

Revised for the Geophys. J. Int.
24 Qctober, 1994

Key words: seismic inversion, parametric representation, model parame-
terization, ray-tracing
Short title: adaptive-grid tomography

SUMMARY

The use of an adaptive-grid formalism for seismic, non-linear, travel-
time tomography is proposed. The method is based on a parametric rep-
resentation of the velocity model and involves the simultaneous inversion
for both velocity and position of the grid points of the model discretiza-
tion mesh. Therefore, the method seeks the optimal grid configuration
to define the model. Cubic B-splines basis functions have been used for
model representation as they are particularly versatile in the reproduction
of geologically complex structures. The traveltimes are calculated using a
new initial value ray-tracer that calculates the ray trajectories directly in
the parametric domain,

The method is tested against synthetic data generated for various
cross-hole geometries. It is found that, in parts of the model having good
ray-coverage, the method accurately retrieves velocity anomalies of arbi-
trary shape using a generally small number of grid points of the inversion
discretization mesh., With the exception of initial meshes which are too
coarse to describe accurately the complexity of the true structure, the
method retrieves nearly identical final models regardless of the predefined
node spacing and node configuration. Therefore, the method can avoid
very fine discretization and, matrix sparseness, one of the main sources of
indeterminacy, is similarly avoided. When compared to standard methods
entailing a similar total number of inversion parameters, our results show
the pitfalls that may derive from a priori assigning a fixed-grid mesh. Over-
all, the parametric representation leads to some saving in the total number
of inversion parameters when the structure consists of sparse distributions
of irregular features. Other styles of model may be better recovered by
regular grids for a given number of inversion parameters,



Introduction

The goal of seismic traveltime tomography is retrieval of the f{rue Earth’s velocity

structure. In general, the images of the Earth’s interior that are resolved by traveltime
tomography depend both upon the quality of the data set and upon the inversion
technique employed. The inversion technique itself can be subdivided into two main

parts: first, the a priori selection of the parameterization and discretization used to

represent the velocity model; and, second, the data functional misfit minimization

criterion that is applied.

Parameterization and discretization define the “filter” through which the model
is viewed and, because of our scarce knowledge of the target velocity field, it is critical
to minimize the effect of this filter in order to obtain accurate reconstructions of the
true model (e.g., Michelena and Harris, 1991; Spakman, 1993).

In principle, this can be achieved by decreasing the scale length of the model
discretization and by selecting powerful interpolation schemes (e.g., Sambridge, 1990).
Although this procedure yields more accurate fits of the retrieved velocity models to
the true ones and fuller exploitation of the information contained in the data sets, it
decreases the model determinacy; i.c., it increases the size of the parameter space and
may make the inverse problem strongly under-determined. Therefore, the solutions
need to be properly regularized to avoid instabilities and artifacts (Williamson, 1990).
Alternatively {see Thurber, 1993, for a comprehensive review), the velocity structure
can be treated explicitly as a continuous function of the spatial coordinates {Chou
and Booker,1979; Tarantola and Nercessian, 1984), but this approach, while allowing
faithful reconstructions of the inhomogeneous structure, does not differ significantly
from those based on fine discretization, requiring the same kind of regularization.

Various factors contribute to the rise of instabilities and artifacts thrcugh non-
linear and iterative tomographic inversions. In addition to the noise contained in the
data sets, poor positioning of the discretization grid with respect to the positions of
velocity anomalies and choice of inappropriate basis functions for interpolation may
introduce artifacts. For example, velocity model oscillations may arise near a velocity
discontinuity due to inappropriate distribution of the grid points (nodes) there—the
inversion algorithm attempts minimization by creating artificial oscillations, or dis-

continuities may be not resolved if the discretization interval is too coarse {Michelini,



1993), leading to biased solutions (Snieder et al., 1991; Godmundsson and Clayton,
1991; Spakman, 1993). These problems could be avoided if some ¢ prieri information
on the position and order of the velocity anomalies was available. This information is,
in fact, contained in the data set, and the aim of this paper is to show how it can be
used to optimize node positions through an adaptive grid technique. For this purpose
we (1) use a parametric formalism to represent the velocity model, (2) present a ray
tracer for the determination of traveltimes through such a model and (3) introduce an
adaptive gridding procedure that makes optimization of the node positions an active
part of the traveltime misfit minimization.

Curvilinear coordinates {closely related to the parametric representation; Courant,
1936) are commonly employed in computational fluid dynamics because they allow ar-
bitrary irregular fields to be modelled using an economical distribution of grid points.
Adaptive gridding schemes have been developed that use the physics of a problem
to direct the grid points to their optimal positions {Thompson et al., 1985). Using
curvilinear coordinates, the field is mapped from the “physical” to a “computational”
(parametric) domain and the grid is adapted according to the behaviour of the field
itself while satisfying the boundary conditions. The problem of representing bodies of
arbitrary shape also occurs in computer graphics, where 14 is standard practice to use
parametric surfaces to render objects while finding the most economical distribution
of support points (e.g., Bartels et al., 1987).

In seismology, Fornberg (1988) introduced the use of curvilinear ccordinates for
pseudospectral calculation of the elastic wavefield. This allows accurate representa-
tion of velocity interfaces that avoids the non-physical diffractions resulting from the
discretization (see also Nielsen ef al., 1992). More recently, Carcione and Wang (1993)
have proposed a Chebyshev collocation methed in generalized coordinates, and Moser
et al., (1992) have developed a bending ray-tracer which makes use of parametrically-
defined curves and cubic 3-splines basis functions for interpolation. Their approach
appears very flexible for modelling arbitrarily curved ray-paths using a small num-
ber of control vertices along the ray-path. Pereyra (1892) has developed a 3-D ray
tracer that uses a parametric representation to define velocity interfaces. He also sug-
gests that the smoothly varying material properties within blocks can be represented
parametrically in a way similar to that described in this paper.

An adaptive-grid approach is attractive for tomography where it is desirable to



use the minimum number of nodes and determine their optimal positions, through
inversion. An approach of this kind has been recently pursued by Michelini (1993,
hereafter cited as Paper I), who has shown that the 1-D velocity inversion problem
can be formulated using parametric curves; traveltime minimization being achieved
by adjusting both the velocities and vertical positions of the nodes. Paper I showed
that this technique makes it possible to use relatively coarsely-spaced discretization
grids to produce accurate velocity model reconstructions. In Paper I, the parametric
analysis was considerably simplified by limiting it to laterally homogeneous, vertically-
varying models (1-D) and using linear B-splines basis functions to interpolate between
nodes. In this paper, I develop a general parametric (or, equivalently, adaptive-grid}
formulation which can be used when the reconstruction problem is posed in one, two

or three dimensions and employs arbitrary local basis functions.

Method

The development of the parametric formalism is discussed for two-dimensional (2-D)

tomographic problems, but the same formalism can be followed for 1-D and 3-D cases.
Paramelerization

A 2-D velocity model v(z, z) can be expressed parametrically in the form

T = I(/YIJ'SE1 TJ): z = Z(Zl'j!Ev 7})1 v = U(Vijl‘fyn}x (1)
where

(Xig 6m) = D) Xipi(€)pi(n)

1=0 5=0
M N

2By = 3D Zupil€)es(n) (2)
t;()];(]

v(Vii&om) = DD Viiei(€)es(n)

are functions of the parameters £ and . p;(€) and p;{n) (: = 0,1,---,M; 7 =
G,1,- -, N} are arbitrary local basis functions used to determine a surface from (M +
1) x (N + 1) control vertices P;; = (X,j, Zij, V;;).
Thus, X;; and Z;; are the horizontal and vertical position, respectively, of the
‘th

i7'" control vertex {i.e., grid point) of the model discretization mesh and V;; is the

associated velocity value. Therefore, in setting up the model, one would typically



define X,;, Z;; and V;; on a regular grid in £{n-space. We have used cubic B-splines
basis functions as defined in Appendix A.

In general, Equation (1) establishes that to a point (£, 1) that ranges over a given
region R in the {n-plane (see Appendix A) corresponds a point (=, z,v) that ranges
over a configuration in the zzv-space (Courant, 1936). Therefore, the parametric
representation of a surface may be regarded as the “mapping” of the region R of the
En-plane on the corresponding surface where the word mapping is understood to mean
a point-to-point correspondence. In addition and for our purposes, we assume that the
mapping from the parametric {n-plane to the physical coordinates zz-plane (i.e:, by
neglecting v in Equation (1)) is always one-to-one. This prevents the velocity surface
to be multivalued at points in the zz-plane {i.e., unphysical topological folding of the
velocity surface). To prevent this situation when setting up the velocity medel or
when inverting for the positions of the control vertices, it is necessary to check that
curvilinear lines (physical space) of the same family do not cross, and lines of different
families do not cross more than once. Each family of curvilinear lines is generated by
assigning constant values to ome parametric coordinate and varying the other (e.g.,
Thompson et al., 1985). In the following, we will often refer to the parametric £n-
plane and the Cartesian zz-plane as the “computational” and “physical” domains,
respectively, in agreement with the terminology in use in computational fluid dynamics
(Thompson et al., 1985).

In Figure 1, we provide an example that illustrates the one-to-one correspon-
dence described above for a grid consisting of 5 x 5 control vertices, P;; (1,7 =
0,1,-++,4). In this figure, we have also plotted the two families of curvilinear lines
generated by assigning constant values to one parametric coordinate and allowing the
other to vary (i.e.,, £ = 0,1,---,4 while varying 7, and viceversa). Curvilinear lines
may be regarded as a curvilinear £n-system of coordinates in the zz-region. Note
also that in the parametric representation with cubic B-splines basis and with the ex-
ception of regularly spaced grid geometries (see examples below) the curvilinear lines
approximate the corresponding grid points but do not pass necessarily through them.

A second example of the parametric representation is shown in Figure 2. In
Figure 2a and 2¢, we show the perspective and plan views of the model whereas in
Figure 2b, we show the iwo families of curvilinear coordinate lines obtained using

the grid points (solid circles) listed in Table 1. In addition to the greatly reduced



number of control vertices needed to represent accurately the velocity surface, it should
be noted that the curved sharp discontinuities near z = —0.6 and z = —0.3 are
obtained by simply making coincide three sets of control vertices (see Bartels et al.,
1987 and Table 1). This feature follows from the adoption of cubic B-splines basis
functions and it has the potential advantage when compared to standard methods
for model parameterization, to reproduce any discontinuity while using the same set
of basis functions so that, at least in principle, one can reproduce any model shape
and be independent from the initial choice of parameterization. The same feature has
been used by Moser et al. (1992) to make a ray-path to go through sharp velocity

discontinuities or to reflect away at a velocity interface.

Partial derivatives

A prerequisite for the solution of inverse problems which are based on local lineariza-
tion of the data functional misfit is the calculation of the partial derivatives of the
velocity surface with respect to the control vertices, P,;; i.e., with respect tc both the
position of the grid point {X,;, Zi;) and the associated velocity value V;;. In Paper I,
for the 1-D case employing linear basis functions, this was accomplished by eliminating
the single parameter £ (u in Paper I), and expressing the velocity profile at any depth
as a function of the control vertices (Z;, V;) (see Equation 6, Paper I). However, the
same procedure cannot be followed when basis functions of degree higher than one
(lincar) are used for the 1-D inversion, or when basis functions even of degree one are
used in 2-D and 3-D cases. This procedure would generate equations in § and 5 of
order greater than one, which would greatly complicate the analytical solution.

An alternative approach in which we do not need to solve explicitly for § and 7

in Equation (1) takes advantage of the differentiation rules for inverse functions (see

Courant vol. 2, 1936, p. 142). We can write
f = E(Xl'j:zijlxlz) (3)

and

n = n(Xi, Zij, =z, z) (4)

so that, from Equation (1), v at any location (z, z) can be expressed as

v = v(Viy, €(Xi; Zijy 2, 2), Xy, Zij, 2, 2)) (5)



In Equations (3) to (5) it is implied that for some = and z, £ and 7 are functions
of all the contributing ij terms (see Appendix A). The number of the contributing
terms will vary according to the type of local basis functions employed (e.g., 4 and 16
for linear and cubic B-splines, respectively).

In addition to the derivatives of v with respect to Vi; which canr be easily deter-

mined from Equation (2):

, 5z dz
8(?/.1 = pi(€)p; (n) (: aXy 33-‘1) ’ ?

we seek the partial derivatives of v with respect to the vertex positions X;; and Zyj,

which, using Equation (5) and the chain rule for differentiation, can be written as

dv _?ﬁ 13 +61} an (7)
BX,j GEBX.'J‘ af]aX”
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Differentiation with respect to the parameters § and 7 can be easily done directly

from Equation (2):

v M N
Yy ZZVUPI'(E)PJ )

6£ i=0 =0 (9)
v MON
C,T' = qupl PJ "(T])
N 1=0 j=0
d dp; .
where p,/(¢) and p,!(n) indicate pi(£) and _R'—(—TQ respectively, Similar relations
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The derivatives of the parameters, £ and 5, with respect to X,; and Z;; can be

hold for

obtained by substitution of Equations (3) and (4) into (2}. The following identities
are obtained:

r = 3(X|'j1 E(Xijazijyzsz)v W(Xijl Z"J',Z,Z)) (10)

and

z = 2(Zi;, &(Xijs Zijy 2, 2)s  Xij, Zijr T, 7)) (11)

where the subscripts ij again refer to all the contributing terms. Note also that the left

hand side of the identities (10) and (11) cannot depend upon X;; and Zj, respectively

dz dz
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If the identities above are differentiated with respeci to X,; and Z;;, we can

form the following systems of equations:

dz dz O€ dz dn
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tives are substituted into (7) and (8), we obtain the needed derivatives,

which can be solved for , tespectively. When these deriva-

dv oz fz8v 0z dv
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where J is the Jacobian of the coordinate transformation defined as

8z 8z Oz dz
J= ——— - . 16
g dng  On B¢ (16)

Inversion

In travel time tomography, it is customary to solve the non-linear inverse prablem by
local linearization and adoption of an iterative inversion scheme. Within the paramet-
ric formalism outlined above, the residual 8¢ (i.e., observed - calculated traveltime) of
each phase arrival used in the inversion can be expressed to first order as:
AM N It M N 5t M N S5t

m:;%maxq +§§ﬁjaz;, +§§mm, (17)
where { is the traveltime determined with the current model and 6X,;, 6Z;;, 8V;; are
the control vertex adjustments to the current velocity model that we seek. The partial

derivatives of the travel time with respect to the control vertices are:
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where ds is an infinitesimal distance along the ray-path.
If we rearrange the ij terms as column vectors and suppose that we are given L

residual times, we can write Equation {(17) in matrix form as:

éx
St ~[A|B|C]| bz (21)
v

where 6t is & vector of dimensions L; A, B and C are the matrices of partial deriva-
tives of the traveltimes with respect to the control-vertex peositions having individual
dimensions L x (M + 1} x (N +1)), and éx, 6z, év are ((M +1) x (N +1))-dimensional
vectors.

Equation (21) represents a classic inverse problem of mixed type because we
solve simultaneously for three sets of parameters (the two spatial adjustments dx and
6z and the velocity adjustments év}). Multiparameter inversion is often a difficult task
because inappropriate relative scaling of the different parameter types may retard and
bias convergence in non-linear and iterative schemes (Kennett et al, 1988). As in
Paper I, we follow here the “subspace method” proposed by Kennett et al. (1988).

According to this method, the full matrix problem in (21) is projected onto
a specified set of orthonormal vectors (the subspace) which, in our case, includes
the three ascent directions (i.e., each vector corresponds to a parameter type) of the
misfit functional and their nine associated rates of change along and among themselves
(Kennett ei al., 1988). Therefore, in our problem the subspace consists of a total of
twelve orthonormai vectors.

Damping can severely affect the results of a non-linear, iterative inversion. In
the adaptive-grid formalism a solution is sought simultaneously for three groups of
parameters (2 spatial, 1 velocity], and the corresponding damping values must be set
to achieve proper regularization of the solution. In our inversion procedure, the three
damping values are determin‘ed as a fraction of the largest eigenvalue of the singular
value decomposition of the appropriate partition of the matrix of traveltime partial
derivatives. Specifically, at the n'" iteration of the tomographic reconstruction and
for one group of parameters, the fraction of the largest eigenvalue to be applied to the
derivatives matrix is

€y —€ab™ ™ (22)
where ¢, is the initial fractional value of damping and b is a convergence factor. When

b is greater than one, the damping is a progressively smaller fraction of the largest



eigenvalue. In the tomographic tests below, we have applied initial fractional velocity
and position damping values of the order 0.01 and 0.1, respectively. Thus damp-
ing velocity adjustments fractionally less than position adjustments. Similarly, the
convergence factor b was set to 1.5 and 1.2 for velocity and position adjustments, re-
spectively. This (relative) underdamping of the velocity with respect to the position
adjustments (in terms of largest eigenvalues) reflects the need to retrieve the initial
size of the velocity anomaly first, the boundaries of which are later refined by grid
position adjustments. This procedure prevents the rise of large, uncontrolled, grid
position adjustments in the early stages of the inversion which would be deleterious
for successful final reconstructions. It also prevents the formation of the unphysical

topological foldings of the velocity surface mentioned above.

Ray-tracing

Efficient and accurate ray tracing is critical for any traveltime tomography algorithm.
In our scheme, Equation (2) establishes the mapping from the parametric to the phys-
ical space. However, there is no simple analytical solution for the inverse mapping for
which one has to rely on non-linear, computationally intensive search methods. There-
fore, because any ray-tracing method that relies heavily on this inverse transformation
would be prohibitive computationally, we have developed a method that carries out
the ray-tracing in the computational domain and requires minimal physical-parametric
mapping.
The ray-tracer solves the ray equation numerically (e.g., L.ee and Stewart, 1981)
EANE,
ds

= J = Vu (23)

where r is a position vector, ds an infinitesimal increment along the ray-path, u = .
is the slowness and V is the gradient operator. A numerical solution to this equation
can be found by casting it as an initial value problem and by rewriting Equation (23)
in terms of simultaneous first order differential equations (e.g., Cerveny, 1987).

We define

dz dz
— wa = = —
d.! E 3 . wy d3
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and arbitrarily set s = 0 at the source. The ray trajectory in the computational

10



¢n-plain is a solution of the following ray-tracing system:
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In this system, we provide the position of the source (w10, w30) in the parametric
domain and the ray take-off angle (w20, wao) at the source in the physical domain as
initial conditions. Note that the components of the initial ray take-off angle are not
independent and they must satisfy the eikonal equation that in our notation takes the

form

wiowi=1 (27)

The eikonal equation is satisfied along the whole ray as long as it is satisfied at the
initial point of the ray {Cerveny, 1987).

The inverse transformation needed to map initially the position of the source
into the parametric space is performed using the downhill simplez method (Nelder
and Mead, 1965) for non-linear search given by Press et al. (1986). However, this
computationally expensive calculation is performed only once for each ray. In our
implementation, the take-off angle is adjusted using root bisection until the trajectory
“Lits" the receiver. A fourth order Runge-Kutta scheme has been used for the nnmer-
ical integration. The infinitesimal increment along the ray-path is calculated in the
computational space then mapped into the physical space. Therefore, the distance
between the ray-trajectory and the receiver point, necessary to trace the ray properly

(i-e., hit the receiver), is calculated in the physical domain. Alternatively, it is also
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possible to avoid the computational-physical mapping of each infinitesimal increment
by specifying also the position of the receiver in the £7-plane and make the ray hit the
receiver in the computational space,.

Examples of rays calculated with this ray-tracer are shown in Figure 3. The
velocity model was set to a constant value of 2.0 km/s and computational-physical
space mapping was performed using various geometries for the grid points (Xi5, Zi5)
while keeping V;; constant. Thus, the velocity field is maintained constant regardless
of the grid point distribution. The curvilinear lines associated with the various grid
point geometries are shown in Figure 3. Regardless of the grid geometry, the ray-tracer
produces the correct straight ray-paths through the model and the traveltimes for the
three curvilinear grids differ by less than 0.001% of the total traveltime.

Ray-trajectory stepping with Equations (24) involves 27 operations, that is, three
times those required by standard methods on a regular grid (e.g., Lee and Stewart,
1981). However, the computational cost is dominated by the analytical calculation of
the partial derivatives of Equation (9) (i.e., g%, g—;, g—z, g—;, g;— and g—;) Each partial
derivative calculation involves 2 x (M +1) x (N +1) operations which, however, can be
reduced to 32 = 2 x 4 x 4 because cubic B-splines are defined only on 4 discretization
intervals. Overall, the ray-tracing proposed here performs a total of 219 calculations
per step—three times those required by standard methods. Therefore, the required
computational-physical mapping makes the traveltime calculation CPU intensive but,
nonetheless, tractable for inversion problems whose sizes do not differ significantly
from those shown in the tests below. In our computer implementation, for models
consisting of 10 x 10 control vertices, it is found that the ray-tracer takes on the order
of 1 s of CPU time per ray (source-receiver) on a Sun SPARCI10 but this computational
time can be consistently reduced if the computational-physical mapping, as explained
above, is avoided; if the optimization is improved, or other methods (see below) are

used to define the velocity model.

Application

The aim of this section is to assess the performance of the parametric technique when
compared to standard fixed-node inversion methods. Note, however, that the same
computer algorithm was used for both techniques. By fixing the positions of the grid

points, the technique becomes de faclo a traditional fixed-grid one. To fix the mesh,
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we overdamped the spatial adjustments by using ¢ = 100, b = 1.0.

Qur first objective is to test whether the method is capable of retrieving velocity
anomalies of arbitrary shape with a relatively small number of model discretization
points. This first series of tests is carried out using a data set having a large information
content because we wish to verify the efficacy of the parametric method through the
non-linear inversion. In the second series of tests our objective is to evaluate the
performance of the method when the information contained in the data set is greatly
reduced. Our concern in this case is that the increased number of degrees of freedom
inherent in the parametric method, combined with poorer ray-coverage may adversely
affect the data misfit minimization through the iterative inversion. In the third test,
we address the imaging of more complex models.

To illustrate the performance of the method for the first two series of tests, we
have selected the model, MODELI1, shown in Figure 4a which features an oblique
S-shaped, 50% maximum positive velocity anomaly. A total of 8 x 7 grid points were
used to generate this model. Note that in the figures displaying the grid geome-
try, the outermost control vertices which lie cutside the target area have not been
plotted. The third series of tests used the traveliimes generated with the MODEL2
shown in Figure 12a, which features two oblique S-shaped, 20% maximum velocity
anomalies (positive and negative, respectively). A grid consisting of 8 x 12 knots with
two overlapping rows of grid points at z = --0.8 was used to represent this velocity
model. Uniformly distributed random noise ranging between +0.5 ms was added to
all the traveltimes which ranged approximately between 0.3 and 0.5 s for MODEL1
and between 0.4 and 0.9 s for MODEL2. This distribution of random noise implies an
expected root mean square (RMS) value of the residual times of 0.5/\/5 ms. Inversions
were stopped when the RMS was less than this value or when the RMS decrease was
less than 2.5% of the current value.

In the parametric inversion algorithm, it is necessary to check that the mapping
between the parametric and the physical space is always one-to-one. However, in
the inversion tests described below, this was always the case owing to the relatively
large amount of spatial adjustment damping imposed and to the use of cubic B-
splines parameterization, which has an overall stabilizing effect (because cubic B-
splines basis functions are supported over four discretization intervals; see Appendix

A). Alternatively, it appears possible to add some term to the objective function in
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order to penalize the irregularity of the grid mesh and prevent unphysical topological

mappings.

MODEL1

This model was obtained by obliquely shifting the grid points along the z-direction
(Figure 4b). The background has a constant velocity of 2 km/s whereas the anomaly

features a maximum value of 3.0 km/s.

For the first series of tests the acquisition geometry consists of two groups of
9 sources and 9 receivers arranged on the opposite sides of the square target area
{Figure 4c). This acquisition geometry results in the calculation of 162 ray-paths and
it will be referred in figures and text as the “medical” set-up—by analogy with the
acquisition geometries in use in medical tomography. Overall, this set-up simulates
situations in which the information content of the data set allows accurate model
reconstructions. A somewhat similar data acquisition setup has been planned for
the cross-volcano experiment that will be conducted on the flanks of Mount Etna
(ETNAseis). The second series of tests uses the depleted source-receiver geometry
shown in Figure 4d—a cross-hole experiment. This second acquisition set-up has a

poorer ray coverage and only a smeared image of the true model is expected.

The initial velocity distribution for all the inversions was set to a constant 2.2
km/s and initially the control vertices were equally spaced along the horizontal and
vertical coordinates. The RMS misfits obtained with this initial model were 26.2 and
14.9 ms for the medical and cross-hole acquisition setup, respectively. In Figures 5,
8, 9 and 10 we show the initial and final position of the grid points together with
the curvilinear grid generated using the parametric relations of Equation (2). Each
family of curves was generated by varying one coordinate (e.g., £ = 0,1,2,---, M)
while holding the other constant.

The inversion was carried out using four meshes—control vertices spaced 0.2,
0.15, 0.10 and 0.05 km along z and z for a total of 6 x 6, 7 x 7, 9 x 9 and 17 x 17 grid
points, respectively (Figure 5). In addition, inversions were performed using unevenly
spaced and skewed, 6 x 6, initial distributions of the grid points (Figure 9) and with
configurations that entailed (for the adaptive- and the fixed-grid methods) a similar

total number of inversion parameters {Figure 7).
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“Medical” Inversions

The results obtained using the parametric formalism are compared with those from the
fixed-grid method in Figure 6. Even when the inversion grid is coarse (i.e., 0.2 and 0.15
km) the adaptive grid technique is capable of fully exploiting the information contained
in the data set. Very similar velocity models are obtained regardless of the initial
grid spacing (Figure 6e-h). Conversely, the “rigidity” of fixed grids inhibits proper
convergence to the true model (Figure 6a,b) unless the number of discretization points
is increased (Figure 6¢,d). In this example, accurate reconstructions are obtained with
fixed nodes only when grid spacings of 0.1 km or less are employed (Figure 6c,d). There
are, however, only minor differences between the results obtained using the adaptive-
and fixed-grid techniques when the spacing is reduced to 0.05 km {Figure 6d,h). This
behavior is not unexpected and it can be explained as follows. When the inversion
grid (fixed or adaptable) is sufficiently dense, there is a greater likelihood that the
grid points are properly positioned, and node position adjustments will contribute
less significantly toward data misfit minimization, the velocity perturbations playing
the predominant role. Consequently, as the data misfit reaches values close to the
noise level, the velocity model refinement achievable by grid position adjustments
becomes negligible. Conversely, with a wider-spaced grid, the velocity adjustments
slone are unable to reduce the misfit to values close to the noise level and the grid

point perturbations become effective (see Table 2).

Table 2 shows that the only case in which the parametric formalism performs
(slightly) worse than the fixed grid approach is when the spacing is reduced to 0.05
km. The slight image deterioration evident in Figure 6h compared with Figure 6d
results from the competeing roles that velocity and position adjustments play in misfit
minimization. This creates the hole in the node distribution at the anomaly, which
inhibits full recovery of the true model (Figure 5h). Note, however, that a larger value
of grid position damping would have probably avoided this problem. Table 2 lists
also the total number of iterations required for convergence. This number is generally
larger for coarser meshes because some of the grid points have to undergo larger total

displacements from their original positions.

In the tests above, we have compared the performance of the adaptive- and

fixed-grid inversion methods using identical-size grid meshes. This approach, however,
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neglects that the effective number of inversion parameters is three times larger in the
adaptive-grid method than in the fixed one. Therefore, in Figure 7, we show the
results obtained when a similar total number of inversion parameters is used, that is,
we compare inversions with dense, fixed, meshes and relatively coarse, adapiive ones.
In order to display the effective differences between the true and the calculated models,
we plot the absolute value of the percentual difference between the two models (i.e.,
[| {true — calculated)/true || x 100). In detail, we have selected four test cases. In the
first two (Figure Ta and Te, and Figure 7b and 7f) the number of inversion parameters is
smaller than that used to generate the true model, that is, 168 (= 8 x 7 x 3) parameters
were used to define the true model whereas 100 (= 10 x 10} and 144 (= 12 x 12)
were used in the inversions with the fixed-grid mesh and, 108 (= 6 x 6 x 3) and
147 (= 7 x 7 x 3} for the adaptive-grid inversion. The third test involves a total number
of parameters similar to that of the true model (169 = 13 x 13 and 168 = 8 x 7 x 3 for
the fixed- and adaptive-grid inversions, respectively; Figure 7c and 7g) and the fourth
was completed using a total number of parameters much larger than that used to
define the true model {289 = 17 x 17 and 300 = 10 x 10 x 3 for the fixed- and adaptive-
grid inversions, respectively, Figure 7d and 7h). Although the differences between the
true and the calculated models using the two methods are never larger than 10%,
the fit of the adaptive-grid method is generally superior because the method can
effectively find the best node configuration to reproduce the true model. In contrast,
the fixed grid method seems to create some spurious horizontal and vertical bands
having larger misfit. Presumably, the crigin of these bands is to be found in the non-
optimal positioning of the grid-points and in the increased indeterminacy that results

from reducing the scalelength of the parameterization when using fixed meshes.

In general, the parametric approach permits use of relatively coarse grids for
accurate reconstructions while minimizing the insurgence of instabilities. However,
the use of a dense grid mesh can accentuate the insurgence of instabilities owing to
the increased indeterminacy resulting from the large number of parameters sought
simultaneously. Therefore, it appears that the robustness of the results should always
be tested by repeating the inversion using various grid spacings—a procedure that
should be also followed with fixed grid meshes. One advantage of the adaptive grid
approach is that, with the exception of the very dense meshes described above, almost

identical final models are retrieved regardless of the grid spacing whereas with fixed-
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grid methods the final model always depends to some extent upon the predefined node

spacing.

In all the inversions using the adaptive grid method described above, we have
solved simultaneously for velocity and position adjustments using a constant velocity
initial model that is significantly removed from the true model in terms of RMS residual
misfit. Figure 8 shows the results obtained when the models obtained from the fixed-
grid inversions (Figures 6a-c) were subsequently refined by control vertex adjustments
using the parametric inversion. These images are nearly identical to those displayed
in Figure 6e-g (see also the RMS values listed in Table 2), but the distribution of
grid points and the associated curvilinear grid (Figure 8a-c) now differ from those
obtained when both spatial and velocity adjustemnts are simultaneously inverted for
throughout (Figure 5e-g). Therefore, there appears to be no unique distribution of a
given set of control vertices that is capable of reproducing the true model accurately.
This fact can be visualized by comparing the final models obtained in Figures 6e-
g and 8d-f and the grids of Figures 5e-g and 8a-c. In Figure 9, the inversion has
been repeated using two additional 6 x 6 initial configurations of the control vertices
(Figure 9a,b). Similar final models (Figure 9e,{) are obtained regardless of the final
grid node configuration (Figure 9¢,d). The RMS residual misfit is 0.78 and 0.80 ms for
the models shown in Figures 9e and 91, respectively. Therefore, by redistributing the
grid points and readjusting the associated velocities, the adaptive gridding technique
formalism can converge to different final configurations of the control vertices while
still reproducing the model faithfully. I speculate that in non-linear inversions this
feature can be advantageous because it enlarges the range of successful paths toward

minimization of the data misfit functional.

The number of iterations (Table 2) is comparable for parametric inversions start-
ing from fixed and relaxed initia] models. Thus, refinement by adaptive gridding, al-
though effective is, nonetheless, as expensive computationally as using adaptive grid-
ding from the start, but this does not preclude the method from being used to refine
results obtained using fixed-grid methods. For example, in local earthquake tomog-
raphy, it rarely occurs that the final data misfit at convergence of the inversion falls
within the observational errors of the data set. This is probably due to inadequate

meshing of the target volume which the adaptive-grid technique obviates.
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Cross-hole Inversions

The second data acquisition geometry is designed to investigate the performance of
the parametric approach when the resolving power of the data set is such that only
a smeared image of the true model can be expected. As we remarked above, the
combination of a large number of degrees of freedom and a partial lack of resolving
power might retard and/or bias the solution. Figure 10 shows the initial fixed grids and
the curvilinear grid resulting from the parametric inversion. The results are compared
in Figure 11. As expected, neither approach is capable of reproducing the true model
accurately. However, the parametric inversion with a relatively small number of grid
points provides results which are comparable to those obtained with the denser fixed
meshes (compare Figures 11d and 11e-h). Therefore, it appears that the advantages
of the adaptive-grid method are maintained without introducing significant bias. The
pattern of RMS data misfits in Table 3 is also similar to that of Table 2. However, the
slightly smaller RMS values in Table 3 and the poorer image reconstruction attained
with this set-up illustrate the pitfalls inherent in under-determined inversion problems.
This is a classic case of inversion non-uniqueness where, given the poor constraints on
the model provided by the data set, minimization stops when it reaches values within

the noise level, but there is no guarantee that the resolved model is the true one.

MODEL2

MODEL?2 and the data acquisition geometry used to image it is shown in Figures 12a
and 12¢. This acquisition set-up is similar to that used by Berryman (1989) and by
Ammon and Vidale (1993). Again, the S-like character of the anomalies was generated
by shifting the corresponding grid points along the z-direction (Figure 12b}. A con-
stant 2.0 km/s initial model was used for all the inversions. Traveltimes calculated with
this model produced an RMS misfit of 22.1 ms. In order to avoid poor convergence of
the algorithm, some amount of row weighting was needed. Rows of (21) whose source-
receiver distances fell in the range between 1.2 and 2.0 km where down-weighted from
one to gero. Therefore, the rows of the longest rays (from top to bottom) were scaled
down to approximately one fourth of their original value. In Table 4, we summarize
the final RMS misfit values obtained at convergence for the various cases that were
analysed. Again, the number in parentheses indicates the total number of iterations

for each inversion test. In general, the number of iterations varies according to the
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amount of damping that is added to regularize the solution and to the number of gnd
points in the mesh. In this test, about 20 iterations were needed for the parametric
method. However, only three to eight iterations, depending on the grid mesh, were
needed to decrease the residual misfit to about 10% of the initial one. This number of
iterations is typical for non-linear inversions of this kind.

Figures 13 and 14 compare representative results obtained with the adaptive-
and the fixed-grid methods, respectively. Adaptive inversions having relatively coarse
meshes (0.2 and 0.15 km; Figure 13) are capable of reproducing adequately the anoma-
lies of the true model, although the sharpness that distinguishes the medical inversion
experiment cannot now be attained owing mainly to the greater model complexity.
As expected, regardless of the method, it is more difficult to image the low veloc-
ity anomaly because of the inherently sparse ray-coverage there (see Figure 12c), but
the parametric method does substantially better (compare Figures 13a and 13c with
Figure 14a). This is due to the way the parametric method uses and expands the
parameter space. With standard methods, an increase in the number of parameters
1s always associated with a decrease in the discretization interval. This increases the
problem indeterminacy because fewer rays sample each node. This is accentuated by
the already sparse ray density within the low-velocity zone. In contrast, the model
indeterminacy resulting from triplication (in 2-D) of the size of the parameter space
in the adaptive-grid method is offset by the fact that this method can accurately
reproduce the velocity field using a coarse mesh. Therefore, fine discretization is un-
necessary and matrix sparseness, one of the main sources of indeterminacy, is avoided

altogether,

Discussion

The approach taken in this study differs significantly from those previously proposed
for traveliime tomography. Here, the inverse problem involves determination of the
optimal position of the grid poinis and their associated velocities to represent the
velocity model. In contrast, standard methods rely on an initial and fixed choice of
the discretization mesh.

In general, there is a variety of ways to express a specific surface parametrically.
Each can be broadly classified as being based on “interpolation”, in which the surface

is required to pass through the control vertices, or on “approximation” in which the
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surface passes “near” the control vertices (Bartels et al., 1987). For example, linear B-
splines basis functions ensure interpolation between the control vertices of the surface
whereas cubic B-splines—the basis used in this study—approximate the surface to the
control vertices. Note, however, that the use of cubic B-splines does not preclude the
generation of sharp variations of the velocity surface in correspondence with the control
vertices (e.g., Figure 2). This is an extension to parametric surface representation
of the node multiplicity property used by Moser et al. (1892) to model first order
discontinuities for ray-tracing, and is one of the principal motivations for selecting

such basis.

A second remarkable feature of the parametric representation with cubic B-
splines basis is that nearly identical models can be reproduced using different configu-
rations of the grid points (see the 6 x & meshes of Figures 5 to 9). In fact, differences
in grid point configurations are balanced by variations in the associated velocities and,
as the grid point configuration varies, complementary variations in the associated ve-
locities produce similar final velocity models. This effective trade-off between nodal
positions and velocity values would indicate that in our tests, even with coarse meshes,
the velocity model is de facto over-parameterized so that different configurations of the
control vertices can effectively reproduce similar images. In this context, an inversion
test carried out with a 5 x 5 variable grid (not shown, final RMS=2.37 ms) was still ca-
pable of reproducing the main features of the true structure whereas the 4 x4 adaptive-
grid inversion failed being too under-parameterized. The point is that the complexity
of a structure should be quantified by the number of parameters needed to define it
{to within some degree of “closeness”). Therefore, the models presented in this study
are not really that “complex” if the grid points are well-positioned. Conversely, these
models are “complex” and require more parameters if fixed, rectangular, grid geome-
tries are used. The results shown in Figure 7 well expose that over-parameterization
using fixed-grids may not be the best strategy to follow in inversion problems of this
kind. However, the models used here are well-suited to demonstrate the efficacy of
the method in that they comprise isolated, irregular, velocity anomalies which can be
reproduced using a relatively small number of well-positioned grid points. In contrast,
there may be other styles of model which can be well defined by a relatively dense
fixed grid but not by a coarse adaptive one for the same total number of parameters.

For example, a model consisting of Nyquist sinusoids defined on a regularly spaced
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dense grid cannot be represented by an adaptive one using a comparable total number
of inversion parameters (e.g., 10 x 10 = 100 for the fixed- and 6 x 6 x 3 = 108 for the
adaptive-grid, respectively).

It is well known that, apari from the methodology, tomographic reconstructions
depend both upon the quality of the data and their resolving power. In practice and
with standard methods, an increase in size of the model space results in a decrease
of the scale length of the model discretization. Therefore, the associated ray coverage
per model parameter decreases so that the resolving power of the data onto the model
parameters is similarly decreased (e.g., Williamson, 1990; Michelini, 1993). The para-
metric method triples the number of model parameters but avoids the indeterminacy
caused by the decrease in scale length of the mode! discretization. This is probably one
of the main features of this approach because it allows the use of coarse discretization
meshes obviating the inversion of sparse, often near singular, matrices. However, the
mentioned trade-off between nodal positions and velocity values indicates that some
near-zero singular values of the parameter derivatives matrix still occur but do not
seem to affect significantly the model in zzv-space if their contribution is properly
damped as explained below.

Because the parametric formalism involves simultanecus inversion for both ve-
locity and position adjustments, to assign the relative amount of damping for position
and velocity adjustments in the inversion of the partitioned matrix (see Equation 21)
is probably the most intricate task for successful model reconstructions. We have used
Kennett at al's (1988) subspace method and applied damping based on the value of
the largest eigenvalue of each class of parameters but other matrix inversion methods
and damping criterions could have been adopted. Qur selection of the damping val-
ues reflects the observation that during the first iterations the dominant role toward
misfit minimization is played by the velocity adjustments whereas grid point adjust-
ments become preponderant only in the final iterations that is, when the size of the
velocity anomalies is close to that of the true model and position adjustments alone
can substantially improve the model fit by modifying the shape of the anomalies. A
second motivation for overdamping the position adjustments follows from preventing
the formation of unphysical topological foldings of the velocity surface.

The convenient features of the parametric method, however, trade-off with the

total computational time needed to complete the non-linear inversion. In our appli-
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cations the CPU time for the iterative inversion is tractable (15 to 60 minutes on a
SPARC10 depending on the total number of iterations for convergence, the grid size
and, on the integration step along the ray-path) but, for tomographic probleras involv-
ing several thousends of traveltime calculations, the ray tracing scheme proposed here
may become a burden to the methodology. The most costly part of the ray-tracer is
the analytical calculation of the spatial derivatives (i.e., Equation (9)) which depends
on the basis functions used for model representation. Therefore, some significant com-
putational saving can be achieved by a more thorough optimization of the derivatives
calculation or, by using simpler basis functions (e.g., linear B-splines would reduce the
computational cost to one fourth). In addition, some CPU saving is expected by (1)
redefining the model in terms of square of slowness (Psencik, written communication)
or, (2) by bending the ray trajectory adopting the approach proposed by Um and
Thurber (1987).

In the application of the method, we suggest starting from relatively coarse initial
meshes and testing the robustness of the results by using successively denser meshes.
In light that some styles of model can be ill-suited to be defined by relatively coarse
meshes, it is also advisable to test the inversion using the fixed-grid method with a
dense mesh. In any event, selection of the initial configuration of the grid mesh appears
less troublesome than with standard methods because the true shape of the velocity
anomalies can be recovered regardless of the initial distribution of the grid points. The
method is also rather flexible because the nodal positions can be constrained at will.
For example, the grid could be held fixed during the initial iterations and the results
refined by adaptive gridding during the final iterations.

In all our tests, the noise added to the data is a small fraction of the total
traveltime and larger values of noise would have certainly deteriorated (smeared) the
reconstructions. Various amounts of uniformly distributed random noise in the range
2.5 to 10 ms have been to the MODELI, medical inversions, data set. The results
obtained with the fixed- and the adaptive-grid methods are shown in Figure 15 where
we have inverted the data using a nearly equivalent number of effective mocel param-
eters (i.e., 169 and 168 for the fixed- and adaptive-grid methods, respectively; see also
Figure 7). All inversions were stopped when the data misfit decreased to values less
than the expected RMS misfit. As predicted, the sharpness of the reconstructions de-

pends on the noise level but, because of the larger scalelenght in model discretization
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and the optimal positioning of the nodes, the parametric formalism appears less prone
to create the instabilities observable in the fixed-grid inversion results.

In Paper I and here, the number of control vertices used for the interpolation is
maintained fixed throughout the iterations of the inversion—the parametric technique
seeks their optimal position. A different strategy would consist of using rectangu-
lar grid methods and devise schemes that “sense” the formation of velocity gradients
through the inversion to increase or deplete locally the number of grid points accord-
ingly. This is a promising approach to the tomographic problem but it relies on the
selection of a robust criterion for isolating those parts of the model where the density
of the mesh should be varied. The adaptive grid formalism presented here inverts for
the position of the grid points and the criterion above is not needed.

In order to solve the non-linear inverse problem of traveltime tomography by lo-
cal linearization of the misfit functional and through iterations, we have presented the
analytical relations required for the determination of the traveltime partial derivatives
with respect to the model control vertex positions. This local linearization approach
is required by the computationally intensive forward calculation of the traveltimes. In
inversion problems where the forward calculation is less demanding, local linearization
and calculation of the partial derivatives are not needed but the parametric represen-
tation can still be used to describe the model and fully non-linear methods employed

to determine the optimal mesh configuration.

Conclusions

The underlying idea of this study is that a generalized curvilinear coordinate basis can
be more effective in defining complex velocity structures than a rectangular one. To
this purpose it is introduced: (1) the use of velocity models defined parametrically; (2)
a ray-tracer through such models and (3) an adaptive-grid formalism for non-linear
traveltime tomography.

In order to define the velocity model parametrically, we have chosen cubic B-
splines basis functions because they are particularly versatile in the reproduction of
complex geologic structures with high fidelity while using a minimal number of dis-
eretization grid peints.

Because the bulk of the computational effort required by non-linear tomography

is in the ray-tracing itself and existing ray-tracing algorithms are designed for rectangu-
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lar or spherical geometries whereas the parametric representation involves generalized
curvilinear coordinates, we have developed an exact, initial value, ray-tracer which
relies on numerical integration along the ray-path in the parametric (computational)
domain. Computationally, this ray-tracer performs three times as many operations
than its correspondent in rectangular coordinates which makes the parametric for-
malism of practical use for tomographic problems of approximately the same size as
those presented here. Although in its current, unoptimized, version the ray-tracer is
moderately slow, faster schemes are possible and are under investigation.

The following conclusions are drawn from application of the adaptive-grid tech-
nique to various synthetic data sets:

i.) The method always produced good fits to the true model while using rela-
tively coarse grid meshes. When compared to the standard fixed-grid method and for
models defined using the same total number parameters, the method is shown to be
generally more accurate. However, I remark that the models used here are well suited
to demonstrate the methodology but there may be other kinds of model featuring
continuous patterns of short wavelength anomalies which cannot be represented using
coarse adjustable grids for the same total number of inversion parameters.

i1.) Adaptive gridding partly obviates the model indetcrminacy that afflicts
standard methods using dense grids. Because the adaptive grid method seeks the
optimal position of the grid points, relatively coarse meshes can still be used avoiding
the inversion of large, sparse, matrices. Nevertheless, the derivatives matrix can still
display some near-singular values whose damaging effects can be removed by damping.

#ii.) In our applications, different configurations of the same set of control ver-
tices appear to reproduce accurately the true model (to within a certain degree of
“closeness”). This effective trade-off between node positions and velocity values fol-
lows from the versatility of cubic B-splines for model definition. In addition, it would
indicate that the true models adopted here are not particularly complex to recon-
struct if the inversion grid points are well-positioned. I conjecture that this added
freedom can be beneficial to non-linear inversions because it increases the probability
of reproducing the true model regardless of the starting velocity model.

iv.) Inversion grid meshes having different densities of the grid points can re-
produce the true model with equal fidelity. This can be an advantage with respect to

standard fixed-grid methods when testing the robustness of the results.
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In this paper, the adaptive-grid method has been applied to a 2-D problem but
it appears particularly suited also for 3-D tomographic inversion problems, such as si-
multaneous determination of earthquake locations and velocity structure. Overall, the

parametric representation can find application in other kinds of geophysical problem.
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Appendix A: Cubic B-splines

We follow the formulation given by Lancaster and Salkauskas (1986). Cubic B-splines
are a set of basis functions p; taken from the vector space Sps of piecewise cubic
functions which has dimensions M +3. To determine uniquely a cubic B-spline function
through a set of M +1 nodes, it is constraint the second spatial derivatives at the
boundary nodes (i = 0, M) to be equal to zero. The smoothness in cubic B-splines
(continuity up to the second spatial derivative) demands the support of at least four
consecutive intervals for internal knots and three or two intervals at the boundaries.

The normalized cubic B-splines functions satisfying these boundary conditions are

defined as follows:
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where £ is the independent variable which varies between some minimum, £, and a
maximum £4r. The sequence of knots, £ (i = 0,---, M), must be non-decreasing and,
for convenience, are equally spaced {ie., &1 = £ + 1). Analogous relations apply

along the 7 parametric coordinate.
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Figure Captions

Figure 1. Example of one-to-one mapping from region R in the {zn-plane (0 <
€ £ 4,0 < 5 < 4) onto the zz-plane. The solid circles indicate the grid point positions
(Xij, Zi;) used in the functional relationships of Equation (2). The thin lines represent
the two families of curvilinear grid lines obtained from the chosen geometry of grid
points. Each line is generated by fixing one parametric coordinate and varying the
other (e.g., £ is fixed to 0 whereas 7 is increased mononically from 0 to M see text).

Figure 2. Example of velocity model generated using the parametric represen-
tation. a] Perspective view; b) grid points used to generate the model (solid circles)
and the curvilinear lines (thin solid lines). Each family of curvilinear lines is drawn
using the mapping relations of Equation (2); c¢) plan view.

Figure 3. Example of ray-tracing through a velocity model defined parametri-
cally. The velocity is constant (v = 2.0 km/s) throughout the model in all cases. Ray
paths are calculated for: a) an evenly spaced mesh of grid points; b) two coinciding
grid points at » = 0.25, z = ~0.1 and z = 0.25, 2 = —0.25 and ¢) the two coinciding
grid points of the previous case plus two additional coinciding points at z = 0.55,
2= —0.1and 2 = 0.7, z = —0.1. Stars indicate the coinciding grid points.

Figure 4. Velocity model and data acquisition geometry for MODEL1: a)
model used to generate the traveltimes; b) curvilinear grid lines (solid circles indicate
the position of the grid points); c) ray coverage for the “medical” data acquisition; d)
ray coverage for the “cross-hole” data acquisition. Sources and receivers are indicated
by solid stars and triangles, respectively.

Figure 5. “Medical” inversion results: curvilinear grid lines and grid point
positions. a-d) fixed-grid and initial configuration of the grid points for the adaptive-
grid inversion; e-k) final grid point positions for the adaptive-grid inversion. Note that
the boundary grid points are not plotted because they lie outside the shown physical
space.

Figure 8. “Medical” inversion results: velocity models resulting from the in-
version using the fixed- (a-d) and adaptive-grid methods (e-h).

Figure 7. “Medical” inversion results obtained with the adaptive- (e-h) and
fixed-grid (a-d) methods for a similar total number of inversion parameters. It is
plotted the absolute value percentual difference between the true and the caleulated
models. The whitened areas show percentual differences larger than 5%. The number
in parenthesis above the fixed-grid panels indicates the node spacing in km.

Figure 8. “Medical” inversion results obtained with the best fitting, fixed-gnd

initial models of Figure 6a-c: a-c/ curvilinear grid lines and grid point positions; d-f)
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correspondent velocity models,

Figure 8. “Medical” inversion results obtained using two additional 6 x 6 initial
configurations of the grid points (e,5). Panels (c,d) show the final configurations of
the grid points whereas the final velocity models are shown in (e,f).

Figure 10. “Cross-hole” inversion results: same format as Figure 5.

Figure 11. “Cross-hole” inversion results: same format as Figure 6.

Figure 12. Velocity model and data acquisition geometry for MODEL?2: a)
model used to generate the traveltimes; 5} curvilinear grid lines (solid circles represent
the grid point positions); c)ray coverage for the data acquisition. Sources and receivers
are indicated by solid stars and triangles, respectively.

Figure 13. MODEL?2 inversion results using the adaptive-grid formalism. g, c)
Final velocity models obtained from the indicated mesh size and spacing; #,d)} final
configurations of the grid points and of the correspondent curvilinear lines.

Figure 14. MODEL2 inversion results using the fixed-grid formalism. a,c)
Final velocity models with the indicated mesh size and spacing; b,d) equally spaced
mesh and associated grid.

Figure 15. “Medical” inversion results obtained by adding different amounts
of uniformly distributed random noise to the synthetic traveltimes. The amount of
noise is indicated above each panel. A nearly identical number of parameters are used
in inverting the data {i.e., 169 = 13 x 13 and 168 = 8 x 7 x 3 for the fixed- and
adaptive-grid methods, respectively). Final velocity models obtained with the fixed-
{a-c) and the adaptive-grid (d-f) method.

Table Captions

Table 1. Position of the control vertices used to generate the model shown in
Figure 2 using the cubic B-splines basis functions of Equation 2.

Table 2. MODELI1: final RMS residual times obtained with with the parametric
(PAR), the standard fixed (FIXED) node representations and by relaxing the position
of the grid-nodes when the final fixed-grid results are used as starting velocity models
{(PARFIN). The initial RMS is 26.2 ms for the PAR and FIXED inversions. For
the PARFIN inversions, the initial RMS is that of cotrespondent FIXED value, The
integer provided in parenthesis is the total number of iterations needed for convergence.

Table 3. MODEL1: final RMS residual times obtained using the cross-hole
set-up. The initial RMS data misfit is 14.9 ms. The integer provided in parenthesis

is the total number of iterations needed for convergence.
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Table 4. MODEL2: firal RMS residual times obtained using the data acqui-
sition geometry of Figure 11. The initial RMS data misfit is 22.1 ms. The integer

provided in parenthesis is the total number of iterations needed for convergence.
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[ CONTROL VERTICES |
| 3 X [2; (V]

I
0] 0 -0.5 | -1.5 | 2.0
1] 0 0.3 |[-1.5] 20
20 0 0.5 [-1.5] 2.0
37 0 1.5 [ -1.5 | 2.0
fo]123]-05]-05]20
117123 03 -08]20
21,23 05 [-0.5] 20
371,231 1.5 [-08] 2.0
10[456]-05]-0373.0
1456 03]-047]3.0
2456 05 [-02]3.0
131456[ 15 [-03]3.0
o] 7 -0.5]-02]1.0
1] 7 03 ]-03T10
2 7 0.5 [-0.1]1.0
30 7 1.5 [ -0.2 | 1.0
0] 8 [-05]057]20
1] 8 0.3 | 0.5 ]20
2| 8 0.5 | 0.5 | 2.0
3] 8 15 | 0.5 | 2.0
Table 1:
i MODEL1: MEDICAL RMS DATA MISFIT (ms) i
[ Mesh || Spacing (km) | PAR | FIXED [ PARFIN ]
6x6 | 0.2 0.74 (19) | 3.62 (10) | 0.61 (23)
7x7 0.15 0.48 (20) | 2.08 (14) | 0.65 (15)
8x7 [} 0.114 (x) 0.15 (z) | 0.40 (21) :
L 9x9 | G.1 0.48 (14) | 0.98 (16) | 0.45 (13)
10x10 G.089 0.38 (24) { 0.69 (16)
12x12 0.073 0.56 (14)
13x13 0.067 0.44 (17) |
| 17x17 0.05 0.41 07) [ 0.31 (17) :
Table 2:

[ MODEL1: CROSS-HOLE RMS DATA MISFIT (ms) |

[ Mesh [ Spacing (km) | PAR | FIXED 1l
6x6 0.2 0.87 (13) 2.2 (6)
77 0.15 0.46 (18) 2.06 (6)
9x9 0.1 0.43 (15) 0.96 (10)
17x17 0.05 0.27 (13) 0.30 (12)
Table 3:
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“ MODEL2: RMS DATA MISFIT (ms) bl

ﬂ Mesh “ Spacing (km) ] PAR | FIXED ”
6x10 0.2 1.18 (21) | 2.05 (14)
Tx12 0.15 0.83 (23) 1.78 (14)
9x17 0.1 0.81 (19) | 0.80 (18)
1ix21 0.08 0.71 (13) | 0.80 (12)

Table 4:
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MODEL1: Settings

True Velocity Model

0.0 B

02 - . -

0.4 o -

Z (km)

1.0 - S
02 00 02 04 06 038
X (km)

Medical Ray Coverage
c.

0.0

-0.2 S

Z (km)
=
EeY
]

02 00 02 04 06 08
X (km)

Grid points & Curvilinear grid lines
b.

Z, (km)

0.0

-0.8

-1.0

T I T I L} I T I T l L)
02 00 02 04 06 03

X (km)

Cross-Hole Ray Coverage




() X (uy) X (ury) X (uy) X

80 90 0 <C0 00 °TO0- ' ' ' ' ' ’ <0 g0 90 ¥¥0 TO 00 T
] . Lo . : N PR IR N P | ol
- - - - 80-
I A RIRRTINLAEL LY u ] | I
. s S - 90
4 - - ]
<3338 .
— - Y
. . .
N.- [ E XYY .-.-.-:-.-.-” B | l; . OO
T - T _g T T 1 T
.S ..w ‘9
LTXLT "Ted 0XQ "Ied
- L - N L1 ,_ ! N ] l ] 01-
| m ]
A I A - 80
*90¢ 000000 0d00 e
W m 4 e 9 9 ® 9 & o [ ] L ] L ] [ ] - [ ] [ ] L ] L
M M - ™ ™ * - 4 — - +0-
» » —o & o ] ) R - .
. . —~4— - - - - - B - - o0
m H ® & 9§ 9 ¢ % @ . L ] [ ] [} L] L] 1 4 ] L]
I A I R R X RN S XYY Y -
-~ - - — - = - 00
i T T T — T T T T T | T T T T
.c .“U IH— .N
(WY 00 LTXLT "XL] (wy 1°0) 6X6 "x1d (uny G1°0) LXL X1 (uny 7°0) 9%9 "X14

SUOISIIAU] [BIIPIIA] 10] A1J2UWI095) PLID) T THAOIN

(wy) Z



(s/ury) A3100[9A

['E 81

() X

§0 90 0 ¢O 00 TO _m.o o,.o, ¥o To0 00 TO

6X6 1ed LXL 1ed

(WY G0°0) LIXLT X1]

(WY 1°0) 6%6 X4 (W €1°0) LXL X1

SUOISIRAU] [BIPIIA T THAOIN

(uny) X
g0 90 ¥0 TO 00 0

R0

(uny Z°0) 9%9 "X14

(ury) 7

(uy) Z



AOURIAIP 9

(uy) X
80 90 +0 7O

LXg Ted

- q
(WY €£0°0) TIXTE "x1] (ury 680°0) 01X01 "XId

(WY ¢O°0) L1xL1 X1 (WY £90°0) £1X¢1 "X14

A..u.w—ﬁ —m-.-a:@uu@am @uﬂ—cmﬂﬂv SUOISJIIAU] [BIIPIA - T'THAOWN

wy) Z

(

(uy) Z



P O— C Qe =y

(ury) X (uny) X
§0 90 ¥0 TO 00 TO §0 90 ¥0 TO 00 Z0-

(ury) Z

lah IQ
6X6 "XE[2Y LX[ "Xe[9Y
P B P B P R YRR RN Ry Sy PR S TR S T H VAR S B o1-
- | — - m.ow
B * ¢ 4 ¢ 9 9 0 L
- .- - 4 . - - 90
e . I . N
...... ., . L o w
> . . - 70
[ I [ N T ] L] I
] L - - 00
I ! __ T L N
lu l&
6X6

SUOISIIAU] [BIPIA 10] PLIS-PaxL) [eniul paxepd (I THAOIN

oo



MODELT1: Medical Inversions, 6x6
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Settings
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MODEL?2: Adaptive Grid Results
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MODEL?2: Fixed Grid Results
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