INTERNATIONAL ATOMIC ENERGY AGENCY
{ ‘} UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LCT.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

=)

H4.SMR/782-8

Second Workshop on
Three-Dimensional Modelling of Seismic Waves
Generation, Propagation and their Inversion

7 - 18 November 1994

Long Period Seismology and the
Earth’s Free Oscillations

J.H. Woodhouse

Department of Earth Sciences
Oxford University
Oxford, U.K.

.h!'u\ Buhoig . ?‘,""‘D" CosTiera, 11 TeL. 22401 TELEFAX 224163 TELex 460392 ADRIATICO GUEST Hoi SF  Vie o ene @ Ter 274041 Teorson 374811 Trore acnid



. Long period Seismology and the Earth’s Free Oscillations
: J. H. Woodhouse
Department of Earth Sciences, Oxford University
Parks Road, Oxford OX1 3PR, U.K.

1 Introduction

In these lectures we shall aim to present some of the theoretical background which is
necessary to pursue long period studies in seismology. Seismograms, which represent
ground acceleration as a function of time at a given seismic station, are most readily
understood at relatively low frequencies (periods longer than about 30s. say) because
the influence of aspherical structure is smaller. For example, a travel time anomaly
of several seconds may correspond, for long period data, to an offset in phase of a
small fraction of a cycle. In short period data, on the other hand, such a delay time
anomaly may offset the waveform by many cycles. In the former case there is some hope
of determining adjustments to the Earth model which will bring data and theoretical
seismograms into phase agreement, by means of perturbation theory and inversion of
the data. In the short period case there is little hope of achieving this, since the
corresponding inverse problem is highly nonlinear. Instead, in the short period case,
one is limited to measuring the travel time delay and then seeking to improve the
model so that the delay is more accurately predicted. Thus, there have developed two
basic kinds of tomography which might be termed ‘waveform tomography’ and ‘delay
time tomography’. Within these there are a number of different approaches, making
use of different spectral and temporal domains, different algorithms for the evaluation
of theoretical seismograms, different model parameterizations etc. The information
provided by the two aproaches is complementary and, indeed, many of the results of
tomography have been reproduced using very different kinds of data and modelling
techniques.

2 Equations of linear elasicity with gravitation and initial
stress

Seismic waves in the Earth are governed, in the first approximation, by the linear theory
of elasticity; the attenuation or damping of seismic waves is well described in terms of.
a linearly viscoelastic rheology, and only in the vicinity of earthquake scurces do we
expect major departures from these relatively simple mechanical descriptions. In the
Earth the presence of an initial stress field and self gravitation must also Le taken into
account. Here we review some of the basic elements of the theory of elasticity in the
presence of gravitation and and an initial stress distribution. For the case in which the
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initial stress field is a simply a radially dependent hydrostatic pressure p°(r), and where
the elastic constituive law is isotropic, the equations have long been known (see e.g.
Love, 1911, Pekeris and Jarosch, 1958). For the general case, in which there is a non-
hydrostatic initial stress field tf?)), correct statements of the equations are by Dahlen
and Smith (1975), Woodhouse and Dahlen (1978}, Valette (1986). Earlier treatments
(Dahlen, 1972, 1973) give the conceptual basis, using the results of Biot (1965), but
were marred by certain algebraic errors; the treatment by Geller (1988) suffers trom
major conceptual errors. The effects of non-hydrostatic initial stress have not been
observed and are invariably neglected; from the theoretical point of view, however, it is

of interest to write down the completely general equations.
We shall use a fixed Cartesian set of axes and express all vectors and tensors in
terms of their components with respect to these axes. Later we shall also make use of

spherical coordinates (r, 8, ¢} defined through
X = (rsin 6 cos ¢, rsin §sin ¢, r cos #) (2.1)

Consider a material which is initially in equilibrium under self-gravitation. The equa-
tions of mechanical equilibrium and gravitation may be written

th; = PP (2.2)
$i = 4vGp° (2.3)

where tJ; is the initial stress field, ¢ is the initial gravitational potential and p° is the
initial density, all of which are functions of position x, and where G is the gravitational
constant; the notation ¢ ; efc. denotes differentiation with respect to x; and summation
over repeated indices is assumed. Upon deformation, the material particle initially at
any point x moves to the point r = r(x,f), where ¢ is time. The stress tensor and
the gravitational potential will now be functions of space and time coordinates; they
may be regarded either as functions of the current coordinates, r; say, or as functions
of the initial coordinates of the particle currently at r;, which we denote by z;, with
the understanding that z; and r; are related by the deformation r = r(x,t). The
momentum equation and the law of gravitation can be written:

6t.~,~ _ 645 .
X
or
Tjlijh = pETriP i + pr (2.6)
Tri{zuda) i = 47Gp (2.7)
where
a
Tk (2.8)

.’Ek,'=ﬁ.
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Note that we reserve the notation ¢; etc. for derivatives with respect to z;; *7 denotes
the time derivative at constant x — i.e. the material time derivative. Since mass is
conserved, the mass of a deformed volume element d® must be equal to that of the
corresponding undeformed element d®z; i.e. pd®r = p°d®z and thus

Jp::po (29)

where J is the Jacobian
_ a(ry, T2,73)

J=J(x) = 23 (2.10)

a('rl)x?a .2','3)
Let us now write

re= i+ u (2.11)
where u; is small, and define the first order quantities p' and ¢! to be the change in
density and gravitational potential, at a fixed point in space, due to the deformation.
Also we define t}; to be the change in stress at a material particle. We may write

L = ty(r) — O(x) (2.12)

plo= plr) = pr) (2.13)

' = 4(r) - ¢%r) (2.14)
whence

ti; = t(r)= t?j'+ tfj (2.15)

p o= p(r)=p"(x+u)+p" = p°+ wp’ + p! (2.16)

¢ = (r)=¢"(x+u)+¢' = ¢° + urg’ + ¢! (2.17)

Making use of the first order approximation

J = det(r;;) = det(6;; + u;;) =1+ U, (2.18)
in (2.9) and (2.16), we also find

P° = (L4 u;5)(0° + g + oY) (2.19)
and thus, from the first order terms:

pl = "’ukp?k — PPupy = — (0 u) e - (2.20)

In order to complete the system of equations of motion we need to specifv the consti-
tutive law giving the incremental stress tl; in terms of the elastic displacement field u;.
The correct form for this relationship depends upon the hypothesis that there exits an
internal energy density function £ (x,e,s) (per unit undeformed volume or, equivalently,
per unit mass), where e is the {exact) strain tensor:



eij = z(ruire; — &) (2.21)
and s 1s specific entropy. Here we shall be concerned only with isentropic deformations
and shall not consider further any thermodynamic quantities. This is appropriate {or
the Earth since thermal fluctuations propagate on timescales vastly greater than the
periods of seismic waves. The implications of the existence of an internal energy density
function have to be worked out to second order in order to obtain the correct incremental
constitutive law; the derivation is somewhat too lengthy to be included here. A very
complete discussion is contained in the monograph by Biot (1965); see also the papers
by Dahlen (1972, 1973), Dahlen and Smith (1975), Woodhouse and Dahlen (1978} and

Valette (1986). The result is that ¢}, can be written:
tfj = CijkiUk + t?kui,k + t?ku_j‘k — t?juk,k (2.22)
where the fourth rank tensor ¢ = ¢(x) posesses the symmetries:
Cijkl = Cjiki = Cktij - (2.23)

Following Dahlen and Smith (1975) and Woodhouse and Dahlen (1978) we define

Ajite = cijit + thbi (2.24)
and write
t:j = Ajitsur + touje — t?juk,k . (2.25)

The first term on the right side of (2.25) is the incremental Piola-Kirchhoff stress tensor
(see e.g. Malvern, 1969).

We now substitute into the exact equations of motion (2.6), (2.7) the first order
approximations (2.15), (2.16), (2.17), together with (2.20)} and (2.25) and the first

order relation:

Ty = 6,'1' — Ui (226)

to obtain the equations satisfied by u and ¢'. On simplification we find:
pO(t: + 6% + ;‘)juj) = (Ajikurk),i (2.27)
¢ = —4nG(p uwi); . (2.28)

The Earth consists of a number of regions — inner core, core, lower mantle, upper
mantle etc. within each of which material properties, it is assumed, are smooth fuctions
of position. Within each region the equations of motion (2.27), (2.28) must be satisfied;
across the boundaries separating the regions certain conditions, ensuring the continuity
of traction, gravitational potential and its derivatives and, where appropriate, continuity
of displacement are required. Here we shall only state them — see Woodhouse and
Dahlen (1978) for a detailed discussion. We identify three kinds of boundaries: welded,
— e.g. the boundary between the upper mantle and the lower mantle at approximately
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670 km depth and the Mohorovicic discontinuity; free slip — the inner core boundary,
the core-mantle boundary and the ocean floor; and free — the ocean surface or, in
the absence of an ocean, the outer surface of the solid Farth. Also, the gravitational
potential is required to vanish at infinity. The complete set of boundary conditions is

as follows:

Welded:  [i,]* =0 (2.29)
[t]* =0 (2.30)
Free-slip:  [n;u,]t =0 (2.31)
L]f =0 (2.32)
t; = nn t; (233)
Free: ti=0 (2.34)
All; ['r =0 (2.35)
[in; + 4rGpun,)t =0 (2.36)
Infinity: ¢'=0 (2.37)
in which n is the unit normal to the boundary and
;= Aj,-;kuy,nj - n,-V,{.(:'rOuk) + rorlkauk , (2.38)
where
7° = toinin; (2.39)

and where V! is the surface gradient operator
V=V -nmn-v. (2.40)

Equations (2.27 - 2.37) are to he regarded as governing the four unknown fields
ui(x,t), ¢M(x,t), which represent possible free oscillations of the Earth. All other
quantities: p°, t?j, 8% Ay are regarded as given parameters of the earth model, sub-
ject to the equilibrium equations (2.2, 2.3) and the requirement that ¢°, ¢%, tin; be
continuous at all boundaries and that #° vanishes at infinity.

In order to represent the excitation of the modes we introduce a specified force

distribution F(x,?) on the right hand side of (2.27) and write
P(iki + @) + #%u) — (Ajusws),; = F, (2.41)

The force distribution F is known as the equivalent body force distribution of the
source. In order to represent an indiginous earthquake or explosion F must have the
form (Backus and Mulcahy, 1976):

Fi=-Ty, (2.42)

where I' = I'(x,t) is the stress glut, which represents the failure of the constitutive
law (2.25, 2.38) to be satisfied in the source region. I' has the important property that
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it vanishes outside the source region and its time derivative vanishes both before the
source origin time and after the source has ceased to act. Thus the stress glut rate I’
is nonzero only in the finite region of space and time corresponding to action of the
source.

The equations and boundary conditions governing ¢' can be solved for ¢' in terms
of u. In fact ¢! is the gravitational potential due to the density distribution p' =
—(pPuy) & together with mass distributions on spherical boundaries having surface den-

sity —[p%u,|f. Thus it is convenient to regard ¢'(x,t) as a functional of u{x,1):

¢ = o[u] (2.43)
. The remaining equations, now governing only u can be written, symbolically:
(H+ p%3})u=F (2.44)

where H represents the integro-differential operator corresponding to the left side of
(2.41), in which ¢! is replaced by ®[u], and also thought of as incorporating the bound-

ary conditions (2.29-2.37).

3 Oscillations of a spherically symmetric Earth model

A useful approximate model of the Earth is one which is non-rotating, perfectly spherical
and in equilibrium with a hydrostatic stress field

ty; = —8i;p°(r) (3.1)

where p°(r) is the initial pressure distribution. In this case the above general system
of equations simplify greatly, and are separable in spherical coordinates. Thus they are
amenable to solution by reduction to ordinary differential equations. Deviations from
this model are relatively small in the Earth, and thus perturbation theory can be used
to incorporate the effects of rotation, ellipticity and other asphericity, or more complex
initial stress fields.

Under the assumption of hydrostatic initial stress and spherical symmetry the equi-
librium equations (2.2, 2.3), together with the appropriate boundary conditions (see
above) can be solved to determine ¢°, p® in terms of the given density distribution p(r).
We have:

_47rG r

¢®r) = 8.¢4%r) = = |, PO (r)ridr (3.2)
#0) = - [ P (3:3)

- ﬁ%‘f“ rago(r)dr (3.4)
) = [ ) (35)

where a is the radius of the Earth and M is the Earth’s total mass:



M =4r f " 120 dr (3.6)
1]

When (3.1) is used in (2.22), (2.24), we obtain

ti; = Cirruag (3.7)
with

Cistt = cijrr — p° (8000 + 8ubji — 86 (3.8)

Sjie = Cijir 4+ p™ubjr — 6;60) (3.9)

and on using (3.9} in (2.41) the equation of motion becomes:
POl + PO — (p%u;) ;4° — (4;0%). — (Cijrrury); = F (3.10)

Also, because of spherical symmetry Cjjy cannot be arbitrary but must represent
a tensor field invariant under rotations of the model. The most general form for such
a tensor satisfying (2.23) depends upon just five scalar parameters (see e.g. Takeuchi
and Saito, 1972) A(r), C(r), F(r), L(r), N(r). Denoting the spherical components of
C by C\ypy Cyrppg etc. the nonvanishing elements of C can be represented as:

Corer = C(r) (3.11)
Crrgp = Crrpp = Cogyr = Ceprr = F(r) (3.12)
Cag¢,¢ = C¢.¢gg = A('.") -— 2N(1") (313)
Cosps = Cyaop = Copgo = Cpgps = N (r) (3.14)
C¢rq‘:r = Cr¢¢:r = Cd»rrd: = Crﬂrﬂ = L(T) (315)
Cosos = Coose = A(r) (3.16)
In the case of isotropy we have:
4
A = C:A+2u=n+§p (3.17)
N = L=y (3.18)
2
F = A== §‘u (319)

where A = A(r), p = u(r) are the Lame parameters, £ = &(r) is bulk modulus and x is
shear modulus. In this case:

Cijur = p(inbii + 6ubji.) + A6,;65. (3.20)
In fluid regions we have:
C = A=F=)=xu, (3.22)



The boundary conditions on u, ¢' for this spherical model may be stated as folows:

Welded: [w]t =0 3.23)
(Cijufsur ]t =0 (3.24)

Fluid-solid:  [u,]f =0 (3.25)
[Cismfurt =0 (3.26)

Free: Ciuitjury =0 (3.27)
Al [#]* =0 (3.28)
[0.¢" + 47 Gp%u, ]t =0 (3.29)

Infinity: =0 (3.30)

where | is a unit vector in the direction of r increasing and where the square bracket
notation is used to denote the discontinuity of the enclosed quantity across a surface
of discontinuity in the model, the contribution from outside the surface being taken
positive.

As in the general case (2.44) the problem of determining the seismic displacement
in a spherical earth model can be written:

(H+ p°3Ju=F (3.31)
Taking the Fourier transform in time:

(x,w) = f_ ‘: u(x, t)e=tdt (3.32)
we have

(H-p’?u=F (3.33)

and thus, in order to determine T we need to invert the operator represented on the
left hand side. A natural way to proceed is to represent the solution in terms of the
eigenfunctions s(x) satisfying:

Hsy = p’wisy (k=1,2,...00) (3.34)
where w} are the eigenvalues. It is clear that the function
u(x,t) = e“*s(x) (3.35)

satisifies (3.31) in the case F = 0 and thus s,(x) represents the spatial shape of a
free oscillation of the model having angular frequency wi. It may be shown that the
operator H is self adjoint in the sense

t 3. /13
/Vs.’Hsd T = fv s.Hs'd"x (3.36)



for any differetiable s(x), s'(x) satisfying the boundary conditions (3.23 - 3.27) and
where the volume integration is over the entire earth model. From this it follows
that the eigenfunctions sk(x) form a complete set and that the eigenvalues w? are real.
Furthermore, if any of the eigenvalues is negative it follows that there exist exponentially
growing solutions of the homogeneous equations (3.31). The existence of such solutions
would indicate that the equilibrium configuration of the earth model was unstable.
Since this would clearly be unrealistic we conclude that all of the wy are real, provided
that we demand that the model is in stable equilibrium. In addition it is not difficult
to show that eigenfunctions belonging to different eigenvalues are orthogonal or, in the
case of degeneracy, can be orthogonalised, in the sense

L p%sy sz = 0 (k # ) (3.37)

Using these results it is straightforward to obtain a formal solution of the forced equa-
tions of motion (3.31) in terms of a sum of eigenfunctions s;. We write:

u(x,t) = 3 ai(t)sp(x). (3.38)
k

On substituting into (3.31), multiplying by s, and integrating, making use of the or-
thogonality relation (3.37), we obtain

8(0) + wlaw(t) = Fy(t) (3.39)
with

Jv 8i(x) - F(x, t)d®z
F.(t) = i 40
(1) N posi(x) - si(x)d3z (3.40)
The ordinary differential equations (3.39) for each ax(t) may be solved (e.g. using

the method of wariation of parameters, or Green’s functions, or Laplace or Fourier
transformation) to give

1 t I\ L £ 20N ol
(0= f_ _ It — ) F(t)dt (3.41)
with
hi(t) =1 - coswyt (3.42)

a result originally due to Gilbert (1971). As pointed out by Gilbert (1971) this re-
sult needs to be modified to account for attenuation by incorporating a decay factor
exp(—~aut) into the cosine term, and thus in place of (3.42) we write:

hi(t) =1 — e cos ot (3.43)



In fact a more careful analysis, similar to that of the excitation of a damped simple
harmonic oscillator, yields a slightly different result, not given here, which is well ap-
proximated by (3.43) in the case of realistically small og. The decay rate of the free
oscillations is also often quantified by ‘the @ of the mode’ @, which is defined in
such a way that the amplitude decays by a factor exp(—= /@) per period (= 27/wy).
Consequently @i and ay are related by:

Wi

T (3.44)

Making use of (3.41) in (3.38) we obtain an explicit expression for the theoretical
seismogram. It is often sufficient to consider the case of a point source by which we shall
mean a source having spatial and temporal extent small compared to the wavelengths
and a periods of interest. In this case it may be shown (Backus and Mulcahy, 1976)
that the expression (3.41) can be approximated by the simpler form:

Qg

ax(t) = hi(t — t,) Mieli" (x,) (3.45)
where (X,,t,) denote the spatial and temporal centroid of the source and where the
syminetric tensor M,;, the source moment tensor, is given by:

M"J' = f°° /‘; I!,'jds.’l.'dt (346)
In (3.45) ef—f) denotes the strain in the k-th mode eﬁc) = %(s‘(? + sgk,)) For further
details we refer to the review by Dziewonski and Woodhouse (1983) and to the literature

already cited. Using (3.45) in (3.38) we obtain the following expression for a theoretical
seismogram in a spherically symmetric model:

u(x,t) = Y [1 — e 1) coswp(t — t,)) Mijel)"(x,)sk(x). (3.47)
k

In order to apply this and earlier formulae in this section we need to have calculated
a complete set of eigenfunctions s,{x) together with the corresponding eigenfrequencies
wy and attenuation constants a;. For this we refer to the literature, only quoting
the most important results. A thorough treatment is given by Takeuchi and Saito
(1972). Woodhouse (1988) describes an algorithm for finding all modes, depending
on an extension of Sturm-Liouville theory. A review of some of the salient points,
together with expressions for the excitation coefficients are given by Dziewonski and
Woodhouse (1983), citing eatlier literature. Phinney and Burridge {1973) introduce
a set of generalized spherical harmonics which enable any tensor field to be readily
expanded in spherical harmonics. These greatly facilitate the derivation of the modal
equations, and all other calculations in terms of spherical harmonics, including those
of modal excitation coefficients, matrix elements for modal coupling efc. (see below).
The basic results depend upon the expansion in spherical harmontcs of the vector field
sg(x) and the corresponding perturbation in gravitational potential #}. Following a
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traditional approach (e.g. Morse and Feshbach, 1953; Pekeris and Jarosch, 1958) we

write:

se = U(r)™(0,4) (3.48)
se = VI(r)dY™(8,0) + W(r)d,¥;™(8, ¢) (3.49)
s¢. = V(r)cosec 00,Y;™(0, 8) ~ W(r)9sY;™ (6, 6) (3.50)
B = Pr)Y™(0,9) (3.51)

where Y;™ are the spherical harmonics. Here we adopt the fully normalized complex
harmonics of Edmonds (1960)

a3 .
Yr0,4) = (-1)" [‘”;;Tm)?’-} P*(cos )™ (3.52)

(1=0,1,2,..; m=—| —| 4 1,...0)
where P"(z) are the associated Legendre functions:

o (1 - x?)mﬂ dl+m

m — 2 {
PP (e) = ~—g— e (a? — 1)’ (3.53)
Y™ satisfy the orthogonality relation:
/ i f "Y;m(8, $) Y (6, ) sin 0dBdgs — L - (3.54)
—-n JO

When (3.48 - 3.51) are substituted into the eigenvalue equation (3.34) they give ordinary
differential equations for U/ s V., W, P which are independent of m. These admijt two
kinds of solution (i) solutions with U = V = P = 0, termed toroidal modes and (7}
solutions with W = 0, termed spheroidal or poloidal modes. Collectively U, V, W,
P are sometimes called the scalar eigenfunctions and those among thern which are
not identically zero satisfy linear systems of ordinary differential equations, subject to
homogeneous boundary conditions. These equations have solutions only for particular,
discrete values of w; which are the eigenfrequencies of the corresponding free oscillations.
By virtue of these results modes may be identified according to mode type q (spheroidal
or toroidal}, angular order I, azimuthal order m, and overtone number n, where the
n enumerates the eigenfrequencies, in increasing order, for a given mode type and
angular order. The mode index & used earlier may be thought of as consisting of the
four subindices & = (g,{,m,n). Since the ordinary differential equations governing the
scalar eigenfunctions are independent of m the eigenfrequencies w, are the same for
all m in the allowed range — < m < ! i.e. there are 21 + 1 different eigenfunctions
corresponding to the same eigenvalue w, which are said, therefore, to be constitute a
(2{41)-fold degenerate multiplet. Individual members of & multiplet are termed singlets.
The normal mode multiplets are conventionally referred to by the notations S for
spheroidal modes and 21} for toroidal modes. The spheroidal modes with | = 0 have
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eigenfunctions which posess only radial displacements and are spherically symmetric.
These are termed the radial modes.

Having introduced the representation of eigenfunctions in terms of spherical har-
monics, it is convenient to write the fundamental equation (3.47) in the simplified form

(Woodhouse and Girnius, 1982)

i
u(x, t) = 30 3 SP(x,)SP (z)e (3.55)
k m=—1{

where the real part is understood. In writing (3.47) in this way we have introduced
certain notational changes. First we have redefined the mode index k so that it now
refers to multiplets: k = (g,1,n); individual singlets within a multiplet are labelled
explicitly by the additional index m. Second, we have omitted the the first term in
brackets [] in (3.47). This term contributes a time-independent displacement field,
which represents the final configuration of the model after all modes have died away.
By omitting it, therefore, we obtain an expression representing the displacement field
relative to the final, rather than the initial configuration of the model. (In fact the
static offset is not observed seismically owing to noise and instrument characteristics.)

Third, we have defined the complex frequency

O = wk(l +1/2Q%). (3.56)

in order that the exponential in (3.55) includes the decaying exponential in (3.47).
Fourth, we have defined:

SP(xs) = —Mjjeli" (x,). (3.57)
Finally, the location, x, at which the diplacement is evaluated has been given the sub-
srcript r to emphasize that in comparing with observations the seismogram is evaluated
at the receiver location.

A particular seismogram is obtained by operating upon (3.55) with the ‘instrument
vector’ v, which is defined to be a unit vector in the direction of motion sensed by the
instrument; v may also incorporate an operator, or, in the frequency domain a function
of frequency, characterizing the instrument response. The seimogram may then be
written in a way which involves the source and receiver rather symmetrically:

vou =Y Rl ¢.)50(0,, ba et (3.58)
km

where RP(0,,¢.), Si*(8,,¢s) are given by expressions involving spherical harmonics
evaluated at the receiver and source. Explictly

I
R?(Gn‘ﬁr) = Z RkN}/[Nm(gr-sQSr) (3.59)
N=-1
2
S?(quﬁs) = Z SkNY;Nm(osaqss) (360)
N=--12

e e g



where YV™ are the generalized spherical harmonics of Phinney and Burridge (1973) and
where By = RY(0,0), Siv = 5/(0,0) are given by expressions mvolving the scalar
eigenfunctions U/, V, W evaluated at the surface and at the source depth, respectively.
The formulae for R.x involve the spherical components of the receiver vactor Ur, Ug, Uy
and those for Syx involve the moment tensor components M., My, My, Mg, M.,
My (see Woodhouse and Girnius, 1982 for explicit formulae).

4 General characteristics of modal multiplets

Normal mode multiplets can be though of as points in the w — { plane. Figs 1la.,
1b., taken from Gilbert and Dziewonski (1975), show such dispersion diegrams for the
low frequency toroidal and spheroidal modes. Lines joining the dots define lines of
constant overtone number n. By convention the lowest frequency mode, for a given !, is
designated the fundamental mode and has n = 0, These correspond to the fundamental
mode Love and Rayleigh waves in the toroidal and spheroidal case, respectively. The
solid dots in Fig 1. indicate modes which had been observed up to 1975,

Presently we shall take a tour of the w—/{ plane, showing examples of eigenfunctions,
in order to gain some physical insight into the nature of the modes. Before doing
this, however, it is useful to introduce the concept of a differential kernel, which is
a function representing the sensitivity of a modal eigenfrequency to small changes in
the (spherically symmetric) earth model. This brings us into the realm of perturbation
theory. This is of great importance if we whish to make inferences about earth structure
from modal measurements. Suppose that a number of modal frequencies ,wf, L/ have
been measured. These will not agree precisely with the predictions of a given earth
model and thus we need to address the question: How can we modify the earth model to
bring it into agreement with the observations?. This is an inverse problem of the type
which will be the subject of a number of the lectures at this school. First, however, we
need to know how to solve the forward problem: If we make a specified small adjustment
to the earth model how will st affect the predictions of the modal eigenfrequencies?. We
do not attempt to cover modal perturbation theory in full detail in these lectures. For
the spherical earth, with which we are here concerned, see Backus and Gilbert (1967),
Woodhouse (1976). Here we approach the topic in a heuristic way, in order to illustrate
some basic principles and to gain insight into the properties of modes and what they
are likely to tell us about the Earth.

Suppose that our Earth model consists of 2 number of spherical layers and, for a
given mode, imagine that a particular parameter, density A say, is perturbed by an
amount §p; in the i-th layer, all other layers remaining unchanged. If the perturbation
is small enough, the change in the eigenfrequency of the multiplet will be proportional to
6p: and so we can define a proportionality constant K, say, such that the corresponding
change in the eigenfrequency is given by

dw = Kp,'%;iAr,- (4.1)
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where Ar; is the layer thickness and p; is the unperturbed density in the layer. Then
if density is simultaneously perturbed in all layers, and if the perturbations are small
enough, the corresponding change in eigenfrequency will be the sum over all layers:

dp;
bw = EAP,—%A“ (4.2)

In the limit that the number of layers is infinite this sum will become an integral over
radius r and we can write:

o ép(r)
bw = f K, (r) 22 gy 4.3

w 0 P(r)po(r) ! ( )
K ,(r) represents, therefore, the sensitivity of an eigenfrequency to adjustments in den-
sity at each radius r. Similarly we can define K ,(r), K(r) to represent the sensitivity to
changes in bulk and shear moduli. Here we shall take p, vp and vs as the fundamental
mechanical parameters of the (isotropic) model, and write:

[ (o) Sup(r) | o Bus(r))
5w_/0_(1(,,() S+ KP)a + Ks ()vg(r))d (4.4)

Thus, for each mode, it is possible to define differential kernels Kp(r), Ks(r), K,(r)
which provide the answer to the forward problem through (4.4). In fact, it is possible to
derive exact expressions for such kernels in terms of various quadratic forms involving
the scalar eigenfunctons of the mode. Explicit results are given by Backus and Gilbert
(1967), Woodhouse (1976), Dziewonski and Anderson (1981).

Figs 2a—e show examples of the eigenfunctions and kernels for a representative set of
multiplets. For each multiplet there are two panels, one above the other. The top panel
show the scalar eigenfunctions — (W (r) (dashed) for toroidal modes and U(r) (solid)
and (V(r) (dashed) for spheroidal modes, where (? = {({ 4 1); the factor { is included
so that the ratio of the two scalar eigenfunctions for spheroidal modes U(r)/¢V (r)
correctly reflects the ratio of vertical to horizontal motions. The lower panels for each
mode show the differential kernels Kp(r} (solid), Ks(r) (dashed) and K,(r) (dot-dash).
The period and @ of the mode are given. All calculations are for the model PREM of
Dziewonski and Anderson (1981).

Fig. 2a samples the fundamental toroidal modes. (T, represents a differential twist-
ing of one hemisphere relative to the other. By examining the eigenfunction we see
that the amlitude of the motion is about half as large at the the core-mantle boundary
(CMB) as at the surface. In common with all toridal modes, the motion is purely hori-
zontal and does not involve the core. By examining the differential kernels we find that
the frequency is increased if vg is increased anywhere in the mantle, with p held fixed,
the maximum effect being produced by a (relative) change in vs close to the 670km
discontinuity. If, on the other hand, density is increased, with vg held fixed, the effect
is to reduce the frequency if the change is made in the upper mantle, and to increase
it if the change is made in the lower mantle. ;75 has similar properties, except that
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its sensitivities are smaller in the lower part of the mantle. Progressing along the fun-
damental mode branch we see that the modal displacements and sensitivities become
concentrated nearer and nearer to the surface, and that sensitivity to density becomes
progressively smaller. This is because at high angular order the toroidal modes cor-
respond to Love waves, which may also be thought of as multiply refleced SH waves,
having, asymptotically for large , no sensitivity to density. For example (Tyo, having
period 106.7s, has appreciable diplacements only in the upper mantle, and has little
sensitivity to vg at depths greater than 300 km.

Fig. 2b shows examples of toridal mode overtones at fixed angular order [ = 30.
The general property illustrated is that as overtone number increases the eigenfunctions
become more oscillatory with depth and penetrate more deeply into the mantle. Also
note that for high overtones the density kernel oscillates about zero; although such
modes can be affected by localized density perturbations, the effect of smooth density
perturbations will be small, since positive and negative contributions will tend to cancel
in the integeral (4.4). The vg kernel, on the other hand, oscillates abcut a non-zero
value; it is this slowly varying mean value which will give the main contribution for
smooth changes in vs(r). Again these properties reflect asymptotic preperties of the
modes, which may be thought of as standing waves set up by multiply reflecting SH
body waves, which dip more steeply into the mantle with increasing overtone number n.
Thus, for example, ,Ts, corresponds to SH having a turning point in the lower mantle,
whereas 3,75 corresponds to SH waves travelling almost vertically, bouncing between
the surface and the CMB (see below).

Fig. 2c samples the fundamental spheroidal modes. ¢S5;, known as the ‘football
mode’, was one of the first observed (Benioff et al., 1961), following the great Chilean
earthquake. Its displacements are nonvanishing throughout the Earth; its greatest
sensitivity is to perturbations in vg and, to a lesser extent, p in the lowermost mantle
and vp in the upper half of the mantle. Progressing along the fundamental mode branch,
displacements and sensitivities become progressively concentrated nearer to the surface,
and sensitivity to density diminishes, as in the case of toroidal modes. At higher values
of I these modes correspond to Rayleigh waves. Note that their greatest sensitivity is to
vs at a depth somewhat below the surface, which makes them useful for probing upper
mantle vg. On the other hand, they have relative|7high sensitivity to vp at shallow
depths.

Fig. 2d shows examples of spheroidal mode overtones, at angular order I = 30. These
display behaviour similar to, but more complicated than that observed for toroidal mode
overtones. Note that the spheroidal mode spectrum contains a variety of different
families of modes. For example the (unobserved) mode 355, corresponds to a Stoneley
wave propagating at the CMB; this is similar to a Rayleigh wave, but trapped near the
CMB rather than near the Earth’s surface,

Finally, Fig. 2e shows samples of the radial modes ,Sp, which, at high n, correspond
to vertically travelling PK IK P, having little sensitivity to (smooth) density perturba-
tions, almost vanishing sensitivity to vg, but significant sensitivity to vp throught the
Earth. Note that they have high @ values (i.e. low attenuation), a property which makes
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them relatively easy to observe in long seismic records following great earthquakes.

5 Some asymptotic properties of free oscillations

In the foregoing discussion we have mentioned the correspondence between the free
oscillation multiplets and various kinds of travelling waves - both body waves and
surface waves. The nature of the correspondence between surface waves and modal
multiplets has long been aparent, since the traces from which modal spectra can be
readily obtained, consist of word-circling Rayleigh and Love wave orbits. The modal
peaks appear in the spectrum as a result of the constructive interference which occurs
when the spectra of individual wave packets are superposed. The nature of the corre-
spondence between modal overtones and body waves, first pointed out by Brune (1964,
1966), can be made more precise by examining the asymptotic behaviour of solutions of
the ordinary differential equations for the scalar eigenfunctions, using the JWKB and
related asymptotic techniques (Brodskii, 1975, 1978; Woodhouse, 1978; Kennett and
Woodhouse 1978). Here we shall touch only briefly on the topic, since our aim is to
gain physical insight into the properties of free oscillations, rather than to develop a
complete calculational scheme.

The essential quantitative connection between modes and travelling waves is made
by equating the horizontal wavelength (or wavenumber) of the mode with the corre-
sponding horizontal wavelength (or wavenumber) of a travelling wave. For modes, this
wavelength is can be derived from the asymptotic properties of the spherical harmonics
for large . Let us consider a source at the pole § = 0. Such a source excites only
the modes having low azimuthal order m. For a point source only the orders having
[m| £ 2 are excited (equations 3.59, 3.60).

For fixed m and large | we have (e.g. Abromowitz and Stegun, 1965):

1 1 .
Y;"(6,¢) ~ —(sin8)"7 cos|(! + 10 + tmr — Lx]etm? (5.1)

and, since we are considering a source at the pole, # plays the role of epicentral distance.
Thus we can immediately identify the horizontal wavenumber & (= 2r/wavelength) to

be
k={l+3)/a. (5.2)

The angular order I, therefore, is a proxy for wavenumber k and dispersion diagrams
such as those shown in Fig. 1 can be interpreted, for large /, in the same way as are
dispersion relations w(k) for surface waves. In particular, we can define phase velocity

W
c(w) = T (5.3)
and group velocity
dw
U(w) = = (5.4)
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In order for these relations to be valid we need to extend the definition of the dispersion
curves to continuous, rather than integer values of . The mathematical justification
for doing this is contained in a number of papers on the theory of waves in and around
spheres (Watson, 1918: Gilbert 1976). This defines the relationship between the w — {
plane and the dispersion properties of Love and Rayleigh waves and their overtones.

In the case of body waves we may, similarly, identify the horizontal wavenumber
in terms of frequency and ray parameter p. From classical ray theory in the spherical
Earth, the horizontal wavenumber at the Earth’s surface for a monochromatic signal
travelling along a ray with given ray parameter p=dT/dA is

k=22 (5.5)
a

Therefore, using (5.2), we write

1
_lts (5.6)
&
Thus a mode of angular order { and angular frequency w is associated with rays having
the ray parameter given by (5.6). For toroidal modes these are S-rays, and for spheroidal
modes they are both P- and S-rays. It is well known that rays exist only for ranges of

depth for which

r

r >p for P-waves (5.7)
vP(")

> for S-waves 58

) 2P (5.8)

In the diagrams of Fig. 2, the ranges of depth for which these inequalities are sat-
isfied are indicated in two columns on the right side of each panel. The left column
is for P-waves (relevant only for spheroidal multiplets) and the right column for S
waves. Inspecting these figures it will be seen that the sensitivities do have the ap-
proximate behaviour we would expect, namely that sensitivity to vs decays below the

-turning point and that to vp decays below the P-turning point. In fact there are:
further quantitative relationships between the dispersion diagrams and the travel times
of the corresponding rays, which mean that the information contained in the dispersion
diagrams reproduces much of that contained in travel time data.

As an illustration we state the simplest such approximate result (Brune, 1964; Brod-
skii, 1975), for toroidal modes:

_2r(n+p)
W= —————T(p) . (5.9)

where  is either 0 of % depending upon whether the S-ray is reflected from the core or
turns in the mantle, and where 7(p) is the ray theoretic intercept time

7(p) = T(p) — pA(p) = 2 / ’ (-1— - ”—j) Ed’"- (5.10)

T (p) 'Ug' r
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re(p) is the turning radius or, in the case that the ray does not have a turning point, the
radius of the CMB. Equation (5.9) predicts that along the line of constant p = ({4 })/w
in Fig. la, the modes are equally spaced, and that their spacing in w is equal to the
ray theoretic quantity 2r/7(p). This result is only approximate, but it reflects the
important fact that the information contained in the multiplet frequencies is highly
redundant, and duplicates that available from travel times. .

6 Oscillations of an aspherical earth model

The calculation of theoretical seismograms in a non-spherical model is difficult and
expensive in terms of computer time. Although there exist formulae which are, at least
in principle, exact, they involve the manipulation of infinite dimensional matrices and
have not been applied in complete form. Similarly, it is conceivable to generate accurate
theoretical seismograms by purely numerical techniques (e.g. finite differences), but this
has not yet been achieved. In fact the problem encountered in seismic tomography is
much greater than that of calculating theoretical seismograms (the forward problem); in
order to obtain useful solutions to the inverse problem it will undoubtedly be necessary
to carry out calculations equivalent to at least many thousands of forward problems.
As a result, several approximate schemes have been developed. Naturally there are
intimate connections between the different schemes, which have been ellucidated in
a number of theoretical papers. A number of aspects of this complicated field will be
described in other lectures at this school. Here I shall only describe some of the schemes
which have been applied and indicate some of the connections between them.

Splitting theory. One of the primary effects of asphericity is to remove the degeneracy
of the modal spectrum. Each degenerate multiplet is split into singlets of slightly
different frequency. The theory of modal splitting is similar to that governing the
splitting of the degenerate energy levels of a spherically symmetric atom subjected
to some aspherical perturbing influence, such as a magnetic field. In seismology the
theory of splitting has been developed in a series of papers beginning in 1961, when the
splitting effect of rotation on the mode (S, was observed and explained (Backus and
Gilbert, 1961; Pekeris et al., 1961; Dahlen, 1968, 1969, 1974; Woodhouse and Dahlen,
1978); see Dahlen (1980) for a review. The way in which asphericity affects a multiplet
can be shown to be approximately independent of other multiplets, provided that the
multiplet is isolated in the spectrum - i.e. not overlapping in frequency with other
multiplets. This form of the theory is known as degenerate splitting theory. If there
are two or more overlapping multiplets which are, nonetheless, an isolated group, a
modified version of splitting theory known as quasi-degenerate splitting theory can be
developed (Dahlen, 1968; Luh, 1973, 1974; Woodhouse 1980; Park, 1987, 1990; Um and
Dahlen, 1992), although this form if the theory has not yet been applied to the inverse
problem. If all modes are considered to be one group, this theory is essentially exact
(Woodhouse, 1983), but it is much too cumbersome to be applied in practice. Thus
applications of splitting theory seek to apply a complete theory to a restricted set of
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multiplets, judiciously selected to include the effects of interest in a particular class of
seismic data (see, for example, Um and Dahlen, 1992).

Consider an isolated multiplet & having, in the spherical Earth, degenerate eigen-
functions sf*(x), (m = ~I,—{ + 1,..,{) and (complex) eigenfrequency &. Then it
possible to define a (2{ + 1) x (2! + 1) matrix H®, known as the splitting matrix of
the multiplet, and having elements Hr(:r)n, which are known linear functionals of the as-
pherical (and spherical) model perturbations and also include terms due to the rotation
and ellipticity of the Farth (for explicit formulae see Woodhouse and Dahlen, 1978).
Let U® be the matrix whose columns are the eigenvectors of H® and let 2% be
the corresponding diagonal matrix, whose diagonal elements Q,(,k) (t=1,2,...,20+1)
are the corresponding eigenvalues. Then the result of degenerate splitting is that the
eigenfunctions of the aspherical model are given by

u{(x) = 3" UPsr(x) G=12..,2041) (6.1)
m
with corresponding eigenfrequencies wy + ng) .

To obtain the perturbed seismogram, it is necessary to expand the equivalent body
force density F'(x, t) in terms of uf,-k (x). This can be done by making use of the known
expansion in terms of s*(x). It can be shown (Woodhouse and Girnius, 1982) that
when this is done one obtains an expression for the perturbed seismogram of the form

(cf. 3.58)

vou =Y BP0, ¢,) A () (6.2)
km
where AJ'(t) is the solutions of the initial value problem
& (0) = 5;°(6,, ) (6.3)
d ‘
FAC) =13 HY) AT (1) (6.4)

Thus at time 0 equations (3.58), for the spherical earth, and (6.2) for the aspherical
earth reduce to the same expression, but with increasing time the apparent modal
excitations evolve according to (6.4). It is this additional, slow time variation that
leads to the split spectrum in the frequency domain. Equation (6.2) leads naturally to
an inverse problem for the splitting matrix elements H,(:,)n. for the multipet, by seeking
to determine the values which enable the spectrum of (6.2) to match observed spectra
for the multiplet. This inverse problem can be simplified by noting that the splitting
matrix may be represented in terms of rather fewer unknowns c,;, which represent the
spherical harmonic expansion coefficients of a certain function 7(*¥)(8, 4) which is termed
the splitting function of the multiplet. We have:

5
Homt = QB+ 3. 3 7™, (6.5)
3=0,2,..,21 t=-3
™6,8) = ¥ 3 Y6, 9) (6.6)

5=0,2,,.,21 t=-—3
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where the first term is the (known) contribution due to the action of Coriolis forces
(Dahlen, 1968) and 4»™" are known numerical coefficients. For further details we refer
to Giardini et al., (1987, 1988), Ritzwoller et al., (1988).

The important point is that knowledge of the splitting matrix is equivalent to knowl-
edge of a certain function on the sphere. This function has a finite spherical harmonic
expansion, containing only even spherical harmonic degrees. Furthermore the splitting
coefficients ¢y, are related to the internal heterogeneity of the Earth of degree s and
order ¢ by means of differential kernels, in much the same way as was discussed above
for the case of spherically symmetric perturbations. Examples of these kernels and
the retrieved splitting functions for certain modes, taken from Giardini et al. (1988),
are shown in Figs. 5 and 6. The kernels depend upon s, but not on ¢. In fact their
dependence on s is small except in the case of very low { modes. In the case that the
dependence on s can be neglected, the splitting function 5*}(8, ¢) is simply a depth
average of the local structure beneath the point (8, ), with averaging kernels such as
those depicted in Figs. 5,6.

This result reflects the long known fact that within degenerate splitting theory the-
oretical seismograms have no dependence on odd-degree structure. Since even degree
harmonics have even parity under point reflection through the centre of the earth, and
odd degree harmonics have odd parity, this means that the the predicted waveforms
are sensitive only to the average properties at antipodal points, and have no sensitivity
to the difference in structure between antipodal points. Clearly this is not the case for
travelling waves, and thus it represents a shortcoming of degenerate splitting theory.
Nevertheless it is true for many kinds of data, that the sensitivity to even degree struc-
ture is much greater than that for odd degree structure, and consequently that even
degree structure is better constrained in tomographic models. Such insensitivity to odd
degrees was first pointed out by Backus (1964), in connection with the interpretation
of mean phase velocities measured for great circle paths.

Figs. 3, 4, taken from Giardini et al.(1988) shows examples of spectral segments
which have been used in the inverse problem for ¢,;. Solid lines show observed spectra
(amplitude and phase) for narrow intervals in frequency centred on the multiplet of
interest. Dashed lines in Figs. 3, 4 show the predictions of splitting theory; in Fig
3 only splitting due to rotation and ellipticity are taken into account, and in Fig.
4 splitting predicted by the retrieved splitting functions has been included. Vertical
bars at the bottom of each panel show the distribution of singlets and their relative
excitations. These figures illustrate the fact that it is not usually possible to resolve
the individual singlet frequencies within the multiplets; this is because of the effects of
attenuation and finite record length, which introduce ‘smearing’ in the spectral domain.
The underlying singlets contribute to the spectrum, according to their excitations, but it
is only their combined effect which can be observed. It is also clear that the observations
and the model predicitions are very discrepant in Fig. 3, which does not include the
effects of heterogeneity, but that models of heterogeneity can be found which enable
the observations and the theory to be brought into close agreement. Naturally, it is
necessary to use many spectra for the same multiplet in order to retrieve the splitting
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function of the multiplet. Each observed spectrum yields a different sample of the
underlying singlet distribution, counteracting the difficulty of not being able to retrieve
the singlet distribution directly.

The strength of this approach is that it enables us to extract information from very
long period data which cannot be interpreted in terms of rays and travel times. Since
the wavelengths involved are comparable to the Earth’s radius, such data average over
large volumes of the Earth, enabling us to constrain the very low wavenumbers of the
spectrum of heterogeneity. When applied to modes sampling the the Earth’s inner core
the method confirmed the existence of a strong zonal effect (Masters and Gilbert, 1981;
Ritzwoller et al., 1986) and led to its interpretation in terms of inner core anisotropy
(Woodhouse et al., 1986; Morelli et al., 1986; Giardini et al., 1987). As illustrated
in Fig. 5., there are a number of modes which are ideally suited to estimating mean
lower mantle S-heterogeneity (of low degree), and others (Fig. 6) posessing significant
sensitivity to mantle vp. Such information was used by Li et al., to estimate the mean
lower mantle ratio of S to P heterogeneity, obtaining a value of dln vs/dInvp much
higher than had been anticipated. Some more recent measurements of modal splitting
are by Widmer et al., (1992).

The short time approximation. For sufficiently small times, ¢, equation (6.4) has
the solution

AP(t) = S7(0,,¢,) + it S HY) AT (1), (6.7)

Since H,(:,L. is linear in the model perturbations, this leads to a linearized relationship
between heterogeneity and the seismogram; that is to say it yields the partial derivative
of the seismogram with respect to aspherical model perturbations. Using (6.7) in (6.2)
we obtain the short time approzimation

Veou =3 R0, 4,)S8(8,, 6, )(1 HAh et (6.8)
km
where
m (k) om'
Ay = Z:mm‘ Rk (9,, ¢r)Hmm'Sk (0,,¢,). (6.9)

Lom B (0,1 6.)S7(0,, 8,)

Equation (6.8) can also be written, to the same formal precision,

v-u= Z: Rr(an ¢r)S]:n(asa ¢s) exP{i(a)k + Ak)t}' (610)
km

This form of the equation shows that the effect of heterogeneity is to modify the ap-
parent frequency the mode by the amount A, which, importantly, depends upon upon
the source and receiver locations.

Early observations of the effects of heterogeneity on the measured frequencies of
the fundamental mode had identified this effect (Buland et al., 1979). Within the
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modal picture it is, at first, puzzling, since one thinks of the eigenfrequencies as purely
functions of Earth structure, and not of the path. However, within the travelling wave
picture, it 1s clear that measured phase delays will characterize the path along which
surface wave packets propagate between source and receiver. Equations (6.10) provides
one of the connections between the mode and ray pictures of the oscillations. The way
in which it comes about that the measurement of the location of a spectral peak is
affected by the path is illustrated in Fig. 4. For example, Fig. 4d, for the fundamental
mode 57 the peak is moved to the left, since the exitation of the higher frequency
singlets is very small, reflecting the fact that the source-receiver great circle path, in
this case, samples regions of low phase velocity.

It is of interest to investigate this effect further, and to determine the way in which
the location parameter A; depends upon the geographical distribution of heterogeneity,
as represented by of the splitting function 7*}(8, ¢). We find

A = /_ /0 " K®(8, $)n*)(8, ) sin 6d0dg. (6.11)

Explicit expressions for the sampling kernel K(*)(#,4) are given by Woodhouse and
Girnius (1982). Figs. 7a,b, taken from their paper, show examples of the these. The
figures show a rectangular (linear) projection of the globe and the shape of the kernel
is illustrated for a source on the ‘equator’ at the ‘eastmost’ (left) end of the plot. The
receiver is also on the ‘equator’, 108° to the ‘west’. The kernels are shown (for an
explosive source and a vertical instrument) for the fundamental modes ¢5;2 and (545.
For both modes the systematic peak along the great circle path is aparrent, becoming
more clearly defined as angular order increases. In the limit of large I, Ay represents
just the great-circle average of 7{*), which, again for large [ is equal to the change in
eigenfrequency corresponding to the local radial structure at each point of the globe.
Thus we have:

1

M= — j
™ great circle

'5wloca.l(9' $)do (6.12)
where do represents angular distance along the great circle path, a result derived by
Jordan (1978) by an asymptotic analysis of the equations governing degenerate split-
ting. This result is most easily understood in terms of the ray picture of surface wave
propagation, where it represents the fact that the phase delay of a surface wave is an
integral of local phase slowness along the path (see below). The location parameter Ay,
representing the spectral peak shift, arises from demanding constructive interference of
globe-circling wave packets.

The short time approximation (6.7) has been extended to include interactions be-
tween all multiplets by Woodhouse (1983) (also Tanimoto, 1984). The resulting formu-
lae can be regarded as giving exact expressions for the partial derivative of a seismogram
with respect to perturbations in earth structure from an initial, spherically symmetric,
model. Thus, to the extent that seismograms depend linearly on structural pertur-
bations this is all that is needed. Unfortuntely, such dependence is far from linear
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whenever the perturbations result in travel time shifts more that a fraction of the pe-
riod. The situation can be alleviated somewhat by incorporating the secular terms (i.e.
those proportional to t) into frequency adjustments such as was done in passing from
(6.%) to (6.10). The resulting expression for the seimogram can be written

veou =) Acexp {imit}. (6.13)
k
with (neglecting density perturbations which introduce additional terms)
, R H A ’Sm’
w2 = wf 4 Lz FE e 5 (6.14)

1 ’ ' ] : o
Ac =) RIST+ 5. —— {Z RUHN ST+ Y RYHEE o7 } . (6.15)

k#k' Wy — @ mm' mm!

Where the matriz elements H¥ , are defined in a similar way to the splitting matrix
elements H,(,f,{.. introduced above, but which now are defined for all paire of multiplets.
The self coupling terms are (again neglecting density perturbations) HN: | — kaH,(:,L,.
Certain alternative exact and asymptotic approximations to these expressions have
been derived, which enable further connections to be made between the mode and
ray pictures (Romanowicz and Roult, 1986, 1988; Romanowicz, 1987; Snieder and Ro-
manowicz, 1988; Romanowicz and Snieder, 1988) and which also ellucidate the con-
nection with the Born approximation and incorporate the effects of anisotropy. First
order scattering theory, which leads to the Born approximation, is an alternative way of
calulating the linearized effect of heterogeneity, which must, of course, coincide with the
theory outlined here. In addition, the connections between the mode and ray pictures
point towards the shortcomings of ray theory and enable the ‘width’ of a ray to be
quantified, in much the same way as it was shown above that the location parameter
Ax is characterized by a distributed averaging kernel over the globe, rather than by a
simple line average around the great circle. Li and Tanimoto (1993} derive a practicable
algorithm for calculating the differential kernels of long period body waves by limiting
the summations in (6.15) to those in the group velocity window close to/‘:'A /T(A), where
A and T(A) are the distance and travel time of the phase of interest. Li and Romanow-
icz, (1994) apply this method to the inversion of three dimensional mantle structure
and compare the results with those obtained using a less sophisticated theory. Certain
higher order scattering approximations have also been developed (e.g. Pollitz, 1994).
A number of such developments will be discussed in other lectures at this school.
These developments are adding to our understanding of the way in which hetero-
geneity affects seismic observations; it must be borne in mind, however, that results
of this kind depend upon the short time approximation, and while they enable the
connections between the ray and mode pictures to be clarified, they do not supercede
ray theory itself. Ray theory is an asymptotic theory which depends upon the assump-
tion that the scale lengths characterizing heterogeneity are large compared with the
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wavelengths of interest. It is not a short-time theory, and is not a perturbation theory,
in that it can deal with arbitrarly large structural variations, provided that they are
sufficiently smooth on the scale of a wavelength. Thus the domains of applicability
of ray theory and scattering theory are different. Naturally, where their domains of
applicability intersect, they give similar results, and the linearized predicitions of ray
theory must agree, in the case of sufficiently smooth perturbations, with the predictions
of first order scattering theory.

Surface wave ray theory The fundamental idea of ray theory is that locally any kind
of wave, of fixed frequency w, is approximated by plane wave of the form

u = Aexpluwt —ka) (6.16)

Since we are here considering surface waves, z is a measure of distance in some direction
(the direction of propagation) in the surface, and u is some component of displacement.
Since the surface may be curved, and since the properties of the medium vary laterally
we need to allow the horizontal wavenumber & and the amplitude A to vary laterally
on the scale of variation of the medium. A general way of doing this (Bretherton, 1968;
Gjevik, 1973; Woodhouse, 1974; Woodhouse and Wong, 1986) is to replace (6.16) by
the expression

u(x,r,t) = A(x,r, 1) exp(—i(x,1)) (6.17)
and to define the local wavenumber and frequency of the wave to be
_ oY _ Oy
ko = -a—a-:;, W = —E (6.18)

Here x denotes a pair of coordinates in the surface, which we denote individually by
z° (0 = 1,2), ' = 0, 2* = ¢, say. We then demand (in a mathematically well defined
way) that the amplitude A and the wavenumber k (and possibly the frequency w)
vary slowly - on the same scale as the lateral variations in structure. It can then be
shown that A(x,r,f), as a function of r at constant z,,¢, must be an eigenfunction
of the local eigenvalue problem corresponding to the frequency and wavenumber w, k,
~ i.e. its dependence on r must be the same as in a laterally homogeneous medium
having everywere the properties which exist at the point z,,¢. Of course, although it
is allowed by the theory we shall only need to consider the case in which the structure
is independent of £. As a consequence, frequency and wavenumber must be related by
the local dispersion relation, w = w(k,, z,) i.e.

ad) 31!1) o —
?a?-f-w(-aTa,ﬂ? ) = (. . (6‘19)

This is a partial differetial equation for the phase 1, and it is in the form of the Hamilton-
Jacobi equation which occurs in classical mechanics. The dispersion relation w(ky,zy)
plays exactly the role that is played by the Hamiltonian H(p,, ¢,), where p,, ¢, are the
canonical momenta and coordinates of a mechanical system (see e.g. Goldstein, 1959).
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The solution of this system is obtained by applying the method of characteristics which
yield Hamilton’s canonical equations,

7 = gki (6.20)
ky = _g;" (6.21)

where **” denotes the time derivative along the characteristic curve. The phase function
¥ is to be obtained by integrating along the characteristic:

Y= / (w— k,27) dt (summation assumed) (6.22)

. explicit - :
Since the Hamiltonian w(k,, z) has no,dependence on ¢ it is a ‘constant of the motion’;
that is to say, solutions of (6.20) will be such that w(k,,z) is constant. Consequently

we have
b =wt - j (ko) dt (6.23)

The canonical equations constitute the ray tracing equations for surface waves of a given
constant frequency. Of course, the equations depend upon frequency, and so the ray
trajectories will depend upon the frequency. Notice that, in general, the wave vector k,
is not necessarily parallel to the ray, although it will be in the case that the dispersion
relation is transversly isotropic. The ray represents the transport of energy at the group
velocity

1
Ow Ow\?
U= (g‘,ya-;gk—‘:) (6.24)

where g,, is the covariant metric tensor in the surface. In the case of a sphere of radius
a

gu=a’,  gn=a%in®, g =g, =0 (6.25)
The usual spherical components or the wave vector are

ks = kifa, kg = cosec Ok;/a (6.26)
and those of the ray tangent v, say, are

ve=abfU; vy =asinf¢/U. (6.27)

As in the ray theory for body waves, it can be shown that there is an inverse
relationship between between the square of the wave amplitude and the spreading of
neigpouring rays, by virtue of the fact that, in the absence of attenuation, energy is
conserved within the ray tube. This relationship takes the form
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Uw, z5) /.a plA(x.r,0){*dr x (ray tube width) = constant along the ray (6.28)
0

and since all other attributes of A(x,»,t) are determined by the fact that it is a local
eigenfunction, this equation determines the variation of wave amplitude along the ray.

While the foregoing theory is general, we shall now specialize to the case that the
dispersion relation is isotropic. The case of azimuthal anisotropy will be discussed

further in other lectures at this school. We write
w=wlk,z,) (6.29)

where
1

1 1

k=(g"kok,)? = (kj + k3)2 (6.30)
The ray tracing equations can, in this case be recast in terms of the phase velocity, at
constant frequency w as a function of position: c(w,z,) = w/k. Taking ¢ to be the
independent variable and 7y = cot§ to be the dependent variable, the ray trajectory
7(¢) satisfies the second order ordinary differential equation (Woodhouse and Wong,
1986):

dér d¢ d¢

Ray tracing equations equivalent to this were derived by Jobert and Jobert (1983).
This is an exact ray tracing equation, but it is particularly useful for investigating the
behaviour of rays in the case of slight heterogeneity, in which case the right side is
a first order quantity, and first order approximations to the ray trajectory and other
ray properties can be easily obtained by substituting the unperturbed ray trajectory,
namely the great circle

7(¢) = (const.} x sin(¢ — ¢o) (6.32)

into the the right hand side, and making use of the well known solutions, in terms of
integrals, of the inhomogeneous simple harmonic equation. This can made particularly
simple if the coordinate system is chosen in such a way that the unperturbed ray
lies along the ‘equator’, in which case the equation of the unperturbed ray is simply
7(4) = 0.

Using this approach Woodhouse and Wong (1986) have derived approximate for-
mulae for the phase, amplitude and off-azimuth arrival direction. For high orbits such
linearized results from ray theory are often poor approximations to the results of exact
ray calculations (for realistic low order models of heterogeneity); however they lend
some insight into the magnitude and character of the effect of heterogeneity on sur-
face waves. In particular, they allow us to write down simple formulae for the phase
and amplitude anomalies to be found in successive orbits observed at the same station.
These can be written in terms of the orbit number n of odd (R1, Rs ..., Gy, Gs, etc.)

2 2
.C.{...j_ + 7= {sin20 (dl) + 1} (89 + glad,) In c(w, 0, (}5) (631)
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and even (Ry, Ry ..., G2, G4, etc.) orbits of surface waves. For phase anomaly 8 and
amplitude anomaly §In A these results can be written:

&y = ~%[11 +im—1)I) (n odd) (6.33)
Y = —E%J-Li-—)[~[1 + inly] (n even) (6.34)
é6lnA = Zcosec AlJ, + 3(n —1)J5] (n odd) (6.35)
6lnA = jcosec AlJy — InJy] (n even) (6.36)
(6.37)

where Iy, I (and similarly Ji, J;) are certain integrals taken over the minor arc and
great circle path respectively. These integrals are:

I = f §(ln ¢)d¢ (6.38)
J = / sin(A — ¢)[sin ¢02 ~ cos $)6(In c)ds (6.39)

assuming that the coordinates are such that the receiver on the ‘equator’ at (8, ¢ ) =
(7/2,0) and the receiver is at (r/2,A). Equations (6.35), (6.36) neglect the effect due
to the fact that the surface amplitude of the normalized eigenfunction (i.e. normalized
to unit energy surf}?e density) depends upon local structure. The results (6.33), (6.34)
are simply a representation of Fermat’s principle - that the phase perturbation, to first
order in the heterogneity, is the intergral on 5'2—3 Péaggyrbation in phase slowness ([1/c])
with respect to distance travelled alongwl eiray. The formulae (6.33),(6.34) illustrate
the well known fact that, assuming Fermat's principle to hold, multiply orbiting mantle
waves accumulate the the same phase anomaly for each great circle passage. The cor-
responding prediction for amplitude anomalies is that orbits of one sense are amplified
by the same factor for each great circle passage, and that orbits of the oposite sense
are deamplified by the same factor, a phenomenon frequently observed in the data,
demonstrating the importance of the focusing effect.

Examples of measured amplitude anomalies, together with exact and linearized (ray
theoretic) model calculations are shown in Figs. 89, taken from Woodhouse and Wong
(1986). The ray paths traced using exact ray theory are also shown, in a projection
for which the source is on the ‘equator’ at zero ‘longitude’ and the great circle path
lies along the ‘equator’. Fig 8. shows an example for which the paths are not greatly
deviated from the great circle, and for which the observations and the two theoretical
results show some measure of agreement. Fig. 9 shows an example where the paths
deviate by large amounts from the great circle and for which the data are in better
agreement with the exact ray theoretic results, which deviate greatly from linearized
ray theory. These results show that there are very large amplitude effects, both observed
and predicted, due to focusing and defocusing of the ray bundle. These significantly
complicate the problem of estimating the attenuation of mantle waves.
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Wong (1989) addressed the nonlinear inverse problem of using both phase and am-
plitude of mantle waves to determine phase velocity distributions for Love and Rayleigh
waves in the period range 150-350s, up to spherical harmonic degree and order 12. This
involves iteratively updating the model and the ray paths until convergence is achieved.
While excellent results were obtained for phase (more than 70% variance reduction for
all but the longest periods), the variance reduction in amplitudes was only of order
20%. This probably indicates that degrees higher than 12 have an important influence
on amplitudes.

The connection of the results of ray theory, e.g. (6.33)-(6.36), with those derived
from the modal approach can be made by recognizing that

P -
“local _ {_J_‘S_C (6.40)
w ¢ c

This form arises from the fact the éwjy.,] is defined as the local perturbation in eigen-
frequency at constant k (or constant {}, whereas éc is the phase velocity perturbation
at constant w. Using these relationships (or from first principles) it can be shown
(Woodhouse and Dziewonski, 1984) that the phase perturbations (6.33), (6.34), at the
orbital group arrival times, can be mimicked by a calculating the contribution to the
seismogram as in a spherical model, but with an adjustment &, (which is different for
different multiplets) to the arc distance, together with an adjustment to the modal

eigenfrequency bw. We find

6 = akéd — bwt (n odd) (6.41)
6 = —akbd— bwt (n even) (6.42)

where t is the group arrival time of the given orbit
t = a(A+(n-1)m)/U (n odd) (6.43)
t = a(-A+nr)/U (n even) (6.44)
(6.45)

and where

5 =2 (b — bw) 6.46
= 1B — b (6.46)

The quantities dw, 6w are defined to be the great circle average and the minor arc
average, respectively, of éw) ... This provides an alternative derivation of the formula
(6.12) of Jordan (1978) for the observed frequency shift for a given path. Additionally,
it gives a simple way of calculating seismograms which incorporate the effects of phase
delays along incomplete arcs. It has been shown by Romanowicz (1987) that the this
result, together with the amplitude effects predicted by (6.35), (6.36) can be obtained by
an asymptotic analysis of the scattering approximation (6.13), when coupling between
neighbouring modes along the same branch is taken into account. This simplified version
of ray theory, which incorporates only an approximation to the ray theoretic prediction
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of the phase, is a very useful one for waveform inversion, and has besn applied, in
many studies (e.g. Woodhouse and Dziewonski, 1984, 1986, 1989; Tanimoto, 1987,
1988, 1990; Su and Dziewonski, 1991; Su et al.1994) to both surface wave and long
period body wave data. Its shortcoming is that it is not very accurate for direct body
wave phases, since it predicts that the observed seismogram depends only upon the
horizontally averaged structure, which is clearly not a good approximation in many
cases. It i1s a good approximation (within the the limitations of ray theory) for the
fundamental mode and the low overtones, which constitute a major part of the long
period body wave signal. Its limitations have recently been investigated by Li and
Romanowicz (1994).

In the spectral domain, the measurent of frequency shifts in individual spectra for
the fundamental modes, has been extensively applied to constrain even degree mantle
structure (e.g. Masters et al.1982; Smith and Masters, 1989); the related and traditional
techniqe of measuring phase and group delays over numerous paths was also among the
earliest to ellucidate clear patterns of heterogeneity in the mantle (e.g. Nakanishi and
Anderson, 1982, 1983, 1984; Nataf et al.1984, 1986).
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ﬂxamples of data {solid lines) and synthetic spectra (dashed lines} in spectral windows containing one or
two modes. For each window are indicated the namme(s) of the multiplet(s). the range of the horizontal frequency
axis {in millibertz). the earthquake date. and the recording station. The complex spectra are represented in terms
of phase in the interval (—=, w) (top panel of each figure), and amplitude on an arbitrary sca.e {middle panel).
Vertical bars in the bottom panels indicate the frequencies and relative amplitudes of the singlets contributing
to the theoretical spectra, computed for the reference model PREM. incorporating the effects of rotation and
ellipticity. Vertical dotted lines delineate the portion of the signal used in the inversion. The variance ratio is a
measure of the misfit between the observed and synthetic traces. computed in terms of the complex spectra. The
durations and starting times (relative to event origin time) of each record are, respectivel ‘a) 48, 6, (5) 48, 6,
(c} 140, 5.6, (d) 140, 14.8, (&) 80, 1.4, (f) 80, 1.6. (g} 80, 15, and (&} 60. 7. all in hours.
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obtained using the splitting functions of Table 4. See caption to Figure 1.
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Data (solid lines) and synthetic spectra (dashed lines), as in Figure 1, but with the synthetic spectra
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Differential kernels and splitting functions for modes 056, 057, 157. and ; Ss, dominated by sensitivity
to vg structure in the lower mantle and having large kernels in the outermost core and in the proximity of the
core-mantle boundary. See caption to Figure 7 for details.
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Differential kernels and splitting functions for modes 453, 554, 555, and 55¢. The differential kernels
represent the sensitivity, as a finiction of depth, of the splitting function elements to a 1% perturbation in vp, vg,
and p. For a given mode the kernels are independent of angular order ¢, and only weakly dependent on degree
s for high | modes. Here we show separate kernels for degree s = 0,2, 4 and for vp, vg, and p, centered on the
0 line. At the bottom of each panel we also show the sensitivity to topographic perturbations of the four major
surfaces of discontinuity; from top to bottom, tliese are the free surface, the 670-km discontinuity, the core-mantle
boundary, and the inner core boundary. These represent, on the same scale as the other kernels, the effect of a
boundary deflection equal to 1% of the Earth’s radius. The splitting functions are plotted in the same fashion
as those in Figures 3-6. In this and in the following figures we display modes with simnilar differentjal kernels.
The modes shown here show predominant sensitivity to vp structure in the lower mantle and essentially vanishing
sensitivity below the core-mantle houndary.
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EVENT OF 20/11/78 19:52:47 .6 LAT: 16.8 LON: -96.6 DEP: 18,
STATION: NWAO DIST: 145.1 COMPONENT:VERT MODE: 9 S 48

360 120
45 ; ——

30

15

60 120 240 300 360
ODD ORBITS (b)
. (a) Amplitude measurements (top row) as a function of orbit number, together with model
calculations based upon the path integral approximation (middle row) and exact ray tracing (bottom
row); the model calculations make use of the model M84C of Woodhouse & Dziewonski {1984). (b) The
paths followed by the orbits of Fig. 3(a); all even orbits {top panel) and odd orbits (bottom panel) are
superimposed.
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.. (a) -Amplitude measurements and model calculations. See caption to Fig. 3(a). (b) The paths
followed by the orbits of Fig. 4(a).
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