INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

H4.SMR/841-8

FOURTH ICTP-URSI-ITU(BDT) COLLEGE ON RADIOPROPAGATION: Propagation, Informatics and Radiocommunication System Planning

30 January - 3 March 1995

Miramare - Trieste, Italy

Biological Effects of Electromagnetic Fields

P. Bernardi University of Rome "La Sapienza" Italy

Biological Effects of Electromagnetic Fields

P. Bernardi, S. Pisa

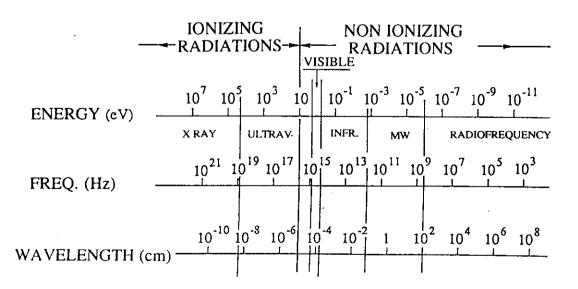
University of Rome "La Sapienza", Department of Electronic Engineering

Via Eudossiana 18, 00184 Rome, ITALY

ICTP Trieste 1995

CONTENTS

- 1. Introduction
- 2. Emission and coupling parameters
- 3. Dielectric behaviour of biological materials
- 4. Dosimetry
- 5. Biological effects
- 6. Protection standards

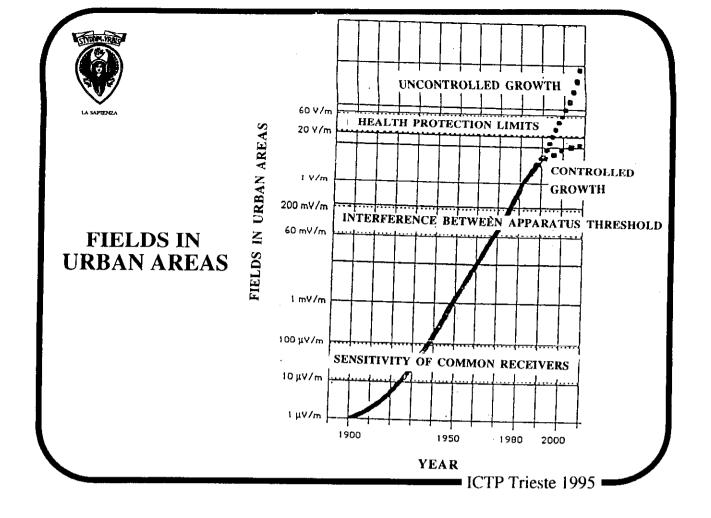


INTRODUCTION

ICTP Trieste 1995

EM SPECTRUM CHARACTERISTICS

TYPICAL APPLICATIONS


FREQUENCY	TYPICAL APPLICATIONS	WORKERS	GENERAL PUBLIC
50 Hz	power line carrier radionavigation radiolocation		rural people
< 3 MHz	AM broadcast amateur industrial RF heating	car, ship, air industry	all

ICTP Trieste 1995

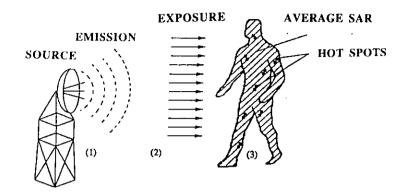
TYPICAL APPLICATIONS

FREQUENCY	TYPICAL APPLICATIONS	WORKERS	GENERAL PUBLIC
3 - 300 MHz	AM, FM broadcast, VHF - TV, citizens band, amateur industrial RF equipment medical applications	chemistry and machinery industry medical and paramedical	all patients
300-3000 MHz (0.3 - 3 GHz) MICROWAVES	mobile communications short range broadcast UHF-TV, citizens band microwave ovens industrial heating medical applications	food industry MW industry medical and paramedical	mobile phone users housewifes,
3 - 300 GHz MICROWAVES	satellite communications radar	military researcher	rural people

EMISSION AND COUPLING PARAMETERS

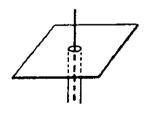
ICTP Trieste 1995

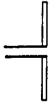
BASIC DEFINITIONS

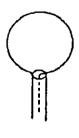

EMISSION (from a source)

EXPOSURE (of a subject)

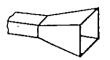
ABSORPTION (in the subject)

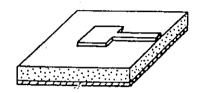

PICTURE OF THE SITUATION

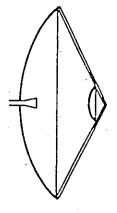

ICTP Trieste 1995


EM SOURCES

MONOPOLE


DIPOLE

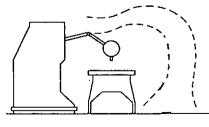

LOOP


EM SOURCES

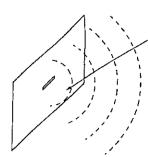
HORN

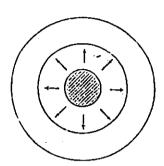
MICROSTRIP PATCH ANTENNA

REFLECTOR


ICTP Trieste 1995

KINDS OF EMISSIONS


FOCUSED EMISSION


DISPERSION FROM INDUSTRIAL EQUIPMENT

KINDS OF EMISSIONS

EMISSION FROM AN APERTURE

OMNIDIRETIONAL EMISSION

ICTP Trieste 1995

EXPOSURE OF THE SUBJECT

The exposure is evaluated in the body-absent situation

CONSTITUTIVE RELATION

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 \; \boldsymbol{\varepsilon}^* \; \mathbf{E}$$

TOTAL CURRENT

$$J = g E + j\omega D = (g + j\omega \epsilon_0 \epsilon^*) E$$

■ ICTP Trieste 1995

RMS VALUE FOR A VECTOR QUANTITY

$$\mathbf{A} = \mathbf{a}_{\mathbf{x}} \ \mathbf{x}_0 + \mathbf{a}_{\mathbf{y}} \ \mathbf{y}_0 + \mathbf{a}_{\mathbf{z}} \ \mathbf{z}_0$$

$$a_{x \text{ eff}} = \sqrt{\frac{1}{T} \int_0^T a_x^2 dt}$$

$$a_{y \text{ eff}} = \sqrt{\frac{1}{T}} \int_{0}^{T} a_{y}^{2} dt$$

$$a_{z \text{ eff}} = \sqrt{\frac{1}{T} \int_0^T a_z^2 dt}$$

RMS VALUE FOR A VECTOR QUANTITY

$$A_{eff} = \sqrt{\frac{1}{T} \int_0^T \mathbf{A} \cdot \mathbf{A} dt} = \sqrt{\frac{1}{T} \int_0^T \left(a_x^2 + a_y^2 + a_z^2 \right) dt} =$$

$$= \sqrt{a_x^2 eff} + a_y^2 eff}$$

■ ICTP Trieste 1995

EXPOSURE PARAMETERS

 E_{rms} (V/m) rms value of the time harmonic EM field of period T

$$E_{\rm rms}^2 = \frac{1}{T} \int_0^T \left| \mathcal{E}(\mathbf{t}) \right|^2 d\mathbf{t}$$

H_{rms} (A/m) rms value of the time harmonic EM field of period T

$$H_{rms}^2 = \frac{1}{T} \int_0^T \left| \mathcal{A}(t) \right|^2 dt$$

EXPOSURE PARAMETERS

S (W/m²) Time average Power density

$$S = \frac{1}{T} \int_0^T S(t) dt$$

For a TEM plane wave

$$S = H_{rms} \cdot E_{rms} = E_{rms}^2 / 377 = H_{rms}^2 \cdot 377$$

■ ICTP Trieste 1995

EXPOSURE CONDITIONS

Reactive field

radiative field

Near-field

Far-field
$$\begin{cases} r \ge \lambda \\ r \ge \frac{D^2}{\lambda} \end{cases}$$

ABSORPTION PARAMETERS

SAR (W/Kg) Specific absorption Rate

Absorbed power, per unit of mass

FULL BODY AVERAGE SAR (W/Kg)

Total Absorbed power divided by the total mass of the body

LOCAL SAR (W/Kg)

Absorbed power in an infinitesimal volume at a point in the body divided by the mass of the infinitesimal volume

■ ICTP Trieste 1995

SAR EVALUATION

$$SAR = \frac{\omega \epsilon_0 \epsilon'' E_{in}^2}{\rho} = \frac{4.186 \rho c\Delta T}{\Delta t} (W/kg)$$

 $E_{in} = \text{magnitude of the internal field } (V/m)RMS$ $\rho = \text{mass density } (kg/m^3)$ $\epsilon_0 = \text{free space permittivity } (F/m)$ $\epsilon'' = \text{imaginary part of the relative complex permittivity}$ $c = \text{specific heat } (cal/Kg \, ^{\circ}C)$ $\Delta T = \text{temperature variation } (^{\circ}C)$ $\Delta t = \text{exposure time } (s)$

INDUCED CURRENT DENSITY

$$J_{in} = \sqrt{g^2 + (\omega \epsilon_0 \epsilon')^2} E_{in}$$

ICTP Trieste 1995

FOOT CURRENT

Total current crossing the feet toward the ground

DIELECTRIC BEHAVIOUR OF BIOLOGICAL MATERIALS

ICTP Trieste 1995

DIELECTRIC POLARIZATION

$$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$$

P = dielectric polarization

 P_1 = atomic and electronic displacement

 P_2 = dipolar reorientation

DEBYE THEORY

$$\mathbf{P}_1 = \ \mathbf{\epsilon}_0 \ \mathbf{\chi}_1 \ \mathbf{E}$$

$$\frac{dP_2}{dt} = \frac{1}{\tau} (\epsilon_0 \chi_2 \mathbf{E} - \mathbf{P}_2)$$

ICTP Trieste 1995

DEBYE THEORY

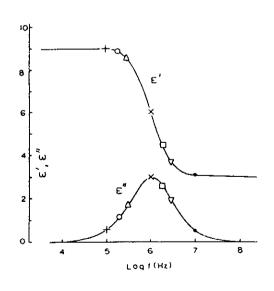
For a time harmonic field

$$\mathcal{L}(\mathbf{t}) = \text{Real}(\mathbf{E} e^{j\omega t})$$

$$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2 = \boldsymbol{\varepsilon}_0 \left(\boldsymbol{\chi}_1 + \frac{\boldsymbol{\chi}_2}{1 + \mathbf{j}\boldsymbol{\omega}\boldsymbol{\tau}} \right) \mathbf{E}$$

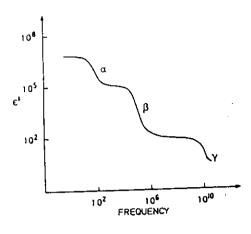
COMPLEX PERMITTIVITY

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 \ \mathbf{E} + \mathbf{P} = \boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon}^* \ \mathbf{E}$$


$$\varepsilon^* = \varepsilon' - j \varepsilon''$$

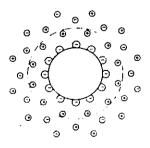
$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_{s} - \varepsilon_{\infty}}{1 + (\omega \tau)^{2}} \qquad \varepsilon'' = \frac{(\varepsilon_{s} - \varepsilon_{\infty}) \omega \tau}{1 + (\omega \tau)^{2}}$$

ICTP Trieste 1995



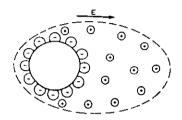
DEBYE-TYPE RELAXATION PROCESS

TYPICAL TISSUE


■ ICTP Trieste 1995

α - RELAXATION

Counter-ions diffusion polarization

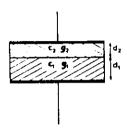

Is associated with the electrical double layer surrounding cells

α - RELAXATION

Polarization results from the net displacement of counterions as a result of the influence of an external electric field

ICTP Trieste 1995

α - RELAXATION


the relative permittivity may reach values greater than 10 ⁴ at frequencies below 1 kHz.

β - RELAXATION

Interfacial polarization (Maxwell-Wagner effect)

Is associated with the charging of the interfaces within the material

■ ICTP Trieste 1995

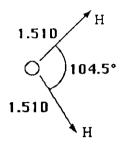
β-RELAXATION

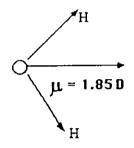
with
$$g_2 \approx 0$$

$$C_1 = A \epsilon_0 \frac{\left(\epsilon_1 - j \frac{g_1}{\omega \epsilon_0}\right)}{d_1}$$

$$C_2 = \frac{A \epsilon_0 \epsilon_2}{d_2}$$

$$C = \frac{C_1 C_2}{C_1 + C_2} = \frac{A \epsilon_0 \epsilon_2 \left(\epsilon_1 - j \frac{g_1}{\omega \epsilon_0}\right)}{d_2 \left(\epsilon_1 - j \frac{g_1}{\omega \epsilon_0}\right) + d_1 \epsilon_2}$$


$$\epsilon_s = \epsilon_2 \frac{d}{d_2}$$


$$\epsilon_{\infty} = \frac{\epsilon_1 \epsilon_2 d}{d_2 \epsilon_1 + d_1 \epsilon_2}$$

γ - RELAXATION

Dipolar polarization of free water is associated with the partial orientation of permanent dipoles

■ ICTP Trieste 1995

γ - RELAXATION

Considering an ensemble of indipendent dipoles with moment μ , the externally imposed Electric field will exert a torque of magnitude $\mu E \sin\theta$, where θ is the angle between the dipole and the field.

At equilibrium

$$\langle \cos \theta \rangle \approx \frac{\mu E}{3 K T}$$

$$P \approx \frac{N \mu^2 E}{3 K T}$$

γ- RELAXATION

After application of the E-field, the ensemble of dipoles approach equilibrium after a time

$$\tau \approx \frac{4 \pi \eta \ a^3}{K T}$$
 (Stokes law)

a = radius of the dipole

 η = viscosity of the medium

ICTP Trieste 1995

γ - RELAXATION

For pure water

$$\tau \approx 8 \text{ ps}$$

corresponding to a relaxation frequency of

$$f_r = \frac{1}{2 \pi \tau} \approx 20 \text{ GHz}$$
 (at 25 °C)

DOSIMETRY

ICTP Trieste 1995

DOSIMETRY

f < 30 MHz

Analytical techniques Empirical formulation Numerical techniques

30 MHz < f < 300 MHz Numerical techniques

f > 300 MHz Analytical techniques

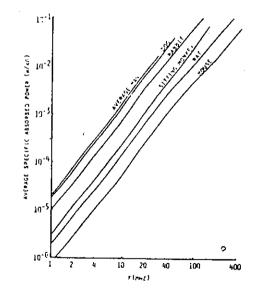
■ ICTP Trieste 1995 •

f < 30 MHz

Wavelength of the incident radiation large compared to the size of the body

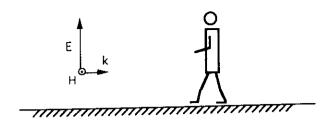
ANALYTICAL TECHNIQUES

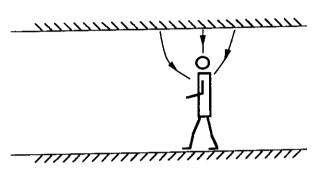
quasi-static solution of Maxwell's equations


spheroidal and ellipsoidal models of man

useful information about the average SAR

ICTP Trieste 1995


AVERAGE SAR



The average SAR increases proportionally to the square of the frequency

EMPIRICAL FORMULATION

■ ICTP Trieste 1995 •

PLANAR SIMULATION

$$E_{n1} = AIR$$

$$(g_1, \varepsilon_1)$$

$$E_{n2} = TISSUE$$

$$(g_2, \varepsilon_2)$$

$$E_{n2} = \frac{g_1 + j\omega \varepsilon_1}{g_2 + j\omega \varepsilon_2} E_{n1}$$

f = 50 Hz

$$1 = Air g_1 = 10^{-13} (S/m) \epsilon_0 \epsilon_1 = 10^{-11} (F/m)$$

2 = Tissue
$$g_2 = 10^{-1} (S/m)$$
 $\varepsilon_0 \varepsilon_2 = 10^{-5} (F/m)$

$$E_{n2} = \frac{j\omega\varepsilon_1}{g_2} E_{n1}$$

$$\frac{E_{n2}}{E_{n1}} = \frac{E_{IN}}{E_{OUT}} \cong 4 \cdot 10^{-8}$$

EMPIRICAL FORMULA

$$|J_{IN}| = \omega \epsilon_0 E_{OUT} = 0.108~h_m^2~\frac{f_{MHz}}{A_{eq}}$$

$$SAR = \frac{J_{IN}^2}{g \, \rho}$$

 $h_m = human height$

 A_{eq} = Equivalent area of the cross section of the body ρ (kg/m3) is the density of the considered tissue ρ (S/m) is the conductivity of the considered tissue

ICTP Trieste 1995

SAR AVERAGE

$$SAR_{av} = \frac{Total power absorbed}{Weight} =$$

$$= \frac{(0.108 h_m^2 f_{MHz} E_{OUT})^2 h_m}{70 g A} \cdot 10^{-2} \frac{W}{kg}$$

$$f = 20 \text{ MHz}; A = 400 \text{ cm}^2; h_m = 1.75 \text{ m}$$
 $g = 0.5 \text{ S/m}; E_{OUT} = 61.4 \text{ V/m}$ $SAR_{AV} = 0.21 \text{ W/kg}$

SAR PEAK

$$SAR_{peak} = \frac{(0.108 h_m^2 f_{MHz} E_{OUT})^2}{g \rho A_{eq}^2(0)} \cdot 10^2 \frac{W}{kg}$$

Aeq(0) = Equivalent area of the ankle

Under plane wave exposure the SAR_{peak} is ever located in the ankles

ICTP Trieste 1995

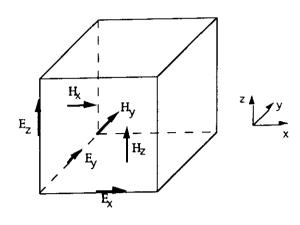
FOOT CURRENT

The current flowing through the feet into a conductive ground

$$\frac{I_f}{E_{inc}} = 0.108 h_m^2 f_{MHz} \qquad \frac{mA}{V/m}$$

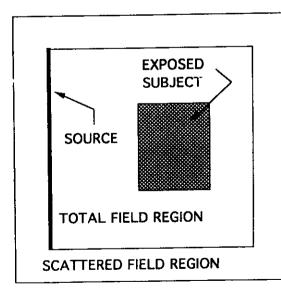
30 < f < 300 MHz

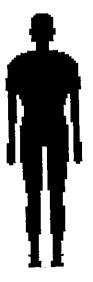
Body resonance region


NUMERICAL TECHNIQUES

FDTD METHOD

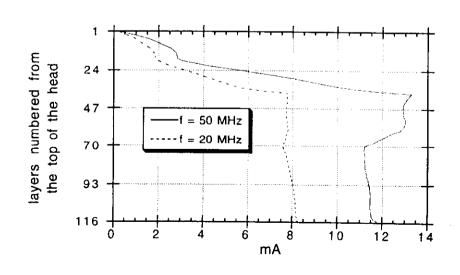
MOMENT METHOD


FDTD METHOD


ICTP Trieste 1995

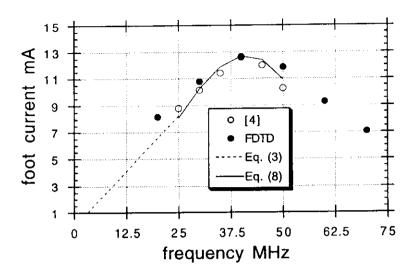
FDTD / CONSIDERED GEOMETRY

LATTICE TRUNCATION


BASIC ABSORPTION PARAMETERS

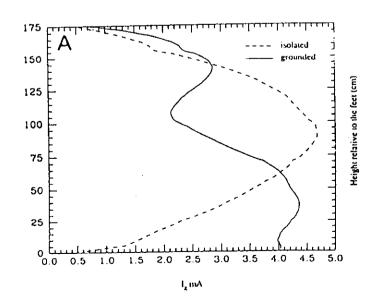
$$\begin{split} SAR(i,j,k) &= \frac{g\left[\left(\widehat{E}_x^2 + \widehat{E}_y^2 + \widehat{E}_z^2\right)\right]}{2\,\rho} \\ \widehat{I}(h) &= \sum_{i,j} \delta^2 \, \widehat{E}_z(i,j,h) \, \sqrt{g^2 + \left[2\,\pi\,f\,\epsilon_0\,\epsilon_r\right]^2} \\ I(h,\,n) &= \sum_{i,j} \delta^2 \, \left[E_z(i,j,h,n)\,s + \epsilon_0\,\epsilon_r\right. \\ &\left. \frac{E_z(i,j,h,n) - E_z(i,j,h,n-1)}{\delta t} \, \right] \end{split}$$

ICTP Trieste 1995



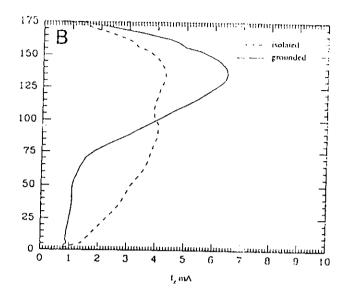
INDUCED CURRENT DISTRIBUTION

FOOT CURRENT



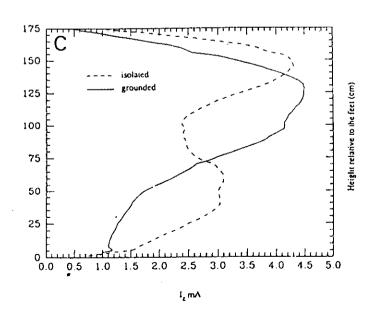
ICTP Trieste 1995

CURRENT DISTRIBUTION


(f = 100 MHz)

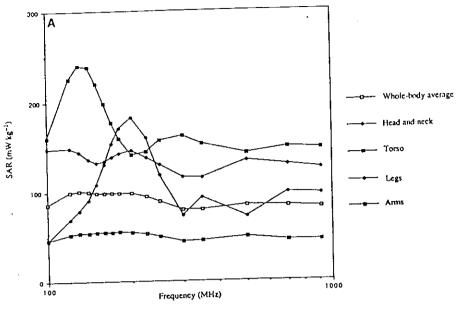
CURRENT DISTRIBUTION

(f = 160 MHz)



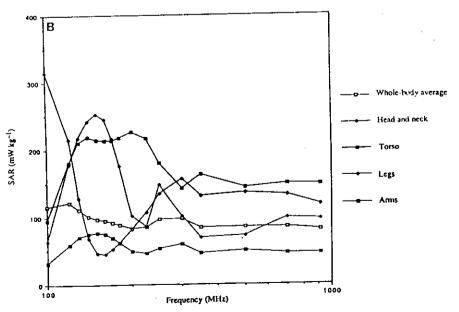
■ ICTP Trieste 1995

CURRENT DISTRIBUTION


(f = 200 MHz)

PART-BODY AVERAGE SAR

ISOLATED



■ ICTP Trieste 1995

PART-BODY AVERAGE SAR

GROUNDED

■ ICTP Trieste 1995 •

f > 300 MHz

ANALYTICAL TECHNIQUES

Analytical solution of Maxwell's equations for cylindrical models

This solution appear to be a good approximation beyond 400 MHz

■ ICTP Trieste 1995

AVERAGE SAR

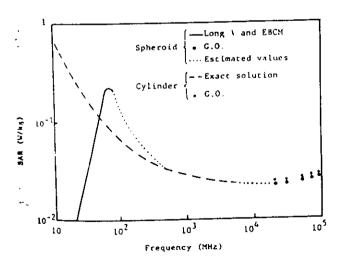
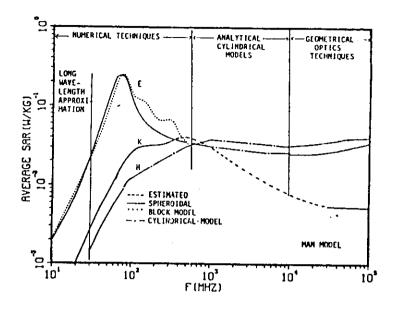



Fig. 4. Average SAR in 70-kg prolate spheroidal and cylindrical models of man (electric polarization). The radius of the cylinder is 11.28 cm, the length is 1.75 m, and the spheroid has the same height as the cylinder; the power density of incident radiation is 1 mW cm⁻². G.O. = geometrical-optics solution; EBCM = extended-boundary-condition method.

AVERAGE SAR

■ ICTP Trieste 1995

TYPES OF INCIDENCE

E Q

E Polarization

E_e strong

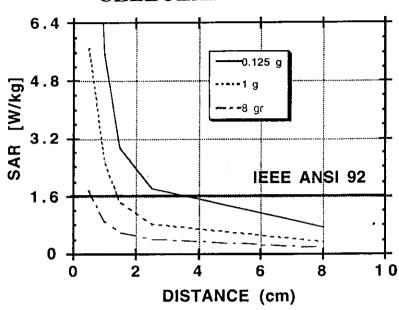
E_h strong

H Polarization

E weak

E_h weak

K Polarization


E_e veak

E strong

NEAR FIELD EXPOSURE

CELLULAR PHONES

