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Propagation in birefringent fibers (using the Pauli vector)

James P. Gordon

In dealing with problems of propagation in birefringent fibers, such as polarization
dispersion, I have found it helpful to use a combination of vector and matrix notation in
what is perhaps a novel way.

A field with two polarizations is represented by a column matrix, and its conjugate
transpose by a row matrix; thus

Utz.w) = | D UMz = [ﬁ;(z,m) ﬁ;(z,m)] (L

The tilde over U and 7 indicates that they are monochromatic fields.

The Stokes vector corresponding to such a fi€ld exists in a three dimensional space,
which we shall call Stokes space. It is represented by S and has the components

= 12 =42
5 =‘“x| _l"yl
-‘_ ..‘.-
Sy =l iy + iyt (1.2
.—‘l- .-'u
Sy = —iucty +iiyu,

The three unit vectors along the three axes of Siokes space we labe! £, €7 and €3. From
Egs.(1.2) one can show that the length of the Stokes vector is given by Sg = Oty =
l#|* + t&,)|?. Linearly polarized fields, for which i /i is real, have their Stokes vec-

tors in the (€1,€,) plane, while circularty polarized fields have their Stokes vectors along
the &4 axis.

The three relations in Eqgs.(1.2) can be more succinctly expressed using the three
Pauli matrices, familiar to physicists from the quantum mechanics of two state systems.
Reordered to fit the present context, these are

S D R [ B
Wilo-1 TP Lo

With the Pauli matrices, Eqs.(1.2) can be reexpressed as

0 -i
= 1.3
o3 lf O] (1.3

S; = Ute,U =123 (1.4a)

Eq.{1.4a) suggests the notation we advance here, and that is to treat the three Pauli
matrices as the three components of a vector in Stokes space. Thus, we define the
"matrix-vector”

d= Glél + 0’222 + 03&3
With this device, one can reexpress Eq(1.4a) vectorially as
S=0t80 (1.4b)

The properties of the Pauli matrices are important for what follows. They, along
with the unit matrix I, form a complete set of Hermitian 2 by 2 matrices. A Hermitian
matrix is one which is equal to its complex conjugate transpose, that is, its Hermitian

conjugate. It has real eigenvalues. Any 2 by 2 Hermitian matrix may be expanded in the
form

apl +a,0, + 4204 + 4165 = ay1 + 2-d (1.5a)

where the coefficients a; are real, and the last form, using the vector dot product, takes
advantage of the matrix-vector notation , i.e.
(1.5b)

a, a;-—iay
dd=a,6, +a,0; +4:03 = l ]

ay+ias —a,

In context, the vector 4 in Eqgs.(1.5) is a vector in Stokes space. All such vectors are
assumed to have real components unless the contrary is explicitly specified. The com-
ponents of @ are Hermitian, which is the matrix equivalent of real.

The Pauli matrices obey the well known multiplication rules,

&S
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of=1 6,0, = —0;0; = iG; (1.6}

where { j.k,I) can be any cychic permutation of (1,2,3). Using Eqgs.(1.6), any function of
the & matrices that can be expanded in a power series can be reduced to an expression
linear in the © matrices and the unit mawrix I. Examples which will be used below,

expressed in vector notation, include

did-d) = J1 + iaxd {1.7a)
@d)(h-&) = (@M1 + i(@xh)-8 (1.7b)
(d-8)8(d-d) = 2d(@-d) ~ a*d (1.7¢)
explid-d) = cos(a) I + isin(a) a-d (1.7d)

In Eqs.(1.7), the vectors & and b can be any vectors in Stokes space. Examples of both
dot and cross vecsor products occur. bn Eq.(1.7a), for example, the €, component reads
o,(d-d) = a,1+i(¢;0; -a30;), which follows from Egs.{l.5b) and (1.6). In
Eqs.(1.7c) and (1.7d), a is the length of the vector &, while 4 is the unit vector @/a. This
notation will also be applied 10 other vectors. The final example (1.7d) derives from the
result of Eq.(1.7b) when J_;:E?. namely (d-d)?% = 4?1 The equations conjugate to
Eqs.(1.7) also apply. The equation conjugate to Eq.(1.7a) is (@-@)d = &1 - idxd.
Interchanging & and b conjugates Eq.(1.7b), while Eq.(1.7¢) is its own conjugate, and
replacing i by — i conjugates Eq.(1.7d). Note that - does not commute with b+ unless
dxb=0.

Eigenvalues and eigenstates

With any Hermitian matrix of the form @-@ one can associate a pair of orthogonal
cigenstates of the fieid and a new basis set of orthogonal unit vectors in Stokes space, one
of which is the unit vector @. These facilitate the discussion of problems in regard to
birefringent propagation. Since (@-@ 2 =a?l, it follows that the eigenvalues of d-& are
a and — a. With each eigenvalue is associated an eigenstate. Let {7, and U _ be the two
normalized eigenstates of (@-@). They have Stokes vectors of unit length, and satisfy the

equations
@80, =al, ; 280_ =-al. (2.1)

Using Eq.(1.1), one can show from Egs.(2.1) that the eigenstate {7, has hylu, =
{az+iay)/(a+a), while the eigenstate U_ has i, i, =—(a+a)/{e;—ias), and that
l~1f+[f_ = 0, so that they are orthogonal to one another, (Eigenstates with different
cigenvalues are always orthogonal to one another.) The eigenstates are linearly polarized
if a4=0, circularly polarized if a,=a;=0, and otherwise elliptically polarized. The
cigenstates have independent phases, which can be chosen arbitrarily. Any fieid can be
expanded in terms of them, so they are complete. These properties are represented by the

equations
U, f0, =0_10_=1  (normalization) (2.23)
G.t0_ =010, =0 {orthogonality ) (2.2by
O*ﬂﬁ + O U_T=1 {completeness) (2.2¢)

To generate the new basis set of vectors in Stokes space, we use Eq.(1.7a) and any two
fields [/ o and U g to obtain

U,13@ )0 = B0 Up) + id@x(Us18Up)

Now replacing &a and l}p by the eigenstates in various ways, and using Eqgs.(2.1) and
(2.2), we find the results

(7, 180,) = dia (2.3a)
(U_130_) = -dla (2.3b)
(U 180 = i@ia)x(U_180.,) (2.3¢)

along with the conjugate of Eq.(2.3¢c). Eqgs. (2.3a) and (2.3b) demonstrate that the Stokes
vectors of the norrmalized field eigenstates are the unit vectors @ and —d. (The Stokes
vectors of orthogonal fields are always antiparallel.) From Eq.(2.3c) it follows that the
complex vector U _ T8 U, is perpendicular to . If we make the definitions



G, =a=U,180, (2.42)

a,+idy = U_130, (2.4b)

then the real and imaginary parts of Eq.(2.3¢) yield @ =~ %X@3, and d3=d, xd,. One
can show using the completeness relation Eq.(2.2¢) that the vectors 4, and a5 are also
unit vectors, so the three unit vectors & ; form a new right handed basis set for the Siokes

space. (Note that the three unit vectors d; are quite different from the three components

of @ which appeared above.) If one expands an arbitrary field state in terms of the eigen-
states of 2@

U=yfU, +g0_ (2.52)

then one finds the Stokes vector $=0130 expanded into the form
$=(IfP-1gMay + (ST e +fg")az + (- g +ife")ds @2.5b)
which is evidently a representation of §in a rotated coordinate system based on @,. The

1],:md U_= 0
0

original coordinate system is recreated using a, =€, U, = 1]. A phase
change of {/_ with respect to I/, rotates 4 and 45 around the axis of d;.

In the following sections, we shall have repeated occasions to use the results of this
exercise.

Birefringent propagation

Fibers of good quality for optical transmission always have some random residual
birefringence. The part of the propagation equation which describes the local
wavenumber and its birefringence can be written in vector form as

au

, |
i i(Bol + E|3-a')U 3.1

. . 4 s -
Here Bg is the mean wavenumber, while the birefringence vector B is a vector in Stokes
space. The Hermmitian form of the operator in parentheses on the right is required to

preserve power, and therefore the length U1 U of the Stokes vector. The magaitude of the
birefringence is the difference of the two eigenvalues of ﬁ-a‘r 2, and is therefore the
length B of the the birefringence vector E As we have also seen in the last section, the

Stokes vectors of the two orthogonal field eigenstates of the birefringence are the unit
vectors [ and - .

Corresponding to Eq.(3.1) is the equation for the propagation of the Stokes vector,
Differentiating Sin Eq.(1.4b) with respect to z and using Eq.(3.1) and its conjugate, one
gets

3 _ ol @aes L@l i
az_U 2(B6‘)6’+26'([36‘)U (3.2)

With the aid of Eq.(1.7a) and its conjugate, this becomes
oS - A w2
5= = -U1P80 = BxS (3.3)
z

Thus, as is well known, the propagation of the Stokes vector consisis of precession
around the birefringence vector. The propagation preserves angles between the Stokes
vectors commesponding 1o differently polarized fields. The result a@, -?b ¥/9z=0 follows
from Eq.(3.3). Generalizing the second equality of Eq.(3.3), we note that if ‘I?-B*
represents any lincar operation on the vector d, such as a rotation, then consideration of
its components (R-8), = T R ;4G shows, with Eq.(1.4a), that

k

UtR-@0 = R-S (3.4)

The vector cross product of Eq.(3.3} is one such linear operation.

Propagation over a finite distance

Linear propagation over a finite distance in a birefringent fiber, from z, to z. say, is
generally described by a 2 by 2 Jones matrix, which we can label T(z,2,). Thus we have

re®
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U(z) = T(z,2 ) U(zy) (4.

For loss free propagation, any Jones matrix can be expressed in the general unitary form
T(z.z,) = exp ‘1{6(,14— %ﬁ'-a‘)] = exp(iBo)exp(%é’-a) (4.2a)

By expanding cxp(ia-aﬂ) using Eq.(1.7d), one may verify that the Jones matrix can
akso be written in the form

T(z.7y} = exp(ieo)[ - r} (4.2b)
-r f

where 112 +]7|® =1, In this form the mairix elements are the Cayley-Klein parameters
of mechanics, used there also as a representation of a rigid rotation. A unitary matrix is
one whose inverse is equal to its Hermitian conjugate, as is evident from the form of
Eq.(4.2a). This property is necessary to preserve the value of UL, As we shall see, such
a Jones matnix corresponds to a finite rotation in Stokes space, of amount — 0 around the
direction of the unit vector 8, where as usual 8=66.

If ﬁ:B’fB is independent of z in Eq.(3.1), then that equation can be inegrated o
give T(z,z,) with

z z

8o = [d:By  :  O=[dpp 43)
7, 7
This case corresponds to a finite rotation around the direction |§ In the more general case,
where [3 varies with position along the fiber, the Jones matrix will still have the form of
Eq.{4.2a), but in the this case the direction of 8 will be frequency dependent. For exam-
ple, concatenated sections of fiber, each with its own constant value of ﬁ, will have a total
Jones matrix which is the ordered product of the Jones matrices for each section. The net
rotation is the ordered product of the rotations corresponding to each section, and will
depend in direction and magnitude on both the directions and magnitudes of the rotations
due to each section and on the order in which they occur,

It is useful to define T(z;,2) as the inverse of T(z,z,), for then the concatenation
Tule

T(z,2¢) = T(z,22) Tz2.21) (4.4)
holds whether or not z; is between zand z4.

The corresponding propagation of the Stokes vector is described by a finite rota-
tion, a real 3x3 Mueller matrix, which we label M in dyadic notation to distinguish it
from a Jones matrix. Thus we have the relation

Sy = Mz,21)-5Gz) (4.5)

A general relation between the Jones and Mueller matrices can be established. Eq.(4.5)
expands , using Egs.(1.4b}, (3.4) and (4.1), to read

Of(zl)T(zl,z)E’T(z.z,)lHJ(Zl) = 07(21)H(2,z1)'30(21)
Since the field state I/ {z}) is arbitrary, one can extract the included equation
T(zy,2)d T(z,2;) = ﬁ(z,zﬂ-ﬁ’ (4.6)

In this equation, the Jones matrices T operate on the individual Pauli matrices &, while
the Mueller matrix rotates @ as a vector in Stokes space. Using Eq.(4.2a) for T(z,z, ). its
inverse for T(z; z), and Eqs.(7), the left side of Eq.(4.6) expands to give

ﬁ(z.zl yd=d- sin® (6x8) + (l—cosﬁ)éx(éxa) 4N

Thus M (z,z) here represents a precession of &, considered as an arbitrary vector in
Stokes space, through an angle of —8 around the direction of 6. lngccd, by virtue of
Eq.(3.4), Eq.(4.7) holds when & is replaced by any Stokes vector. If M(zy.2) is defined
as the inverse (also the transpose) of ﬁ(z,zl ), then Egs.{4.5) and (4.6) hold for all values
of z and z;, and the Mueller matrices have the same concatination rule as the Jones

e
matrices. In Eqs.(4.2a) and (4.7), the inverse matrices are obtained by substituting — 8 for
Band -8, for 8.

A useful corollary 10 Eq.(4.6) is



T(2y.0) 38T (2,2) = d-(M(2,21)8) = (M. 20D 8 (4.8)

where @ can be any vector in Stokes space, and the last step uses the invariance of a vec-
tor dot product to a common rotation of both vectors.

The properties of the Jones and Mueller matrices can also be examined using the
eigenstates of ¢-d. Since the eigenvalues of 3-3 are 8 and — 9, the eigenvalues of the
Jones matrix T(z,z,) are exp(i8,+i8/2) and exp(iBg—i0/2). As before, we label the
eigenstates of 8.3 here U + and {/_. and generate a basis set for the Stokes space by

6, =8=0,180, : By +idy=0.130, (4.9)
The expansion of a field at location z in these eigenstates in the form
U(zy) = all, + bU_ (4.108)
yields, as in Eq.(2.5b), the Siokes vector in the form
30 = (al>=1612)8, + a*b(By-iB3) + ab’ (8 +ify)  (4.10b)
Afier propagating to z, the field transforms to

{(2) = exp(iB)(a exp(i0/2) 1, + bexp(—i8/2)0_) (4.11a)

and so the Stokes vector wansforms to

302) = (|a2=|51)8, + exp(-i)a" b(By—ibs)
+ exp(iB)ab® (8, +i63) {4.11b)

One can see from the transformation of S that the Mueller matrix has one real eigenvec-
tor, é, with eigenvalue 1, and two complex eigenvectors, (61 - 63)/\5 , and
(ég +£é3 )iﬁ. with eigenvalues exp(—i6), and exp(i9), respectively. These results are
consistent with Eq.(4.7) for the Mueller matrix, as one can see by substituting each eigen-
vector for @ in that equation.

The eigenstates of the Jones matrix are those two orthogonal states of the field for
which the polarization of the output is the same as the polarization of the corresponding

~ 10 -

input. The discussion of polarization dispersion involves a different set of eigenstates, as
we shall soon see.

Polarization dispersion

Polarization dispersion, or polarization mode dispersion, or simply PMD, describes
the change with frequency of the polarization of the field at the outpul of a fiber while the
input polarization is held constant. It is intimately connected with changes in the mean

time delay of a pulse traversing the fiber as a function of the polarization of the input
pulse.

For a fiber of length L, we have 0(L)=T(L,0)l7([)). Polarization dispersion
derives from the frequency derivative of the Jones matrix T(L,0). We can write this in
the general form

] . 15
—aET(L,O) = i(tol + 2‘1‘ a) T(L.0) (.1

where again the Hermitian form of the operator in parentheses on the right 1s necessary to
preserve the unitary nature of the Jones mairix as the frequency vares. Looking back at
the form of the Jones matrix, Eq.(4.2a), it is important to realize that while Tq is the fre-
quency derivative of 8¢, T is not the frequency derivative of 8, because (38/0w) - & does
not commute with 3-3. One can, however, evaluate T in terms of 8 by expanding the
Jones matrix Eq.(4.2a) using Eq.{1.7d), differentiating with respect to frequency, and
then rewriting the result in the form required by Eq.(5.1). The result is

98¢ 9 -

_ 22203, e
=5 T= amﬁ+sm9am (1-cos8)@

X P (5.2)

While this is an existence demonstration for T, it does not seem to lead anywhere else.

Note that Tg and T are frequency dependent quantities with dimensions of time.

To evaluate 1o and ¥ in terms of the properties of the fiber, we recall that the Jones
matrix can be expanded as an ordered product of the Jones matrices for each short

Tn
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section. For a section of differential length at position z, we have from Eq.(3.1)
. i
T(z+dz,2) = (1+LBQ(z)dz)|+5[s(z)-8dz (5.3)

Using the frequency derivative of Eq.(5.3), we get

J r aBoz) 1 3B(2)
d _ 0 z
- TL) t(J;dzT(L,z) oty el a] (5.4)

Rewriting T(z.0) as T(z,L) T(L.0) and comparing the result with Eq.(5.1), we obtain

L
o+ L2g = [armn |28 | 1B@ Gl (5.5)
2 0 da 2

Making use of £q.(4.8), we finally arrive at the results

L L —
- :J IBo(2) © B(z)

dz : 7= szM(L,z)v d (5.6
o dw 0

Thus T is the frequency derivative of the birefringence vector ﬁ integrated over the
length of the fiber, each element of the integral being projected to the end of the fiber via
the appropriate Mugller matnix. Eq.(5.6) yields a simple rule for finding 7 for a fiber
made of many sections. Each section contributes its own T, projected to the end of the
line by the Mueller matrix of the intervening fiber. The contributions from all sections
are simply added together.

To observe the pelarization dispersion, one varies the frequency of a mono-
chromatic field entering a fiber of length L. Using Eq.(4.1), the frequency derivative of
the Stokes vector at the output of the fiber is

-3 rrt -
3 _ jroyTe0.)dT(L.0) 22O 4 BUO) 5o 1y3T(2,0)F(0)
' 9w dw

+ UHOTOL) %6’(?-&‘)——;*(?-6’)3 T(L,0) U(0) (3.7)

Using Egs.(1.7a) and (4.6), this reduces to

L) _

= ML,m- 35(0) — XS (L) (5.8)
Ty

Experiments based on Eq.(5.8) are used to evaluate the magnitude of 7.

It is important to note that because of the vector addition in Eq.(5.6), T varies
rapidly with frequency. Starting from Eq.(5.5), and neglecting the contribution of the
aZB/amZ, one can show that

) jd M- (?(z)xaﬁ(z)) (59
Fre
where T(z) is the value of T for the piece of the fiber extending from 0 to z. In order to let
5 at the end of the fiber precess through a complete cycle according to Eq.(5.8), the fre-
quency shift required is 2x/1. Comparing Eq.(5.9) with Eq.(5.6), one might expect that
for a long fiber this frequency shift is enough to produce a considerable change in 7, so
that as the frequency changes, the Stokes vector wanders rather randomly over the Poin-
caré sphere.

An interesting result can be derived from Eq.(5.6). Taking the dot product of T with
itself gives



.13

H(L,z).La (Z)]-[Q(L,z')-i—a (z')]
dw o0

L
=sz
0

The integrand of Eq.(5.10) merits some discussion. If z and 2 are close enough so that B)
can be considered constant, then M(z,z") represents a precession around E If BBIam is
directed along B: as may usually be true, then the rotation does not matter, and the
integrand reduces to (8]3.’803)2. For short lengths of fiber, then, one expects that % will
grow with the square of the length. For much longer lengths, the integral over z’, say,
will roughly approach a constant, and so 72 will grow linearly with the length.

o —

, 9B o, .. 9B’
dr %-M(z,z )-—% (5.10)

Time delays

To discuss time delays, one must think about pulses rather than rnonochromatic
fields. At some position z, let the field of a pulse be represented in the time domain by
U(z.), and in the frequency domain by 5’(2,0.)). These two functions are Fourier
transforms of each other. The tilde distinguishes between them, so that U/ is a function of

time and U is the corresponding function of angular frequency. Let the fields be normal-
ized so that the energy in the pulse is

W= [arty = [doUtD (6.1)

These integrals are complete, as are those in the following. Note that in this section, U
represents a monochromatic ficld, as before. Now, however, it is normalized so that {77/
represents the spectral energy density of the pulse.

The mean time at which a pulse passes some location z is defined by

(t{2) = lednuf(z)U(z) = %jdmfﬁ(:) (6.2)

_; 80
du

The second integral in Eq.(6.2) derives from the first by Fourier transform; it is real, as

-14.

can be shown by partial integration. Using [/(2) = T(z,0) U(0), with Eq.(5.1) we get

(1(2)) = (HOY) + ledmfff(z) [ru(m + %?(z)-a' Uiz) (6.3)

The first term of the integral defines the mean value of the frequency dependent quantity
1 (2), whence Eq.(6.3) becomes

#2)) = (1)) + (ra(2)) + 57 [ d0 DS €4

where the length of ?(z) is f]f(z)l-f(z), the spectral energy density of the pulse. In
Eqs.(6.3) and (6.4), Ty (2) is the propagation time delay of the fiber, neglecting the effects
of birefringence, at frequency . The frequency average of T¢(z) takes into account the
effects of the ordinary time delay dispersion of the fiber. The averaging symbol {) gen-
erally means an average for the pulse. For a time dependent quantity, the average is most
obviously expressed in the time domain, but as in Eq.(6.2) it can also be written in the
frequency domain. For a frequency dependent quantity, the reverse is true. The final
term represents the effects of birefringence. If the bandwidth is sufficiently narrow, and
the field ﬁ(z) is in one of the two eigenstates of 7(z)-d, then S(z) will be aligned either
parallel or antiparallel to T(2), and so the last term will give an additional time delay of
11(2)/2. The difference, 1{z), is called the PMD time delay of the fiber, again at fre-
quency . To get the average PMD time delay, the value of T must be measured at a
variety of frequencies, or over time as the propagation properties of the fiber slowly drift.

It is useful to project the vector dot product of Eq.(6.4) back to the input of the
fiber, because while the input polarization is likely to be independent of frequency, the
output polarization is not. Doing this we get

(1(2)) = (KO)) + (10(2)) + 57 f do (0.2 22)) Koy (65)

For short pulses, approaching the PMD time delay 1(z), the direction of ﬁ((},z) T(2)
will vary significantly over the bandwidth of the pulse. As a result, the whole pulse can-

not be in an eigenstate of Ttz) - &, and an increase in pulse duration will result.
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Ny . L *=7.763 *
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