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Outline

Impact of EDFAs

Key features

- silica-based EDFAs
- fluoride-based EDFAs

Device and system applications



1- The impact of EDFAs

o Can be measured by the overall progress in optical
communications performance:

Before (1988) Now (1994)
- Record (direct) photodetection sensitivity 646 photon/bit 102 photon/bit

- Maximum distance X bit rate * 0.9 Thit/s.km 90 Thbit/s.km

*

- Maximum distance *

NRZ 200 km 21,000 km
Soliton 6,000 km > 10 km

* straight-line transmission
** 110 Gbivs, 10° BER, loop transmission

P
e

e Can be appreciated by the progress in the soliton field,
both conceptually and experimentally:

For fiber lengths greater than 1/a = 22km, solitons should be viewed
(realistically) as being based not on two, but three fundamental effects:

1- self-phase modulation
2- anomalous dispersion

3- in-line, periodic loss compensation:

- fundamental N=1 soliton > distributed loss compensation
- guiding-center soliton ~ —> lumped loss compensation

Two types of 1.5um fiber amplifiers:

Raman amplifiers (RFAs): EDFAs:
200-300mW pump 10-50mW pump
quasi-distributed gain lumped or distributed gain

30nm bandwidth, tunable bandwidth 20nm (silica) or 30nm (fluoride)



e Can be appreciated by new functions and devices:

EDFAs made possible to realize practical LD-controlled devices based on
fiber nonlinearities (Kerr, FWM), which offer a variety of ultrafast all-
optical signal generation/processing functions:

¢ Fiber lasers

- ultrashort pulse generation (DDF and F8L)
- clock recovery

® Nonlinear optical loop mirrors (NALM, NOLM)

switching, demultiplexing, RZ <« NRZ format conversion
wavelength conversion

pulse shaping

saturable absorption

timing jitter suppression (regeneration)

¢ Spectral inversion by four-wave mixing

- dispersion compensation
- demultiplexing

* Repeaterless transmission (power boosters and remote-pumping)

e TEER———

2- Key features of EDFAs

¢ A list of advantages with respect to electronics amplifier counterparts:

Optical amplifiers Fiber amplifiers Raman / EDFAs
DC-THz operating bandwidth index-matching with fibers X X
bit-rate and modulation format low/negligible coupling loss (NF) X X
transparency

power-scalable (glass breakdown X X
Boost laser transmitter power intensity: 10GW/cm?2)
(system power margin)

temperature-insensitive gain X X
multiple-channel amplification polarization-insensitive gain eff. x
FM/SCM~> FDM/WDM
low noise figure lowest noise figure (NF=3dB) X X
increase direct-detection high F/F gain (>20dB) - X
receiver sensitivity with LD-pumping

efficient LD-pumping - X

high power conversion efficiency -
linear under saturation ! slow gain dynamics (crosstalk-free)

]
x
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Energy levels of the 4-f shell in Er: glass [1]
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arbitrary units

e Fluorescence spectrum vs. glass host type

$i0, host

Intensity (a.u.)

1.44

Effect of alumina

Absorption

Wavelength (um)

co-doping

Emission

Apeak ( pm) =
1.534

1.529

1

1410 - 1510
Wavelength (nm)

!
1610 1435 1535 1635
Wavelength (nm)



EDFA spectral gain coefficient

L

e Gain G-= exp]
0

f

D=N2-N;
P

spectral gain coefficient:

g = p [0e(1+D)- 65(1-D)]

€GNz - GaN1) p(DYs(r) ds| dz

g

Gain coefficient (m™")
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Gain vs. fiber length
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‘galn vs. pump power
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* Optimization of fiber design
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o pump wavelength and dB/mW coefficient
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Gain (dB)

100

dB/mW
38

[nput pump power (mW)

(best achieved to date, optimized fiber designs)

Net Gain (dB)

Shimizu et al. [12]

l;b gair reduction due to cooperative Er-Er energy transfer (quenching)

Effect of Er+ concentration

20

-40

Er3+ concentration —
o 77 ppm
a 470 ppm
o 970 ppm -

—

1l ¢t 1 1 1 1

10 20 30 40 50 60

Absorbed Pump Power (mw)




e fluorescence quenching

Quantum yicld #,

Cooperative energy transfer: basic processes (1]

donor  acceptor

1 2

e sensitized fluorescence
(e.g. Yb* — Er3+)

1

T
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(e.g. Er3+* — Nd3+)

(1]

H
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1 !
1(2} r{§3] ] 2
cross-relaxation

(e.g. Er3+ — Er3+) e resonant energy

migration

1 2

¢ frequency upconversion
(e.g. Yb3* - Pr3+)

Cooperative energy transfer: Dexter theory
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Reduced acceptor density y = -l:'-'-

1.0

o
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Donor lifetime t3™/1,

e experimental measurement of 73>*
with Er:P,0s, Er:SiO2
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[after Lumbholt et al.,
Electron. Lett., 29, 5, 495 (1993)]




Absorption cross-section (10-25m?2)

Gain vs. pump waveiength detuning
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Gain dependence with temperature
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rrequency response of gain saturation
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Gain vs. output signal power
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o Homogeneity of gain saturation [1]

amplified
spontaneous emission
spectrum

saturating signal at 250
1.531 p.mg 9 500
1000

Output ASE Spectrum (dB)

1.57

Wavelength (um)
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|,:;> PCE highest with backward pumping: explained by ASE self-saturation

Desurvire [18]



® Power (booster) amplifiers - best results (1993)

—> Maximum gain vs. saturation output power (3dB compression)
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Polarization hole-burning

¢ EDFA gain is intrinsically polarization independent
(random Er-dipole orientations averaged at macroscopic level)

Q AO%A.%OA O%O%
- ' - >
0 Al =
OO QO o. %W - Q
A s '
O I P %Oﬁﬂ)

Q <2 (I)_’x

- . Z - -
microscopic level strong saturating weak probe in
linearly polarized orthogonal polarization
signal experiences

higher gain



Polarisation-dependent gain (PDG)

Experimental (cornpression 3dB)

Theoretical
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EDFA noise figure
e Noise figure in linear regime: F = 111 1+2ns(§(G-1) —— 2ny,
in
as G >>1
TNin = input coupling loss
ngp = spontaneous emission factor
¢ Minimum noise figure: Frin = 20" = 2 ng(ﬁ
l‘np/T]s O'a(l’i)

pump A, =980nm — Mp=0 — Fp;=2=3dB  (quantum limit)
(3-level system)

pump Ap =1480nm — M,=0.25, Ng=1-1.2 — Fyip=2.5=4dB
(2-level system)

7L



Noise figure vs. pump band
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EDFA modelling: general rate equations  [1,2]
. o
o Most general case : spectral components at Ax (width ov) N\v
bidirectional (%) pump(s) and signal(s) : -
W A
P\
dp, p) =K
E‘=‘—"~Po0.(?tk)-22~]s rdr S Wik(r) x Pea(A)
[+ N{p;+p)
m[z(—?;niiws,(r)][wpou [H}:—‘ﬁ—‘—’L Vii®]pe = 00
J
{ 1+ (pj+p) Ws,(r) ) Sa(A)
! ¥

~—> 2-level system (1480nm pumping) :

== 3-level system (980nm pumping) :

=

Np#0
Mp=0

integration heavy in ASE self-saturation regime ..



 Comparison theory/experiment with general EDFA model
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Analytical models

e rapid evaluation of EDFA performance and parametric optimization
e trial ASE boundary values for general EDFA model
e to include in NLSE simulators for finer WDM soliton system predictions

predicts: saturation ASE ASE REF
by signal(s) spectra self-saturation

Transcendental equation yes no . no [1,4]
Saleh yes no no [5]
Desurvire no yes no 11,6-7]
Georges yes yes yes [8]
Hodgkinson yes yes yes {9]
Saleh+Desurvire yes yes yes (1]

Semi-analytical
models:

Giles [2], Desurvire [1]

power-dependent overlap integrals analytically

solved using "good" Gaussian approximation

29



A new gaussian mode approximation for RE-doped fibers [1]

® Gaussian approximation ® Gaussian approximation
(Marcuse) (new)
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Fluoride-based EDFAs

e Matrix host: ZrF,-BaF,-LaF;-AlF;-NaF (ZBLAN)

e Mostly radiative de-excitation —> 1.48um pumping for Er3+

(Suitable glass host for other rare-earths: Pr3+, Tm3+)

Fabrication by casting/centrifugating under controlled atmosphere;
high-purity and uniformity required for low backround loss

Splicing to silica fibers: tapers and butt-joint splices

e Major advantage: intrinsic flat-gain characteristics:

The ideal EDFA for WDM systems?
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Silica- and fluoride-EDFA chains: gain excursion characteristics
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Fluoride-EDFAs: where applicable?

o Terrestrial systems (SMF): - high dispersion (17ps/nm.km)
- but no FWM phase-matching

— > fluoride-EDFAs amenable to dense WDM, low bit rates (1.25-2.5Gbit/s)

e Undersea systems (DSF): - near-zero dispersion
- but FWM phase-matching

— > fluoride-EDFAs amenable to WDM, large channel spacing (1-5nm),
higher bit-rates (5-10Gbit/s)

e WDM soliton systems: - automatic power control through
bandwidth-limited amplification

- but EDFA saturation causes large
gain excursion between channels

—> fluoride-EDFAs flat gain could enhance transmission performance

b

H

The EDFA: do we now understand it all?

No!... Several issues still remain at the frontiers of knowledge [1]:

e the actual coordination of the Er3+ site in glass hosts

e inhomogeneous broadening and theoretical modeling
(room-temperature weak "hole-burning” under saturation)

o theoretical prediction of cross-sections

¢ a full theory of pump and signal-induced PDG

e quenching mechanisms at high Er3+ concentrations
and identification of EDD, EDQ, EQQ interaction types

nonlinear photon statistics and impact on saturated noise figure



3- Device and system applications of EDFAs

(this is just a selection!..)

All-optical automatic gain control
All-optical demultiplexing

All-optical regeneration

All-optical clock recovery

All-optical NRZ <= RZ format conversion

Dispersion compensation by FWM

e Dispersion compensation by DC fiber

e 16x2.5Gbit/s WDM transmission over 440km SMF with fluoride EDFAs
* Video broadcast networks

o Lossless local area networks

37

o All-optical automatic gain control - (Zirngibl [25] )
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o All-optical demulitiplexing ( Jinno [26], Blow [27])

Demultiplexed
data

:II Iil || lnE . EDFA e —- l l |
Data B ’—_'D ]i’ B!

A in n=05 T ot 4

—» demonstrated up to B=100Gbit/s in polarization-independent configuration
(Uchiyama {37])

o All-optical regeneration ( Jinno [28])

Regencrated
signal data

signal/clock walkoff determines NOLM switching window
data is transferred to switched clock pulses without jitter

47



* All-optical clock recovery

¢ 20Gbit/s PRBS signal in
HE | T
data signaiin _.'I T I‘- data signal out ! I
NLE 4
traNsSMIsSsIon !
tibre 25ps/division
EDFA E T
output coupler T _
T A Lt .
— I A O
mode -locked laser output Z5p el division
20GHz recovered clock

NLE= nonlinear element (FM modulator)

(Smith [29]) ( Patrick [30])

47

e All-optical NRZ <—> RZ format conversion (Bigo [31-32])
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¢ Dispersion compensation by FWM ( Jopson [33] )

—> 10Gbit/s transmission over 360km standard fiber

 Dispersion compensation by

dispersion-compensating fiber (Chen [34] )

e, —— o — e — ———

IN Vo I i
Tx 120km | F [>'[120km[|4:>_ncp b m b ch— Rx
e —: l__......__..__.l L___ !

——— — —

Dis(per)sion +2120 -2168 +2116 -1770 +2105 -1770
ps

—» Effect of SPM makes undercompensation necessary

10Gh/s T itter O ! th DCF
. bys Transmitter Qutput -
a1 - SNR = 30.5d8B
' Pout = -4dBm
5 iy - 240km with DCFs
' * 120km Transmission SNR = 28dB
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3680km with DCFs

SNR = 268.5d8
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with fluoride-EDFAs
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* Video broadcast networks
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(Chen [36])

e Lossless local area networks

Node 1

Node |

TIVRR

LD
Pump

LD
Pump

1x4

TSRS
TR
TI7RL
TISRI6
TR
T8/RS
TLRI

Node 4

'I']Jn“RJJ

TH0.R40

Node 3

.27}
Bxd
Bx8

T41/R41
TH4/RAE
TR
TS6IRS
TS, Rs6
Tod/Ret

Twd
1x4

LD
Pump

© LD
Pump

CONCLUSION

Erbium-doped fibers

combine all the advantages
of near-ideal optical amplification

Diode—pumped EDFAs

have become ubiquitous components
in a new generation of lightwave systems

Future world communications,

heretofore limited by electronics bottleneck,
will now rely upon unregenerated fiber links

All this success comes from a very basic idea:
stimulate signal light emission within the guiding fiber

1G]
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EDFAs: Key features and
applications
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