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DIFFRACTION

>

Diffraction requires wave treatment

Light — electromagnetic waves

" Optics approximation: one Cartesian

component of the e.m. field

s

vip.t)

is representative of the entire field
Energy is proportional {o the square of this
component (power {flux Poynling vector)

Complex form1 (coherent monocromatic)
v(P,t) = u{Pje "™
time dependence:
oscillation with frequency v =w /27

@ — source

u{P) complex amplitude

L)



spherical wave

complex amplitude

u(P) = A(P) &!? up) = A eikr-in/2

r
A amplitude
¢ phase r =P -Bl=[(x, - x,) +(y, - Yol +(z,—z,)°]"”
wavefronts: surfaces ¢ = constant P,(x,.y..2,) source

plane wave wavefronts: spheres with center in P,

U(P] - Aelk[muﬁyqﬂl

X X
Ais constant > P P,
Xy F)0
2, | Po 7T
k=2 is wavenumber < / g
C Xo z
z / ‘
k=2z/4 A wavelength
y ?
a, B,y direction cosines of the normal to the !
wavefront, i. e. of the propagation
direction

cylindrical wave

0 P
9, o = Ccos 0, 2 o
o B = cos®, p={lx,—x)" +(z, - 2]
3
= e
z _ 7= oSt wavefronts: cylinders with axis parallel to y
ou

Py =1 through P, useful for bidimensional cases



GRIMALDI

LIGHT propagates

1 - Straight

2 - Reflection

3 - Refraction

4 - Diffraction {go round obstacles)

AR

1660

DIFFRACTION

Occurs where there is an abrupt discontinuity
in amplitude?

Examples

p b) c)
,,,,,,, s g
ey 1 Z 4 _£
> : 6 - Il -
T e Z s
Fig. XI1,1

from: G.Toraldo di Francia and P.Bruscaglioni "Onde
Elettromagnetiche" seconda edizione. Zanichelli 1988,

First observation: Grimaldi (1660)

The key point in the theory is that diffraction takes place
where the term VA (V? laplacian) is not negligible with
respect to An’k} (n refractive index, k, wave number in the
free space). This impHes that amplitude variations (second
difference} taking place in the space of a wavelength must be
negligible in order to neglect diffraction.
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Due to diffraction, light reaches regions
behind the screen or the obstacle, that are
expected to be in the shade according to ray
theory (geometrical optics).

Rigorous theory of diffraction requires:

solutions of Maxwell's equations with appro-
priate boundary conditions.

Approximate solutions

1) Huygens-Fresnel principle
2) Helmholtz-Kirchhoff theory and formula

3) Plane wave expansiorn (Toraldo-Duffieux)

istorically first -
simplest

Helmholtz-Kirchhoff : general formula,classic

h
Huggens-Fresnel principle{

Plane wave expansion: introduction to Fourier
optics and holography

4 - Huygens-Fresnel principle

Huygens (1678)
Each point of a wavefront can be considered a
source of a spherical wave, "wavelet",
propagating in the same direction with the
same velocity. The wavefront at a later time is
the geometrical "envelope" of the secondary
waves.

Fresnel (1818): the different wavelets interfere
at each point.

r o=t

news
wavefront

envelope

?l? i

wavelront

wavelet

L Fli. 2
impinging . ; .
plane wave diffraction: slit
wavefront ) .
in absorbing
—1 screen
e
\
A
\
. \
NN\
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N observer sees

\'\ \\ briltant borders



Use of Huygens-Fresnel principle:

pattern of a slit illuminated by a normally
impinging plane wave.

From each point x a cylindrical wave. From
each element dx a spherical wave of amplitude
a(x)dx; a(x) is a linear density. Let us assume
a(x) = @ on the aperture. Its contribution to the
field u(P) at point P =(x,,d) is (apart from a
multiplicative factor, see Kirchhoff)

X

2 ewdx p=[x-x)+d]”

\/E al2

dx

u(pP) = 2 2 e dx -a/2

If point P is at a distance d large with respect’

to both x and x; one can develop p in a
series and stop at the second term in the

exponent:
+ by
2d d 2d

= kd +

_'_Th kx®  kxx,

a more accurate analysis could be carried out by considering

higher order terms, but it is beyond the scope of the present
lessons.

The region where this approximation holds is
called Fresnel region.

a/2 __.
ulP) = j 2 e®dy =~

-af2 '\/_5

lex? a/2 .
2d XX X
kd | 2 kX
e j e e"2adx
-af2

ae
d

o
=

If d is large enough for the maximum value of
the exponent (at the borders) to be near zero
one can write:

Clik%- =1 — E <x < E
2 2
this requires condition
2 2
ka <<1 <1
8d 4Ad

or, what amounts to the same

2
%d— << 1 Fraunhofer condition




the region where

2

:—d << 1 Fraunhofer region )

Therefore

afz X
u(P) = K jé“‘?’ dx

-a/2

where K is a complex quantity including all
terms multiplying integral.
Evaluation of integral:

x=a/2
-lk%—l ll-(ax, kax

e _ € 2d —¢ 2d
u(P)= K .1}9& =aK - Kxa
d xz_% 2d
. na
sin X (20
= aK = —
kax, 20 mx,
2d 1 d

2note: Fraunhofer condition is opposite to the condition

2
required for geometrical optics to hold -}id «<a 532551
a

T

The energy is proportional to u(P) u*(P)

sin®(n 2 ﬁ)
uPlu'(P)= a’Kf— A d

3%
Ad

Note: % =sin 8 angular direction of point P.

This function oscillates, has maximum for
x;=0 on the axis, and subsequent zeros and
maxima

First zero at

1.0
ax
T-—=21
1d
I 1 o ,__3_&_}_%-’_3‘
0 = -}éi = 75 angular semi width

of diffracted beam.

For small aperture, in optics, the Fraunhofer
region can be easily reached in a few meters
Example: a=lmm A=63 um

a’ 10°m?

d hindl 5> — 1.6m
>3 6310°m

Note that dependence is with square of
aperture: for a=2mm, one needs d >> 7 m.
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The Fraunhofer diffraction pattern can be
easily seen at finite distance by means of a
lens (in our case a cylindric lens). The lens
transfers at P, in the focal plane, the field of P'
at infinity.

focal plane

If there is no aperture, the border of the lens
acts as an aperture, producing diffraction. All
instruments present diffraction and give an
image of a point source which is a "pattern",
not a point. This strongly affects the resolving
power of any instrument from microscopes to
the larger telescopes. This effect cannot be

avoided because it originates from the nature
of light.

12

4 - KIRCHHOFF THEoRY

Homogeneous, isotropic, non absorbing medium.

From Maxwell equations any Cartesian
component v(P,t) satisfies:

2 .
Vi v(P,t) - % a—gt—(zlf—t] equation of
d'Alembert
2 2 2
Vo= ;xz + jyg + ;;2 laplacian operator
v light velocity in the medium
¢ in empty space
For simplicity empty space
For complex amplitude
V2u(P)+ k*u(P)=0 Helmoholtz eq.
Or wave eq.

ole
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Green's Theorem

Let us consider a space V surrounded by a
closed surface S.

Let u; and u, be two scalar functions regular in
Vand on S.

A regular function is continuous and derivable.
Green's theorem states that;

2 2 — (9'.12 - Ql_.'.l_l.
J(ulV u, - u,Vu,) dv = ,"(ul_fg; u ]dS

v s

where V* is the laplacian operator,

_ 82 . 82 N 32
—axz ayz &Zz

VZ

andd/dn denotes partial derivative in normal

outward direction at a point on S.

Helmholtz-Kirchhoff formula

Derivation of field at Q from field over X.

2 closed surface

@ point
. let X' be spherical

surface of radius

ty surrounding Q

chose a spherical wave

W= E;— centered at @ (Green function)
1) Vw+k*w=0 wave eq. for w
2) Vu+k*u=0 wave eq. for complex

amplitude
Multiply 1 by u and 2 by w and subtract
uV’w - wVu = 0
Integrate into the space between X and T

I(uV’w —wVi) dV =0



from Green's formula

1) J(W%—u%) d2+j(w%—u%) dZ'=0

one has (over Z':dw /dn = —ow /or)

on  on ror r’
= e™® —l-a'—“l—+1k3—£2 Amry
I, or r, T,

u and —, average values over X'

et 1,250
Three terms: first and second terms — O

lastterm —» - 4 © u(Q)

e

and finally : Helmholtz-Kirchhoff formula

u(@) = ZL.[ e" {— - [11{ - %) u cos(n, r)}

cos(n, r)= cosinus of the angle between n and r

Famous equation derived by Helmholtz (1859)-
Kirchhoff gave a more general case (1883).

The value of the field u(Q) at point Q in the

volume requires knowledge of the field and its
normal derivative on all points of the surface .

This result is not the solution of the problem
because it implies knowledge of the field and its
normal derivative on Z, that is solution of the
problem on the surface region. Hypothesis for
the field on the surface necessary.

i7



Kirchhoff-Diffraction by a plane screen

Aperture in a plane screen illuminated from left

)

Closed surface: screen X+ hemisphere X' of large

radius R
tkr
{% - (ik - %) u cos(g,;)}dx

£
©
il
|~
—_—
=

The integral over ¥' requires (dZ = r’dQ)

lriE? r{(—gng - iku)} -0

This is known as Sommerfeld radiation
condition: in practice the field vanishes at
infinity at least as a diverging spherical wave.

Assumption over surface X:

On the opening the field and its normal
derivative have the same values as in the
absence of the screen and the values are zero
everywhere else.

Example: a plane wave impinging ortogonally on
the screen. The aperture is circular

Q impinging wave
= - itz
plane ?\/ ulp)=Ae
— >
wave M x
% =-ik A e™

tkr
u(Q) = R e—{—ik A e*™ — ikAe™ cos(n, g]}dZ
4rd r

(1/r<<k, term neglected) Over Z: z=0

-ikA J%ﬂ + cos(n, r)]dZ

= %i%'!%[l + cos(n, r)}dx



ul@) = — [1+cos(n,r)] 4z

0o |

HL'-I—1

el
r

express Huygens-Fresnel principle.

- From the aperture elementary spherical
waves

- Obliquity factor (1+cos(n,r))/2

- The phase of each spherical wave is

decreased by 7/2 (e™* = -i) with respect
to incident wave

- The amplitude of each elementary wave is

smaller by a factor 1/1 with respect to
that, A, of incident wave.

This is a more complete form of Huygens-
Fresnel principle valid far from the screen. On
Screen even at a large distance inconsistency:
u(Q) is not zero due to obliquity factor.

The inconsistency was removed in the
Rayleigh-Sommerfed theory where a obliquity
factor cos(n,r) was found.

20

Fraunhofer approximation [paraxial rays]

P[X-Y] . Q(X1 Y1 ,d)

r=[d"+x-x)+y-y)]"”

zd{1_|_x2—2}¢:;~:1+xf +y2~2yy1+yf}

2d* 2d?
R A
d d
ux,,y, d) = _—i—ie“‘dje_m%_m%[l + cos(n,r)]dz
v A2d T

source plane observation plane
{x =p COSQ {xl =p, COSQ,

y=p sing Y. =p, sing,
cos(n,r) ~ 1
dZ=p dp d¢
XX, LY _ PP

a4 TTq =g cesle-al

(discussion about higher order terms)



u(Q)

s ikd & [2%
— I1 AZ {J' e-[kfglcos(p—p‘)dqo}pdp

4]

Internal integral: Bessel function of zero order *'

k 1 2n
o) e

]

—1Ae™_ t (k
u(Ql=7 q 2ﬂ£Jo(a—plp)pdp=

Recalling that
jJMunﬂt:zUJm

kp
t== dt = i g
qhP a

*1Bessel function of order n J () can be defined as
Am+ax
1
J,—, (Z} - Jel[ne-zslnmdg
2 4
In our case n = 0, change of variable ¢ = 8 — o gives
2

- 1 -izsin(g+a)
Jold) = - [e do

0

T .
choice @ =@, + 5 gives sin(g +a)cos{¢ — ¢,) and

2n

therefore J, (z) = e =rnlg g

21y

one finally has

-iA27ma e™ J (ka sind)

w8 = = T sing)

field in Fraunhofer region, distant in the
direction 6

% spherical wave
-i=e™? dephasing factor
ka = 21:% parameter for angular

dependence

23



energy (intensity) in direction @ apart from
unessential constant

J?(ka sin 6)

I= )
uu (ka sin 0)°

first four zeros of J,(x)
x= 3.83:7.02: 10.17; 13.23

when ka sin @ = 0 maximum

when kasin® =3.83 first zero

22 ing =383 _1.99
1 3.14

Values of subsequent maxima, with respect to
the central one

central 1

first 0.0175
second 0.0042
third 0.0016

It can be shown (Rayleigh 1899) that the energy
flux the i-th ring is

q)l = Jﬁ(xt) - Jg(xm]

1A

g nf

Through the central disc and subsequent rings
Energy flux (total flux = 1)

central disc 0.8378

first ring 0.0722
second " 0.0276
third " 0.0147
and so on

The energy in the central disc of the pattern is
~ 84% of the total.

Energy is mostly concentrated in the central
ring, whose total angular with is

k a sinf8 =3.83
?ﬁsine = §—§§ =1.22
A 3.14

2a=D diameter

sin9=1.22~g- > G=1.22.A

D

effect on Resolving power of instruments.

2?8



3 - Decomposition in plane waves

Diffraction as decomposition in plane waves
is the basis of Fourier optics (Duffieux)

The decomposition by the so called "inverse
interference principle", Toraldo (1941), and
valid for surfaces planar or not.
Inverse interference principle:

A screen is illuminated from the left by a field
W, that produces phase ¢(P) and amplitude
A(P) distribution at points P over the output
side surface Z.

W
AN
)\ )/J /\Wx
/‘7
)y P
)/ M !

NS

If a system of waves outgoing from X is found
whose interference produces the field

v(P) = A explig) over X, these waves are the
true diffracted waves

- uniqueness of the solution

Screen:

-partially transparent: transmitted diffracted
waves

-partially refecting: reflected diffracted waves
-both
(eigenfunctions)

Generally: v(P) unknown on the screen
Hypotheses about v(P) necessary.

Examples: amplitude or phase or both
) A

2)  ¢,(P)=¢,(P} +KkA(P)

3) both

Plane screen: amplitude
2 .

g
/__\T v(®?)
%

assume: v(P) on the aperture has the same
value as in the absence of the screen
no need to know the normal derivative

27



Periodic aperture: grating

example: unidimensional periodic grating

a(x) periodic, periodp

Tane System
an
Incident of plane
Wave waves
propagating
in direction z
——p >

Fourier series for a(x)

alx) = zAm e

Mx-oe

1°¢ x
Am S ja(X) e-i?.mn; dx

-pi2

28

A system of plane waves @, = cos0, =sing,_

v(x,z) = iB gz
* m

[

Condition  vix,0) = a(x) gives

vix0)= 3B, e

Mu-se

Comparison with a{x) gives

2mr > = ko x - o, =m-=—
P P

Bm=Am Ym20

N A LI
v(x'z) — ZAm elkm_px elk 1 P Z

M=

A
foro, =m=<1 - m<® real waves
p A
m P
g =m—>1 - m> 7 evanescent waves
p

N=2max integer (% + 1)=number of real waves

qomzm-g for smal ¢,

29



PLHNE SCREEN | UNIDIMENSIoVAL CAsE

Plane screen xy with transparency or opening;
symmetric with respect to y. Complex
amplitude on the screen a(x)

Plane wave of unit amplitude

X elk(amﬁyﬂz)

al+ B +y=1
o = cosf

Y B=cosy
z ¥ = COSQ

Y

Let us construct a continuous system of plane

waves. In our case no dependenceony — =0 ”

Let us consider a d¢. Let
Ado

the amplitude of all waves having propagation’
direction between ¢ and ¢ +deo
a = sing da=cos¢g dg=+1-a’de

do = da
N1 -

conti musus

vl (A ysrem of
N dl'H"“c‘.‘Mg

waavel

on the aperture v(x,0) = a(x)

30

Let us write a{x) by its Fourier transform A(f)
Alf) = Ia(s] e ds

alx) = }:ez"“"ﬁ(fldf = J:ez’“f"U a(s) e'““"ds]df

———

Leiif=a/ﬂ.

- a(x):-%::[ %( j als) e-%’“mdsta

—ne

On the aperture the integrale of plane waves

s v(x,0) = j | e e*dg

must have infinite limits (real and evanescent
waves) and A = A(a)

or

Ala) = 1-a Ia(x] e "™ dx



In terms of ¢ Ala)— Algp)

Alp) =

CO; Q :[a(x) o ki o

by denoting

o -;271'101‘-
A = 2 Al0) - /a(xw ax

l-a

tny

o sing
f:—:
A

and recall that

then A(f) —» Fourier transform of a{x)

The amplitude A(f) of the wave diffracted in
the direction ¢ is the component at
sing '

frequency f = 7

of the Fourier transform

of a(x)

In other words the system of diffracted waves
is the Fourier Transform of the field a(x) on the
screen. Diffraction — Fourier transform

Transform relationship

a(X] = IA[ﬂ e2mfxdf A(ﬂ = Ia(x) e-szxdx

32

if a() = Db(é)

ENERGY FLUX - POYNTING VECTOR

Let us recall Parceval theorem for transforms

[a® v@de - [an By

where A(f) Fourier transform of a(£) and B(f)
of b(é)

ja[xja'(x)dx = j ADA’(Hdf

—- —oa

Ala)  AAlg)

= o = sin
V1-o®  cosg v

Alf) =

Sin@=eo

[awatoax=2 | é%—@w]dqv

sin gz

left side term: energy per unit time transmitted
per unit y through the screen
right side term: the energy per unit y carried by
each wave is that which a wave of intensity
Alp)A’(p)de carries through a slit of width
A/cosg

33



PLANE SCREEN Bidimensional case

Analogous to unidimensional case

ax,y)
x o = Cos ¥
B =cosy
Y = COS @

/“f z

One choses a system of plane waves of any
direction. Amplitude in small solid angle AdQ,
dQ solid angle, A amplitude density

dadf

A(a,ﬁ]—raz__ﬁ;

A ! klcex + By +9z,
on the aperture

vixy,0) = alx.y)

alx,y} is Fourier transformed

34

Procedure analogous to previous case gives
the same result.

Diffracted waves are a continuous system of
plane waves and evanescent waves. The
diffracted field is the Fourier transform of the
field on the aperture, with frequencies

o B

f=%and =58
Tz e L=

respectively. Therefore

in the space direction 6, w

specified by a and 8 (@ = cos8, = cosy), one
has:

frequency components fx:% and f =

>

respectively.

Limited aperture: no upper limit to diffraction
angles and always presence of evanescent
waves. A well known property of Fourier
transform: if the support of the function is
finite the support of the transform is infinite.

In systems: loss of information

HOLOGRAPHY easy to explain with expansion
in plane waves

35



EVANESCENT WAVES (surface waves or
inhomogeneous waves)

bidimensional case
7 (unidimensional
aperture)

a(x) field on aperture

System of plane (real and evanescent) waves

k(o +y2)

T Alg)
vix,z) = e da
_'[\/1-(12
a = cosé
Y = CosQ
a’+y* =1
if ¢g>1
Y=+1l-a® =iJa® -1

Let us consider a wave of unit amplitude

kex . -kza® 1

tklax+) __ ei e

€

first factor: Phase factor = propagation in x
direction.

second factor: Amplitude factor = decaying of
amplitude in z direction

Equiamplitude planes = Equiphase planes
(inhomogeneous waves)

Propagation wavelength
kalx, -x,)=kat, =27 1 =

€

R |

wavelenth shorter than real waves (a=1)

Velocity

v o=

O v,
* ko o

smaller than v_of real waves

Propagation in direction x, amplitude decay in
direction z. Analogously for o < -1

Necessary support (surface) in -z direction to
avoid infinite increasing (Surface waves-Leaky
waves)



l‘h-H" wtve
Wavelron 3

lr?an(‘
Tncident
wave.

mn‘l"\d,m

Real waves

If p=A+¢ p=4

m=1 — real m = ] limit.

case
central w o, =1
m=0 6_=n/2
+2 lateral w
m==1 'ym=0

+evanescent w

Periodic grating

p period

0, =Cos 8,
2

m

Ym =C08Q_=.l-a

v . Set of waves

p=A-¢

m=1
evanescent

central w
m=0
+ evanescent w

BABINET PRINCIPLE: DIFFRACTION

by COMPLEMENTARY APERTURES

screen with opaque
circular aperture disc

Solution of one problem allows solution of the
other one

From the field diffracted from an aperture one
derives the field diffracted by the complementary
aperture by: adding a phase = n to all diffracted
waves and adding to them a wave equal to the
incident wave.

Therefore : apart from the phases, the ensemble
of the waves diffracted by two complementary
screens differ only for the central wave



FRESNEL ZONES

Bidimensional screen I
Circular aperture

X
Uniformly illuminated: A \Q(O'O’(ﬂé
a
Q(0,0,d) on axis l
r=[x*+y*+ dz]”2
cosl = 0.9998
1+ cos(nr)=2 cos5 =0.996
cos10 = 0.985
elkr
u(@) =-=[Zdz
T
2 2
r= d[l %X (;;y } Fresnel region
_ AT ey
U(Q) =- TTJ;C 2a dX
JAE™ % T . X=p cosé
=4 _[ je'Echdde y=p sinf
pe0 o= dZ =p dpde
i &elkd 2 e!l—;%'
2 d Mk

u(Q) = A el [1 - e‘%}

I} n
impinging  multiplicative
wave factor T

. ka? a?
Tzl_elkamd =1—COS i Dd
2a %M 5g

For a given d, phase proportional to a2

ka?*/2d a* T

0 0 O (real)
n Ad 2 {real)
2r 2Ad O (real)
3n 3Ad 2 (real)
and so on.
a®* =nld
Fresnel zone of order n
a =+nid



OPEN CAVITIES FOR LASERS

a’ = nid a radius of n-th
Fresnel zone Devices based on diffraction:  Large
Fresnel
central circle Numbers
then rings . a
u
(y) y
f
contribution from each b ()
zone cancels contribution X
from the preceding one
4 -a -a
Mirror Mirror
example:

IF THE AREA CONTAINS bidimensional case

1) an _odd number of Fresnel zones, at point Q
field is maximum = 2 times the incident wave.

2) an even number: zero field at Q. a fhp
ufy) = je"‘"‘u(x) € dx
Moving along axis (d) field — maxima and zeros. a VAo
Soret grating - zone grating - is based on u.y) = o,u,X) modes’ eq.
removing even zones and has focussing
properties. 0, complex quantity
The Fraunhofer approximation (a?/Ad <<1) 1-fo,[" - loss of m-th mode
requires that a small portion of the first Fresnel
zone is seen from point Q, at distance d. arg o,, — phase shift

For the case of a slit: see Goodman. Fresnel
integrals.
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Lenses

IMAGES

Mirrors

traditional

others such as aspherical or graded index

Systems, more or less sophisticated

Methods:
1 - Geometrical optics:

simple

rays

allows accounting for aberrations
neglects diffraction

2 - Wave optics:

allows accounting for:
diffraction
aberrations
direct by using diffraction formulas
scalar approximation
development based on linear systems theory
approximate results

1 - GEOMETRICAL OPTICS

Recall some fundamentéls by thin lens

0 F fb f F I
s
f
o 1
€ vt e e e T >
1 1 1
Y IR
paraxial approximation, gaussian optics
1 1 1
2 —=(n-1)] —— — f focal len
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Sing conventions
0>0 if on left lens side
1>0 if on right side
Lens radtus >0 if center on right side
in fig R;>0, Ry<0
>0 converging lens f<0 diverging lens

When o—e, .i=Focus. Perfect lens makes parallel rays
converge to (or diverge as from back) focus.

Ex: £>0: the lens makes rays converge. It transforms
plane wave into spherical converging wave, see
below.

o



2 - WAVE OPTICS
Images: Real or Imaginary

MONOCHROMATIC ILLUMINATION
In general, for lenses or systems of elements:

THIN LENS
From source to image optical path along each ray
the same (Fermat principle). Phase along each ray Lens introduces phase effect on impinging wave u(p)
the same; at image point positive interference. where P -coordinates x,y- point on entrance plane,
In paraxial approximation, one image point (P
corresponds to source point; the rays from source Uout(P) = tP) uir(P)  (p)= &!®F)
only have one cross point. In general rays do not all
cross at the same point; aberrations. (Here we t(P) thickness function
neglect magnification and image reversal)
In addition diffraction effect. Images by systems
without aberrations are called diffraction limited. : /\
Pﬁl i Alxy)
+U¢
AT
Ao A(P)

®(P)=k nA(P)+k [AO ~ A(P)]

Simple computation {Goodman)
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Paraxia] approx:

x2 +y2 x2 +y2
1- === 1=
2, .2
. +y“f 1 1
®P) =iknAg —ikn-1) X F¥Y [ 1 _ 1
{P) ni, - ik(n-1) 5 (RI Rz)

k2, .2
P(P) =1 Ay —1—
(P)=iknA, izf(x +y)

If ujn(P) = 1, unit amplitude plane wave, (point
source at infinity) one has

-1k x2 4+ yv2
gyt P) = el KN Ao, o 21 (2 *¥?)

First term constant phase delay of no importance

Second term: quadratic approximation, at z=0, to a
spherical wave converging towards the focus behind
the lens, if f >0 (and then diverging) or diverging from

tt_h((;: lens as if originating from focus before the lens if
< R .

Example >0,

r= (f-22 +x2+y2 = (f-z)+

2[fl-z)(x2 * y2)

Result:

In paraxial approximation lens adds quadratic
phase term, i.e. transforms plane into spherical
wave.

In first approximation this can be extended to plane
waves impinging at small angles. In this case the
wave is focused at a point on the focal plane.

In general case: although the lens has spherical
surfaces, the wavefront departs from spherical
shape. Aberrations.

PUPIL FUNCTION: To take into account the finite
dimensions of apertures (and also aberrations):
pupil function. Will be useful in the sequel.

For systems without aberrations {diffraction limited)

_| 1 inside lens aperture
P(x.y) "{ 0 outside

Note: here x,y point on the pupil.
Some authors include on the pupil function the field
on the pupil due to a source point.



3 - WAVE OPTICS
COHERENT IMAGING: OBJECT ILLUMINATED
WITH MONOCHROMATIC COHERENT FIELD

The prablem of images is: given the field distribution
at the object find the field distribution at the image.

3-1 LENS AND PLANE OBJECT

Y,
. ot

A 4

Uoh field (complex amplitude) from object
Uy, fleld on input plane of the lens(entrance pupil),
Uoyt field after the lens (exit pupil),

v field on image plane (defined by geom. optics).

Problem: given ugy, find u

Typical diffraction problem: the field from object can
be considered a diffraction field: from the object
plane waves in all directions (Fourier components).
Uyp 1s result of interference on input plane. Field Ugut
at the output of lens can be obtained by multiplying
uyy, for the lens fulnction t(P), and pupil function. Field
uj by using one of different formulas of diffraction

theory, such as Kirchhoff's, which takes into account
the finite dimension of the aperture.

Win | Yout W

focal
plasme

Let us consider decomposition of diffracted field in
plane waves (Fourier). Each plane wave is focused by
the lens at the focus. On each plane behind the lens
all waves interfere; in the image plane interference is
expected to “reproduce” the object field.

However the image is never equal to the object,
because not all plane waves from the object enter the
lens, but only those with angle respect to axis less
than a/o, a=aperture radius, o=object distance from
the lens. In addition evanescent waves are lost.

Due to the limited aperture, from a plane incident



wave, source at infinity, one has an Airy diffraction
pattern (see diffraction); not a simple point as
expected from the lens.

3-2 IMAGES BY A SYSTEM - COHERENT CASE

Let us now think of a general imaging system, of
which the lens is a particular case.

First, let us consider, in the source plane, an object
constituted by a simple point (source point); in
general, due to diffraction and aberrations, the image
is not a point but a “pattern”. A point source can be
represented by a Dirac delta function.

Let h(x,y:x5.y,) denote the field at point x,y in the

image produced by a source point located at point
Xo.Yo in the source plane. In a first approximation

and no aberrations, h(x,y;x4.y) is the Airy diffraction
pattern. In general it is a diffraction pattern.

Function h(x,y;x45.y,) which represents the impulse
response of the system is called the Spread Function

Let us assume to have an extended source. Let
UohXg.Yo) be the complex amplitude distribution

density (surface density). Each element dxydy, gives
a contribution to the field at x,y, given by

UohiXo.Yo) hix.y:xq,y0) dxgdy,

The field uj(x,y) at point x,y on image plane, due to the
object is obtained by integrating over all the object

4.9

3)  ylxy) =j j UohHXg,¥ol hix,yixo.y0) dxqdy,

Typically the 6bject will be of finite dimension and
the intfgrand different from zero on a finite area.

The fact that one can easily write the total field at X,y
as the inte{gral (sum) of the contributions produced
by the different points of the object is direct
consequence of the linearity of Maxwell's equations.
According to this linearity the total field at X,y is the
superposition (interference) of the contributions
from the different elements of the object.

Linearity implies use of the basic elements of linear
systems. They are used here, when necessary.

If Spread Function only depends on coordinates
difference

4) h(x,y;x5.y0) = hx-xg, y-y,)

the system is called isoplanatic (or space-invariant).
In practice isoplanatism means that the system
“response” is independent of the object location on
the source plane.

For a isoplanatic system one has

5) uybey) =J [uoyxo.yo) hix-xo, y-yo) dxody

~OQ

As already stated, in general h(x-xq5.,y-y,) is a
diffraction pattern, not a simple Dirac function as in



geometrical optics approximation. Therefore the
field at point x,y is affected by all source points and
not onjy by the corresponding point of the object.
This means that, due to diffraction (and aberrations),
the image is a smeared version of the object. In the
integral we recognize a (bidimensional) convolution
operation which is the mathematical formulation of
this fact.

In convolution formalism the integral can be written
6) u(x.y) = ughx.y) ® hix,y)

where ® denotes the convolution operation!.

Well known theorem, called the convolution theorem,
states that the spectrum of a convolution of two
functions is the product of the spectra of the two
functions. In formula

7) Uj(u,v} = H(u,v) Ugplu,v)

Capital letters denote the spectra; note that they are
bidimensional Fourier transforms,

Fourier transform of

Ugplu,v) uglx.y) object
Uj(u,v) ujlxy) image
H(u,v) hx;y)  spread function

o
! By definition u®V :”u(xo.yo)V(x—XU.Y-YoidXodYo

—OG

H{u,v), Fourier transform of the Spread Function, is
called the Optical Transfer Function, OTF or, as in
linear systems theory, the System Transfer Function,
or simply the Transfer Function. Sometimes the
adjective Coherent is added to avoid confusion with
the case of incoherent radiation, see below.

Eq. 6 is very important, both for theory and
applications, because in the realm of spectra the
convolution becomes a simple product and allows
optical images to be exploited by the techniques
commonly used in systems applications, such as
filtering in electric systems.

3-3 SPREAD FUNCTION OF A SOURCE POINT
of unit amplitude and a thin lens without aberrations
(diffraction limited)

From a source point on the axis spherical wave. In
paraxial approximation, the field incident at point
x,y on the lens, at distance r,, from the source, is (see

diffraction lessons)

e

tkro a ko +ik(x2 +y2}/(20)
Iy )

n

W=a

Here a includes the constant phase term and o
denotes source-lens distance. The field Ugyt at the

output plane of the lens is
_ -ik (x2
uout = 2elko+ikndg o5 r
0

+y2]+£{—(x2+y2]
20



The quadratic phase term is an approximation to a
spherical wave converging to a point at distance
from the lens

1_1_1

i o f
as from geometrical optics. The field u; at a point
X;i,yi is obtained by using any diffraction formula,
e.g. the paraxial form of Huygens-Fresnel principle
(see lessons on diffraction). One obtains

ik(1 1\ 2 2 k[ 9 9
L -

aperture

dxdy

where complex constant ¢ takes into account
constant amplitude and phase terms. By developing
the squares the phase term can be rewritten as

"9

iP (l_l.;_l) (x2+y2)+123_[xi2+y32-2xxi-2yyi
i

o f i

On image plane first term in parenthesis is zero. Let
us assume that also Fraunhofer condition is
satisfled and neglect first and second term in square
brackets. The integral reduces to

-ik ,

2—i[2xxi+2YYi]

uj=c¢ He - dxdy
aperture

This integral was evaluated in the diffraction section,

when the field diffracted from an aperture uniformly
illuminated was calculated in the Fraunhofer
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approximation (pg 2.9-2.13). In terms of energy the
result is the well known Aity pattern. Therefore, in
the considered limits, and apart from a complex
constant factor, the spread function of a source point
is the diffraction pattern, in the Fraunhofer region, of
a uniformly illuminated aperture. In other words, the
spread function of a source point at finite distance is
proportional to that of the source at infinity. Note
also that when the source distance is infinite the
pattern location is on the focal plane. This
corresponds to the well known fact that in general, a
lens transfers on its focal plane the Fraunhofer
patter of the field on its aperture.

SPREAD FUNCTION = FOURIER TRANSFORM OF
THE PUPIL FUNCTION.

VALID IN GENERAL. Easy to understand by plane
wave development.

CUT OFF FREQUENCY

3 - 4 LINE SPREAD FUNCTION

Let the object be a line, infinitely thin and concident
with the y axis:

Ugb{Xe.¥o)= 6lx,)

From 5) one obtains

uj(x)= 1hix,y,)dy,

2.14



3 - 5 ABERRATIONS

According to Wolf function Wi(x,y) is the departure
from spherical shape in the exit pupil. Phase
distortion due to aberrations kW(x,y).

Effect of aberration on diffraction patter: lowering
the maxima, filling the zeros and rising the minima.

(xw;wcfrom
Gaussian
reference sphere

Plane of
exit pupil

Gaussian
image plane

Wix.y) from Born and Wolf

Quality of a system is described by Strehl ratio for
source point:

s = Intensity in the (nomi I
Theoretical intensity with no aberrations

General definition suitable also for partial
coherence and for aberrations introduced by

2.15

propagation in random media, such as turbulent
atmosphere.

An image is well corrected if S not less than 0.8,

It can be shown, for small enough aberrations, that
intensity at point P is

i(P) = 1 - k2 (Adp)2

where (A(Dp]2 mean square deformation of the
wavefront and k wavenumber. It follows that
condition S 2 0.8, requires |AD|<1/14.

(Criterion by Rayleigh 1/4 for spherical aberration)

Best focus.

Point on axis. Aberrations function W,. with respect

to a sphere centered on best focus is expanded in
terms of r, position on pupil, or (Q=r/d; field angle)

Wa=agrt+agrb+. =W+ Wg+..

Wy primary aberrations, Wg secondary aberrations
and so on.

For points off axis in general there are also angles,
total power of primary aberrations is always 4,
including angles. Primary Seidel aberrations.
(Extended theory: Born and Wolf, Goodman.see also
R.W. Ditchburn for instrument applications)



EFFECT OF ABERRATIONS ON OTF

Generalized Pupil Function including W

]

exp( ikW)  inside pupil
=0 outside

P(x,y)

W, phase factor

W does not affect total intensity, but adds phase
factor to the different (spatial) frequencies

Blurring of the image.

Example in terms of rays (recall source point): the
normal to the wavefront, (ray) changes direction and
the rays no longer have a common point.

In terms of plane wave development of the field, each

wave has a change in phase, and they are no longer
focussed at the same point.

In general lowering of maxima, disappearing of
zeros, increase of minima

ABERRATIONS DUE TO MEDIUM (Turbulence)

Aberrations due to medium before the system:
typically due to propagation in turbulent medium:

First approximation (small fluctuation)

-phase effect

In general

strong phase and amplitude effects

STREMHL RAT:iO

: ! 1]
Beam Radivs (cm)

example:Strehl ratio, atmospheric measurement



example: diffraction pattern by 3 apertures of
different increasing radius

?:.QCMA

Correction requires systems based on adaptive
optics. :

In some cases use of Zernike polynomials

9 449

3 -6 IMAGING - INCOHERENT CASE

The most common light found in nature, emitted by
bodies much larger than the wavelength, is
incoherent radiation. The emitting atoms of a body,
emit randomly, in time and space, wave trains which
are completely uncorrelated, unless the atoms are
very near each other, with respect to wavelength.
Only the laser emits coherent radiation. At a point
outside an emitting source (not a laser) the field is
constituted by many wave trains with random phase,
which interfere with each other but continuously and
rapidly change. One cannot think of a “wave”, as in
the case coherence, but rather of energy. For
Incoherent radiation one has to deal with the
modulus square of the field.

Although the general case is partial coherence, both
in time and space, we will consider here only the
limiting case of incoherent quasi-monochromatic
light, as the case corresponding to the coherent
monochromatic one already considered.

Quasi-monochromatic light has a bandwidth Av
which is very small with respect to the central
frequency v, that is Av /v<<I1.

Quantity of interest here is the average value of the
intensity in a long time with respect to the period of
oscillation (infinite time). In practice the response
time of the eye or of typical instruments. In this case
approximating time and space incoherent radiation
with monochromatic (time coherent) radiation v,isa
good approximation. Frequency =central frequency
of incohrerent radiation, Therefore the radiation is




only spatially incoherent.

The instantaneous intensity Ijh4(P) at a point P is

the field square (see diffraction}. The space
coherence of a field is described by the field
correlation function B(P,P’) defined as

8) By (P.P) = <u(P) u*(P}>
Asterisk as usual denotes complex conjugate and
brackets infinite time average. The average intensity

I{P) is given by (assume homogeneity)

I(P) = lim <u(P)u*P)>
P->P

For spatially incoherent radiation:
9} Bu(P.P) = I(P) §(P-P’)

The intensity in the image of incoherent radiation is

I(x,y)=<ui(x,y]u;(x,y)>=j j J j<u0b(x0,y0)uob(x'0,y'0)>

h{x-X0,y-yo)n*(x-X'g,y'-¥ o) dxodyodx'od'y,

where average and integral operations have been
interchanged and the fact that the impulse response
does not depend on time has been taken into
account. This relationship holds for partially
coherent light and could be further developed.

A o4

In the case of complete incoherence, introduction of
Eq. 9 gives? the important final result:

10) Ix,y) = _[ J I(X5.¥0) |h(x'xo’Y'Yo)i2dxodYo

-00

Conclusions for INCOHERENT CASE:
-Intensity

-Convolution relationship between
source intensity and (incoherent)
point spread function

-The incoherent point spread function
is the modulus square of the
coherent spread function.

Example. The incoherent spread function of a source
on the axis of a thin lens free from aberrations
(already considered for the coherent case): is the Airy
function, (Airy function is defined as the modulus
square of the Fraunhofer diffraction pattern, see
lessons on diffraction) centered on the geometrical
image point.

2 Recall that [ 1(x)56x-a)dx=Ta)

LS



Let I and I} and H Fourier Transforms of the
intensities of object, image and spread function
respectively. By convolution theorem:

His called Incoherent Optical Transfer Function;
its modulus:

MODULATION TRANSFER FUNCTION, MTF.

Generally normalization to 1 at zero frequencies,
where there is the maximum (see e.g. Goodman).

General relationship between incoherent, H
(normalized), and coherent, H, transfer functions:

[e.=]

| jH(u,v)H*(lu+fx,v+fy)dudv
12) H[(fx,fy] ===

ojoj H(u,v) ]2 dudv

—O

valid for systems both with and without aberrations.

For coherent systems one has (see diffraction)
H(u,v) = P();iu,/'tiv)

A wavelength, i image distance from the lens.

.23

For incoherent system, introduction of H(u,v) into Eq.
12 shows that H (normalized) is the spatial
autocorrelation function of the pupil function:

[~2a]

| jP(liu,liv)P(liu+fx,/1iv+fy)dudv
Hfx.fy) ===

11 Pluv)dudy

Recall P(x,y) real function of modulus one.
Denominator=pupil area. Numerator the common
area of pupil and displaced pupil.

FOR INCOHERENT SYSTEMS THE SPECTRUM IS
DIFFERENT THAN FOR COHERENT

In particular it has a larger widht (due to convolution
of the pupil function)

Consequence the same system gives different images
with coherent or incoherent radiation.

Advantages and disadvantages depend alsb on the
object.



Effect of aberrations on incoherent systems 4 - RESOLVING POWER

ALWAYS DECREASE MTF 1- Rayleigh criterion (v diffraction)

In general lower the contrast of each spatial

frequency component, leaving the cut off unchanged. 2- OTF or MTF half width
However the higher frequencies can be severely
reduced, so that, in practice cut off can be much lower 3 Degrees of freedom of images

than in the diffraction limited case.
Superresolution
Aberrations can also give rise to negative values of
OTF in some ranges‘of frequencies. Consequence:
constrast reversal in 'image, that is intensity maxima

can become zeros and viceversa.

Typical example of this case is defocusing error

Defocus OTF for a square pupil.



