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CHAPTER EIGHTEEN

Super-resolution in
Microscopy

V.P. Tychinsky and C.H.F. Velzel

18.1. INTRODUCTION

In 1952, Toraldo di Francia proposed (1] that it must be possible to reconstruct details
of an object smaller than the diffraction limit. Before that time it seemed that the
well-established theories of resolution in microscopy, set up by Abbe [2] and Lord
Rayleigh {3], did not permit such a reconstruction.

In recent times, resolution beyond the diffraction limit has been realized by many
groups (see Section 18.3). But still many opticists find it difficult to believe that super-
resolution is really possible, perhaps because this asks for a change of the pattern of
thought in optical science.

With this chapter we want to promote the discussion about super-resolution by
physical arguments — we leave the mathematics oriented part of the literature aside. In
Section 18.2 we review the theoretical arguments for super-resolution, and in Section
18.3 we discuss a number of approaches towards its realization. But first we will go back
10 the classical theories of resolution; this will help us 1o give a definition of super-
resotution useful for the classification of practical resuits.

As is well known, Abbe's theory of resolution in the microscope considers the
images of gratings that are illuminated by monochromatic plane waves. With an aper-
ture stop in the back focal plane of the objective, a true image of a grating object is
obtained as long as at least two diffraction orders are transmitted by the stop. The
smallest grating period for which this is the case is given by

= %sin u (18.1)

where A is the wavelength of the illuminating wave and u is the angular radius of the
stop. The situation is shown schematically in Figure 18.1. The same resolution limit is
obtained with incoherent or focused illumination. The hidden assumption in this theory
is that the field of view of the microscope is unbounded. In practice this is certainly not
the case; in the next section we will see that the theory of super-resolution challenges
Abbe’s theory just on this point. From equation (18.1) follows that, because sin x cannot
become larger than 1, the smallest detail resoivable in a microscope must have a size of
half a wavelength.
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;
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Figure 1B.1  Resolution limit according to Abbe; diffraction orders that must make an angle u with the axis
are just transmitted by the aperture.

The theory of resolution given by Lord Rayleigh considers the images of two in-
coherent luminous point objects. In a one-dimensional version of this theory the
minimum distance at which the two can be observed separately is given also by equa-
tion (18.1). This distance is given by the width of the diffraction image of a point source.
Rayleigh's theory is clearly designed for visual detection; when electronic detectors can
be used it must be possible to record the intensity distribution in the image plane and
process the result in such a way that the objects can be resolved at a much smaller
distance. The ultimate resolution then becomes dependent on the signal-to-noise ratio
of the recording.

In the rest of this chapter we cannot use either of the classical theories because we
will consider mostly objects of small size (against Abbe) that are coherenty illumi-
nated (against Rayleigh). Nevertheless we will often use arguments derived from
modern, extended versions of these theories, as presented for instance by Goodman
(4). It wiil turn out that the fact that Fourier optics, as these modern theories are
called, is based on scalar wave theory is an important factor in the change of outlook
suggested above,

The objects examined in recent experiments are in many cases phase objects,
where the interesting details take the form of ridges, furrows or phase steps.
Therefore we take, as a third form of elementary object besides gratings (Abbe) and
point objects (Lord Rayieigh), the width of a ridge or in other words the distance
between two phase steps as a measure of resolution. We will see in the following
sections that such an object suits the theory and practice of super-resolution better
than other types.

We are now ready to give our definition of super-resolution. We follow Cox and
Sheppard {5] in restricting the domain of super-resotution to the observation of struc-
tures or details smailer than haif a wavelength. The methods with which details down
to A/2 can be observed by microscopes with a limited numericai aperture (sin # < 1)
are ranged under the category of ultra-resolution. For us, super-resolution is the
reconstruction of details smaller than half a wavelength, using the a priori knowl-
edge* available.

In Section 18.3 we will encounter examples of uitra-resolution and super-resclution;
it will be seen that by the use of the definitions given above a clear distinction can be
made between the two categories.

* Some forms of a priors information already introduced in this section are: the object may be of finite
€xtent, it may be a phase object, or it may have 2 number of discontinuities. We will see that a prior
knowledge about the object contributes, generaily speaking, to the realization of super-resolution.
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18.2. THEORETICAL ARGUMENTS FOR SUPER-
RESOLUTION

The possibility of ultra-resolution is built on the argument that, whereas an unlimited
grating, illuminated by a plane wave (itself unlimited), leads to a far field consisting of
singuiarities, a grating of limited extent produces a far field that is essentially non-singu-
lar. In other words: with a limited grating, illuminated by a limited wave, the diffraction
orders form continuous distributions in the far field, that extend in principle to infinicy
in the lateral directions. An example is the Fraunhofer diffraction pattern of a slit, given
by the well-known sinc distribution. In mathematical Janguage: the Fourier transform of
a function of limited support is an analytic function, and therefore can be continued
over the entire frequency domain. We prefer to use physical arguments 0 explain ultra-
and super-resolution, therefore we will not work out the mathematical reasoning (6].

We follow for a moment the description of Pask [7] and censider a one-dimensional
object of length £, imaged by a lens of numerical aperture sin u (see Figure 18.2a). The
far field diffraction pattern of the nth Fourier component of the object has an ampli-
tude distribution in the form of a sine function of width W = ML and with its central
maximum situated at

sin @ = nA/L (18.2)

When this central maximum lies outside the lens aperture, 50 that sin a > sin i, some
of the radiation of the diffracted wave in question still reaches the image plane, where
it is concentrated mainly at the edges of the geometrical image. It is difficult to exiract
this information from the image intensity distribution, especially in the presence of
noise and other components that have their central maximum inside the lens aperture.
By modulating the object field with a grating the high-frequency components can be
sent through the pupil [8]; for the formation of a correct image, a demodulating grating
must be appiied. Figure 18.3 shows a schematic picture of a set-up, due to Lukosz, that
works in this way. Because sin a < 1 always, we only expect to obtain ultra-resolution.
The above arguments show the possibility of ultra-resolution, but not of super-reso-
lution. However, we see aiready in what direction we have to go: the effective object

)
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Figure (8.2 ustrating the transfer of information of the nth Fourier component of an object of limited
extent L. The diffraction pattem in the back focal plane has its maximum outside the pupil: the boundaries
of the pupil are at + f ton u.
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Figure 18.3  Uhtra-resolution after Lukosz [B]. The modulating grating M introduces two carrier waves + |
and —| that are demodulated by the conjugated grating M'. OP and IP are the object and imege plane.

must be limited in extent. In the following we therefore assume that the object is illu-
minated by a focused beam of monochromatic light. As in practice one would use a
laser for this type of illumination, we will also assume that the illuminating wave has a
Gaussian intensity distribution with a width of one or several wavelengths. A different
way to obtain an effective object of limited extent is given by observing the object
through a small hole or through a fine grating. We will in the following consider both
ways of obtaining super-resolution.

Ultra-resolution, as discussed above, can iead to reconstruction of details smaller
than the diffraction limit of a given objective. Now we discuss what happens when the
perniod of a grating object becomes smaller than the wavelength. In equation (18.2) this
means that sin a should A become larger than 1, which is impossible. Therefore no
propagating diffraction orders are formed, but behind the object we find evanescent
waves that carry the grating period in the transverse direction but are damped in the
axial direction. With an extended object little information will reach the objective when
its distance to the object is large compared to the wavelength.

When we have an (effective) object of limited extent, however, we can also break
through this boundary. Bringing a small object, like a fibre tip, or a small hole in the
neighbourhood of the object transforms the evanescent waves, by scattering, into prop-
agating waves. A method of realizing super-resolution, namely scanning tunnelling,
optial microscopy, will be discussed in Section 18.3.2.

Super-resolution can also be obtained with an objective placed in the far field. To
make clear how this is possible, we need information carriers other than plane or
evanescent waves. This was perceived by Schmidt-Weinmar [9] who introduced partial
waves with a complex spatial frequency as information carries. Here we will make use
of the concept of wavefront dislocations, conceived by Nye and Berry [10,11] because
it suits our purpose of explaining super-resolution by physical arguments better. It
should be noted that a dislocation field can be composed of complex-frequency partial
waves (see reference [10], p. 267).

A dislocation in 2 wavefront occurs at those points where the phase of the wave is
undetermined and therefore the amplitude must be zero. The contours of zero ampli-
tude in interference patterns and speckle fields are dislocations of a special, stationary
type (in the original papers of Nye and Berry most of the discussion refers to dislocations
in pulsed fields). Such dislocations arise when a monochromatic wave is transmitted or
reflected by an object with sharp edges or discontinuities of the refractive index.

As an ilustration we consider an object with a #-jump in its phase transmission
at the centre of the illuminating wave (for instance a single step of heigh A/4 on a
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reflecting object). Although we do not know the amplitude of the scattered wave in an
arbitrary plane parallel to the object (in a scalar theory this would follow from e.g. a
Kirchhoff integral) we know with certainty that there is a dislocation everywhere in the
symmetry plane through the edge. This dislocation is also present in the far field and,
when an image is made by a symmetrical instrument, the dislocation persists unto the
image plane. This is even true when the imaging system has aberrations. The intensity
distribution may be smeared out by diffraction, but the phase distribution displays the
same 7-jump as the field in the object plane (Figure 18.4). A step with a height differ-
ent from 7 (in phase) can be decomposed in a mjump plus a coherent background.
The same treatment can then be given to the field in the neighbourhood of the axis,
leading to a phase distribution in the image plane that displays a sudden change. We
conclude that wavefront dislocations are carriers of information about discontinuities
in the object.

In Section 18.1 we defined resolution by the smallest distance between two discon-
tinuities that can be resolved. Let us consider the object field distribution

E = c¥(d*-x)e™™ (18.3)

that has two zeros atx = + d We take d << w, the Gaussian beamwidth. In (18.3) ¢* is
an energy normalization constant. This field distribution can be considered as a linear
combination of Hermite—Gauss functions of order zero and rwo. We know that these
modal functions propagate to the far field without changing their form; it follows that
the two zeros remain present in the far field. With an ideal instrument this field would
be reproduced exactly in the image plane; aperture limiting and aberrations make the
zeros shift and the amplitude distribution change its form, but it can be shown that the
topology of the phase image remains intact [12].

An exact reatment of this problem can be given with the aid of prolate spheroidal
functicns, the eigenfunctions of an instrument with limited field and aperture [13]. It
can be shown from (18.3) that the field intensity depends linearly on 42 when the total
energy in the object field is kept constant. This means that the resolution, normalized
on w, is of the order of the inverse root of the signal-to-noise ratio,

Ann ‘L (18.4)
w SNR

This result agrees qualitatively with a theory of Cox and Sheppard (5] that departs from
the concept of degrees of freedom of an optical instrument. The number of degrees of
freedom is given roughly by the product of the following factors:

-
v

Figure 18.4 Phase ¢ and intensity | in the image of @ mjump.
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® the space-bandwidth products in the transverse and axial space directions;
® the time-bandwidth product of the measurement;
® the dynamics of the detector (the logarithm of the signal-to-noise ratio).

These factors can be traded against each other, leaving the number of degrees of
freedom invariant. Ultra-resolution means essentially the trading of field against band-
width. Super-resolution occurs when the space-bandwidth product is brought back to
1 at the input (by masking or by focused illumination); a further increase in resolution
can be obtained at the cost of signal-to-noise ratio. This is also implied by equation
{18.4): the smallest details are obtained when the local intensity is decreased to noise
level,

We end our discussion of the physical arguments for super-resolution by pointing
out some shortcomings of the theory. Most of the papers on the theory of super-reso-
lution do not treat the interaction of the illuminating wave with the object in great
derail. We will discuss an exception in Section 3.2. Usually the scattered field is assumed
o be a copy of the object; this treatment is taken over from the classical theory of
microscopy. Such a model is valid when the radii of curvature in the object are large
compared to the wavelength; this is the geometrical optics limit. When the details
become of the order of the wavelength, or even smaller, we may expect resonance
phenomena to occur, and the scattered field will depend on the orientation of the
structures with respect to the polarization direction of the illuminating wave [14). In
that situation electromagnetic diffraction theory must be used to determine the effect
of edges and discontinuities in the object on the topology of the scattered wave.

18.3. REALIZATIONS OF SUPER-RESOLUTION

In this section we discuss several experiments in which resolution beyond the diffrac-
tion limit was realized. As in the previous section we do not give an exhaustive (and
perhaps exhausting) review of the literature, but merely discuss some recent develop-
ment and assess their results,

18.3.1.  Ultra-resolution by scanning confocal microscopy

Scanning confocal microscopy (SCM) satisfies one of the requirements for the realiza-
tion of super-resolution in that the illuminating wave is 2 focused monochromatic wave
(in practice a laser beam). A schematic picture of a set-up for SCM is shown in Figure
18.5. There are two different methods of detection used in practice: either a small
detector is placed in the image of the source, or a detector arrangement integrates the
intensity over the pupil of the objective (or parts of the pupil). The first detection
method has the advantage that the axial resolution is very good, so that it can be used
for making axial sections [15]. The second method does not have this property. This is
because in the first method the amplitude is integrated over the pupil, in the second
method the intensity. For our purpose this difference between detection methods is
not relevant, the lateral resolution being equal for both. Therefore we will consider only
the first detection method. The object can be scanned (in transmission or in reflection,
as in Figure 18.5) by moving the beam, the microscope, or the object itself. In the
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point detector

laser beam

object

e

Figure |8.5 Setup for scanning confocal microscopy.

arrangement of Figure 18.5 the detector signal is proportional 1o the square of the
convolution of the object distribution with the intensity distribution of the illuminating
wave. This means that the smallest detail to be resolved is given (with a square pupil)
by equation (18.1) of Section 18.1.

Several ways have been found to increase the resolution in SCM beyond the classical
limit. When a Auorescent object is detected by the arrangment of Figure 18.5, the object
as seen by the detector signal is tumed into a self-illuminator (“Selbstleuchter”). We
now have an incoherent image formation situation; the intensiry at the point detector
is given by the convolution of the concentration distribution of the fluorescent atoms
the square of the intensity distribution of the illuminating wave. Therefore the resolu-
tion is about a factor two better than that given by equation (18.1). This is a consider-
able gain in resolution, but it belongs according to our definition given in Section 18.1
1o the category of ultra-resolution. In other variants of SCM, using a double-pass optical
system and phase-conjugate mirrors [17] the resolution is also improved, but also these
do not lead to super-resolution.

Next to being used as a microscopic technique, SCM has found frequent application
in optical recording [18]. In that application usually pupil detection is applied, because
the larger depth of focus is an advantage. Methods to improve the resolution are very
interesting in optical recording, because the density of recorded information can be
increased by them. We discuss some experiments in this direction.

In the scheme of Bouwhuis and Spruit [19] a layer of non-linear material is intro-
duced just in front of the object. This layer is bleached by the illuminating beam and
transmits the beam only where it is most intense. The bleached hole acts as a mask in
front of the object; we have seen that this is favourable for an increase in resolution.
The effect on resolution is about the same as in fluorescent SCM.

The proposal of Fukumoto [20] can be applied to magnetic optical recording only.
In this experiment a triple magnetic layer is used as 2 recording medium. This leads to
self-masking (by the upper layer) of the read-out beam so that its effective size is dimin-
ished. We have already seen that this leads to a resolution beyond the classical limit; this
was confirmed by experiment.
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In a recent paper by Milster and Curtis (18] several other schemes for resolution
enhancement in magneto-optic recording are discussed. Although the authors use the
word super-resolution in the title of their paper, most of the methods they discuss
(with the exception of the scheme of Fukumoto mentioned above) do not lead to ultra-
resolution, and therefore not to super-resolution either.

The conclusion of this section is that the realizations of SCM discussed lead at most
to uitra-resolution, and cannot achieve super-resolution as defined in Section 18.1. In
the experiments discussed no effort is made 1o use all the information contained in the
complex amplitude distribution in the image plane. To do so more than one detector
in the image plane is necessary, as we shall see in Section 18.3.3.

18.3.2.  Super-resolution by scanning-tunnelling microscopy

As a second example we consider the realization of super-resolution by scanning-
tunnelling optical microscopy (STOM). We have already mentioned this method in
Section 18.2 and we now will discuss a few of its variants. In early versions of the
method [21,22] a small diaphragm (with a diameter of the order of A/60) was placed
over the object at a very small distance (of the order of its diameter). In later work
(23,24] a fine dielectric fibre tip was used to scan the object. The dimensions of the
tip’s radius and its distance to the object determine the resolution and image contrast.
In practice a resolution of the order of A/25 is achieved.

A schematic of the principle is given in Figure 18.6, taken from reference {23]. In
this picture the illumination is provided by a plane wave totally reflected from the back
side of the substrate on which the object (a transparent phase object in this case) is
placed. For the study of reflecting objects it is possible to send the illuminating wave
down the fibre tip [25]; the object is then locaily illuminated by the light refracted and
scattered by the end of the tip. It is also possibie to illuminate the surface by a propa-
gating wave [26],

Some interesting theoretical questions are connected with the research in STOM. In
the past it was argued that super-resolution would violate Heisenberg’s uncertainty
principle, that was seen as a quantumn theoretical generalization of Rayleigh’s criterion.
In a theoretical paper, Vigoureux and Courjon [27] show that this is not the case in
STOM, because the evanescent waves used for imaging details below A/2 have an
impuise component in the object plane larger than A/A (b is Planck’s constant) so that
impulse differences larger than 2b/A can be realized and it is possible to obey the uncer-
tainty principle while overcoming the Rayleigh limit. The fact that the lateral impulse is
larger than b/A makes the vertical impulse imaginary, so that the evanescent wave is
damped in the direction perpendicular to the object plane. In the line of thought of

R ‘ /eva nescent field
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Figure 18.6  Principle of scanning-tunnelling optical microscopy [23].
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reference {5] we could say that super-resolution is obtained by reducing the space-
bandwidth product in the vertical direction.

Another problem, practical as well as theoretical, arises from the interaction of the
detecting tip and the object field. The tip is polarized by the field scattered by the
object; this polarization itself contributes again to the field. In reference [28] 2 model of
this interaction is discussed; the object is represented by two small polarizable spheres
and the detector by a third sphere. The radii of the three spheres and the distances
between them are small compared to the wavelength of the illuminating plane wave.
Using the propagator for a dipole, self-consistent equations can be set up for the elec-
tric fields at the positions of the three nanospheres. The field at the “detector” is a func-
tion of its lateral and verticai position relative to the “object”. The situation is shown in
Figure 18.7.

This model can explain the chief results of a STOM experiment; in order to predict
the image of more complicated objects by more realistic detector bodies difficuit calcu-
lations must be done. In Section 18.2 we stated that in the field of super-resolution
more understanding is necessary of the interaction of electromagnetic fields and
(dielectric, absorbing, metallic) submicrometre structures. This is also the case in
STOM; nevertheless we can conclude that by this method super-resolution has been
realized in practice.

18.3.3. Super-resoiution in phase microscopy

At the end of Section 18.3.1 we concluded that by SCM ultra-resolution has been
achieved, but not super-resolution; we suggested that for that purpose it would be
necessary to exploit the details of the complex amplitude distribution in the image
plane. Experiments in this direction have been reported by Tychinsky [12, 29, 30}, who
used a system consisting of a Linnik type interference microscope with focused illumi-
nation, a relay system that makes a highly magnified (~10° x) image of the focal distri-
bution, a detector wibe (image dissector) and image processing software to display the
phase image in the image plane. A schematic picture of this system, called AIRYSCAN,
is shown in Figure 18.8.

The objects inspected in these investigations belong to two classes: submicrometre
structures on, for instance, silicon and fabricated by VLSI technology, or biological speci-
mens on reflecting substrates. Nearly always, measured phase jumps in the image were
traceable 1o steep edges or refractive index discontinuities in the object. The most convine-
ing results were obtained with spedial semiconductor test objects with etched structures in
Si0, layers 1~2 pm thick; slots were etched with a width of berween 40 and 600 nm. The

_/J\/\N P(x)

X «— 0O detector

o o
object

Figure 18.7 Detection of two stall spheres (object by a third sphere (detector)). Pfx) denctes the
polarization of the detector as function of its lateral position,
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Figure 18.8  Optics of the AIRYSCAN system. The phase of the reference beam is modulated,

specimen structure and the measured profile of a slot of 100 nm width are shown in
Figure 18.9a,b. Near the edges we see artifacts (edge ringing) in the phase image.

In all cases the measured width of the slots differed by no more than 20% from the
actual size of the structure; the measured depths were, in all cases, considerably less
than the actual values. For relatively large surface elements with 4> the topological
details were exactly reproduced, but for d<A the profile shape and height differences
depended significantly on the orientation of the E-vector of the illuminating wave,
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Figure 18.9 (a) The profile of a semiconductor test object with g slit d = 0.1 wm. (b) The measured

profile of the test object,
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Effective space resolution values may be also estimated from measurements of step-
like objects. In reference [25] measurements were reported of growth steps on the
surface of a GaAs epitaxial layer. A resolution of 5 nm was achieved, limited by the pixel
size of the detector.

The recognition of phase patterns without 4 priori information is not easy due to
the generic properties of phase: ambiguity, dislocations, polarization dependence, non-
linearity. This is specially true for biological specimens, where also the information
about thickness is obscured by refractive index gradients. In Figure 18.10 we show the
complicated structure of the mycelial cell wall of Phellinus with a layer thickness of
about 70 nm [30].

The possibility of the registration of dynamic processes in living cells seems to be of
imporance for biological research. Fourier spectra of the heartbeat of Daphbria were
obtained at 8.65 Hz; the changes in time, under the influence of chemical stimuli, of
mitochondria extracted from the mouse liver were registered.

Experiments were also performed to verify the role of wavefront dislocations in
phase microscopy. In Figure 18.11a we show the phase image of a ridge, where a 7
jump occurs berween the points A and B which is surely absent in the surface of the
specimen. A pair of conjugated screw dislocations [31] of opposite signs arises at the
points A and B and the phase values on opposite sides of the cut AB belong to different
Riemann surfaces. A theoretical model of such a dislocation pair is shown in Figure
18.11b. The line CD in Figure 18.11a is the boundary of a structure element of high
steepness; the dislocation turns up when the height and steepness of an edge have
definite values.

In this section we have shown that super-resolution can be realized by phase
microscopy; the limiting resolution is determined by pixel size and noise of the detector.
In images obtained by phase microscopy artefacts are observed (edge ringing, mjumps)
that have not been explained fully by the theory. A complete theory of phase microscopy,

|
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Figure 18.10 3D image of the mycelial cell wall of Pheilinus with structural elements of about 0.05 pm.
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{a)

{b)

Figure 18.11 (a) The phase image of a ridge. (b) A pair of screw dislocations.

including the influence of the microscope (aperture, limitation, aberrations) and the
interaction of the illuminating wave with the object, has not yet been given.

18.4. SUMMARY AND CONCLUSIONS

In Section 18.2 we summed up the theoretical arguments for super-resolution. We saw
that the effective object size must be of the order of a wavelength; evanescent waves
and wavefront dislocations are suitable carriers of information about subwavelength
strucrure.

In Section 18.3 we discussed some experimental results. First we discussed some
variants of scanning confocal microscopy (SCM); image formation in SCM can be
described with the aid of plane waves as information carriers. In SCM the possibility for
super-resolution exists, but in the variants we discussed only ultra-resolution (as we
prefer to call it) was realized.
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Super-resolution has been realized in scanning-tunnelling optical microscopy
(STOM), where evanescent waves are the information carriers, and in phase micro-
scopy, where the information is carried by wavefront dislocations.

Phase microscopy can be considered as the extension into superresolution of SCM.

We feel that the theory of super-resolution is still incomplete; the interaction of
the illuminating wave with the object is not yet understood in sufficient depth and
detail.
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