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DIFFRACTIVE OPTICS

Jari Turunen

University of Joensuu, Finland

The range of optical functions that can be performed by traditional optical
elements such as lenses, mirrors, and prisms is limited by the restrictions
on the shapes of reflective and refractive surfaces that can be fabricated
by grinding and polishing techniques. These techniques readily permit the
manufacture of spherical and cylindrical surfaces only, and the generation
of even slight aspherics greatly increases the cost. Modern diamond-turning
techniques permit the fabrication of strongly aspheric optical surfaces, but
still leave much to be desired in the manufacture of rotationally asymmetric
surfaces, miniature elements, and arrayed or multiplexed optics.

There is, however, an alternative: in place of a macroscopic surface-
modulation structure one may use microstructured surface or index modu-
lation profiles. These can be fabricated on a flat substrate by methods such
as selective etching or material deposition, or by interferometric recording
(holography) if the substrate is coated with a layer of photosensitive mate-
rial. Then the optical function of the element (e.g., focusing of an incident
plane wave) may be achieved by a proper design of the microstructure, which
has a thickness of the order of one optical wavelength. In the design process
of such microstructured element one typically has to abandon geometrical
optics, the standard tool in the design of traditional macrostructured op-
tical elements, or at least to complement its results by considerations of

interference and diffraction within the microstructure.



These preliminaries lead us naturally to the concept of diffractive op-
tics, which may be defined as the realization of a given optical function by
means of microstructured media. Diffractive optics is a novel technology
with exceptional promise in modern optical design, optoelectronics, optical
communication, metrology, materials processing, and various other appli-
cation areas. It provides the means to fabricate, e.g., flat optical elements
with wavefront-transformation capabilities equivalent to those of arbitrarily
profiled smooth surfaces. Diffractive elements can be fabricated by standard
microlithographic techniques and are therefore naturally suitable for the re-
alization of arrayed and multiplexed micro-optical components. They can
be copied cheaply in large quantities by techniques such as embossing. It is
therefore clear that diffractive optics, as a distinct extension of traditional
optics, will be one of the key enabling optical technologies of the future.

Diffractive optics, which employs microstructured surface or index mod-
ulation, will obviously demand an entire set of new optical-design techniques,
most often based on the wave theory of light. In many cases the response
of a diffractive element may be described adequately my means of a scalar
treatment of electromagnetic wave propagation in homogeneous and mi-
crostructured media. However, the dimensions of the microstructures that
can be fabricated keep reducing at a steady pace: it is already possible
to manufacture details with subwavelength dimensions. Hence there is an
increasing need to treat the analysis and design of diffractive elements by rig-
orous electromagnetic diffraction theory, i.e., by exact solution of Maxwell’s
equations.

In these lectures some basic principles of diffractive optics are first cov-
ered. Wave propagation in homogeneous and structured media are then
briefly discussed with the aid of plane-wave representations of the electro-
magnetic field. Some of the most prominent synthesis methods of diffractive
elements are described together with certain chosen applications of diffrac-
tive optics. The manufacture of diffractive elements is also covered in some

detail, with the emphasis on modern microlithographic techniques. Finally,



the integration of several diffractive and other optoelecironic elements into

a solid system is discussed.

1 Fundamentals of diffractive optics

The basic task of any optical element is to transform a given incident field
into an output field, which should possess certain properties determined by
the specified optical function. At a quite general level, we may state that
the optical function can be defined by some function s (the signal), which
has non-zero values only within some bounded spatial or spatial-frequency
region, called the signal window W (see Fig. 1). For example, the optical
function of a focusing element may be defined as the maximum concentration
of energy into a focal spot. Then W is a single spatial point and s is the
energy density at this point. As another example, a beam splitter converts
an incident plane wave into two (or more) angularly separated output waves;
now W is a spatial-frequency window of some predetermined width, while s
defines the directions and the relative intensities of the desired plane waves.

Often either the illumination wave or the optical function of the element
(or both) is multiplexed. The element may, e.g., be required to produce
diffraction-limited focal spots, perhaps in predetermined locations, for a set
of illuminating plane waves of different wavelengths or angles of incidence.
Also in these cases it is possible to define s and W, although the definition
of one or both may depend on some parameter associated with the incident
field or the geometry of the element. For example, we may define the optical
function of a polarizing beam splitter such that it should transmit a TE-
polarized plane wave completely, while simultaneously deflecting any TM-
polarized light away from the region of interest. Now W may again be seen as
a spatial-frequency window, whereas s fixes the propagation directions and
intensities, being dependent upon the state of polarization of the incident
field.

In view of the above considerations it appears clear that the concepts



Figure 1: Illustration of the operation of an optical element confined between
the planes z = zy—h and z = z. The field in the exit plane z = z, is assumed
to be insignificant outside the domain A, and we specify some properties of

the field (the signal s) within a region W (the signal window).

of signal s and the signal window W can always be defined in a meaning-
ful manner. In the simple examples considered, which were drawn out of
classical optics, the introduction of s and W may appear somewhat artifi-
cial. However, for more exotic optical functions that can be realized using
the methods of diffractive optics, these concepts turn out to be very use-
ful. Consider, e.g., the problem of pattern projection: the objective is to
convert an incident field (such as a Gaussian laser beam) into a field with
a predetermined intensity distribution (signal s) in a bounded section of a
transverse plane (signal window W), located some distance away from the
element. Since s specifies only the field intensity inside W, the phase is
left as a degree of freedom. By definition of W, the field outside it is of no
concern and thus provides an additional degree of freedom. Moreover, the
proportion of the incident energy that passes through W may be treated as
a degree of freedom. Obviously, however, one would like to maximize this

quantity (the diffraction efficiency n) as long as the pattern fidelitv is not



sacrificed.

The diffraction efficiency 7 is indeed an important characteristic of any
optical element or system. For example, in the theory of diffraction grat-
ings for application in spectroscopy it is customary to compute spectral
efficiency curves 5(A) for the main diffraction order (Petit, 1980). Very of-
ten, in diffractive optics, the available degrees of freedom such as the phase
freedom inside W and the complex-amplitude freedom outside it are used
to increase 7 (Bryngdahl and Wyrowski, 1990, Wyrowski and Bryngdahl,
1991). Practical methods of achieving this will be discussed below. How-
ever, we note at this stage the remarkable fact that when the field within W
is known we can calculate an upper bound for  without actually designing
the element (Wyrowski, 1991; Wyrowski, 1993).

Once the signal s and the signal window W have been fixed by consid-
eration of the requirements of the particular application, it remains to find
a material structure that can generate s within W. This is a quite general
design problem in optics, and our intention is to describe practical methods
for its solution with the aid of diffractive structures. Before considering such
methods in detail, it is necessary to provide the theoretical means of treating
electromagnetic wave propagation in uniform and structured media. If we
disregard quantum effects, which become important only at low light lev-
els, the analysis methods may be divided into three classes: electromagnetic
wave theory, scalar wave theory, and geometrical optics. The complexity of

the mathematical formalism decreases in this sequence.

2 Wave propagation in uniform media

It follows from Maxwell’s equations that, in a dielectric material of refrac-
tive index n each component U of a monochromatic electromagnetic field

(wavelength A) satisfies a Helmholtz equation

[V2 + (k'n)z] U(:LT, y,z) =0, (1)



where & = 27 /X and we have assumed a time dependence exp (—iwt), with
w = ke, ¢ being the speed of light in vacuum.
If we denote by U the Fourier transform of U with respect to x and y,

0(e,8,2) = es [ [ Ulz,y,2)expli(oz + py)|dzdy,  (2)
T .

Eq. (1) is transformed into an ordinary second-order differential equation

a . .
50(e,8.2) + wi(e, B0 (e, 8,2) = 0, 3)
where N

[(kn)? — (0@ + %) if o + B < (kn)?
il(a® + B%) — (kn)?]'*  otherwise.

w(a, f) = { (4)

The solution of Eq. (3) may be written in the form

U(a, B,2) = T(c, B) exp fiw(a, B) (z — 20)|+R(a, B) exp [—iw(e, B) (2 — 2)]
(5)
where T and R are arbitrary functions and z = z; is an arbitrary reference

plane. Taking an inverse Fourier transform, we obtain
Uayz) = [ [ TiaB)exp (iloc+ By + (e f) (z - )]} dadf

+ f/iomR(a, BYexp {i[az + Py — w(a, B) (z — 20)]} dad 3,
(6)

which is a superposition of waves that propagate in directions determined
by wave vectors k = (a, 8, w) or k = (¢, 3, ~w). Waves with real values of
w tepresent homogeneous (propagating) plane waves, whereas waves with
imaginary values of w either grow of decay exponentially with z. The latter
are known as evanescent waves.

Let us assume that, e.g., the half-space z > z is source-free and non-
structured. Then, obviously, homogeneous waves propagating in negative z-

directions cannot exist here, and evanescent waves that grow exponentially



with increasing z must also vanish. Hence R(e, ) = 0 and we are left with

Ue,,2) = [ [~ TieB)Plafy2)exp lion + Bl dadf, (7

where
P(a, f,z) = exp [iw(a, §) (2 — %)}, (8)

and by Fourier transformation at the plane z = z, we obtain
1 o .
T(,f) = g [__UGvm)expl-ifoz + py)ldzdy. ()

Expression (7)—(9) are known as the angular-spectrum representation of an
optical field, and T'(e, §) is known as the angular spectrum of plane waves
associated with the field U(z,y, z,). Had we assumed the half-space z < 2,
source-free and non-structured, the term 7T'(e, 8) instead of R(a, 8) would
have vanished. ‘

In the form given above, the angular spectrum representation is a rig-
orous solution of the wave propagation problem in a uniform medium, but
only for a scalar field. To obtain the solution for a vectorial electromagnetic
field, we write a solution of this form for all six scalar components of the
electric and magnetic field vectors. In view of Maxwell’s equations, only
two of these six components (for example, the z- and y-components of the
electric field) are independent. The other scalar components can be related
to them by a straightforward application of Maxwell’s equations.

Let us next assume that the angular spectrum T'(«, 8) has appreciable

values only at low spatial frequencies, i.e., if
o? + 2 < (kn)®. (10)

In other words, all plane-wave components of the field propagate in direc-
tions close to the 2-axis, and evanescent waves are excluded. This condition,

which may be called the paraxial approximation, permits us to write

w(a, B) =~ kn — (o® + B%) /(2kn). (11)



Substitution into Eq. (7) gives
U(z,y,z) = exp (iis:'iru!}:.z)f/oo T(a, B)
x exp [t {o? + B%) Az/(2kn)) exp [i (ax + By)] dod B, (12)

where we have abbreviated Az = z — 7. Inserting Eq. (9) into Eq. (12), we
obtain

U(z,y,z) = (2n) 2 exp (iknAz) / / Ulz',y, z)dz'dy’'

x/ /io exp {—i (a® + §%) Az/(2kn} +i[(z — ) a + (v — ¥') A]} dadB:

(13)
If we now perform the («, §)-integrations using the formula
/ exp (—az? + bz) dz = (r/a)"/* exp (b*/4a) (14)
we obtain the well-known Fresnel propagation integral
Ula,y,2) = 55 exp (iknis2)
T,Y,2) = 5, exp (tknldz
- o imn a2 a2 .t
<[ [7 v v mren {5 [@ - =) + - )] fazey
(15)

Note that in the derivation of the Fresnel formula from the exact angular
spectrum of plane waves the only approximation made is that of Eq. (10).
Hence, whenever this assumption is valid, we may use the Fresnel formula
even if the signal window W is located in the immediate vicinity of the
plane z = z,. This fact is not easily seen if Eq. (15) is derived by the more
conventional method (Goodman, 1968).

Let us next assume that W recedes into the far zone, i.e., if py., denotes

the radius of a circle that encloses A in Fig. 1,

Az > (1/X) Py (16)



Expanding the squares in Eq. (15), we get

kil . iTrn o0 ? f]
U(z,y,2z) = A OXP (iknAz) exp [-A_A; (z® + y2)] ] Uz, vy, z)
I/ 2 2 2m , |, . 'y
X exp AAz(E +y )]exp{ /\Az(zz +yy)]d:z:dy,

(17)

and if the condition (16) is valid, the quadratic phase term inside the integral

is negligible, which enables us to write

n
1AAz

s I ' izwn '] r 7
x[ U(z',y', z0) exp [—m(x:c +yy')] dz'dy’. (18)

— 00

Ulz,y,z) = exp (tknAz) exp [:\% (= + yﬂ)}

This is recognized as the Fraunhofer propagation formula.

3 Scattering by non-periodic structures: a groove

in a perfectly conducting substrate

We now have at our possession the mathematical means to propagate an
optical field from the exit face of the element to the signal window W. To
be able to analyze the entire geometry shown in Fig. 1, we need methods
to obtain the field in the exit plane from the knowledge of the incident field
and the structure of the element. A complete description of the available
methods would fill more than one book because of the great diversity of
possible structures and methods of solution (Beckmann and Spizzichino,
1963; Gaylord and Moharam, 1985; Korpel, 1988; Maystre, 1984; Petit,
1980; Solymar and Cooke, 1981). We must therefore restrict the discussion
to some special geometries and methods of approach, which will hopefully
provide some insight into the general methodology.

Consider the geometry of Fig. 2, where a y-invariant groove of width ¢
and depth h in a perfectly conducting substrate is illuminated by a two-

dimensional wave that propagates in the zz-plane towards the groove. We



0
M

Figure 2: Diffraction of a two-dimensional electromagnetic field by a groove

in a perfectly conducting substrate: geometry and notation.

denote the (known) angular spectrum of the incident field by A(«) and, in
view of the y-invariance of the diffraction problem, write the incident wave

in the form
Uz, z) = [: Ala)exp {i [az + w(a)z]} da (19)

in the region z < 0. Diffraction by the groove produces in the same region

a diffracted wave, which may be written in the form
Uz, 2) = ] R(a) exp {ijaz — w(a)2]} da, (20)

where the minus sign in front of w indicates [c.f., Eq. (6)] that this diffracted
field will consist of homogeneous waves that propagate in negative z-directions
and of evanescent waves that decay exponentially when z — —oo.

From now onwards, we assume for simplicity that I/ denotes the y-
component of the electric field whenever the electromagnetic nature of the
optical field is of concern. When the diffracting object is y-independent, we
also assume that this is the only non-vanishing component of the electric
field, i.e., we consider the case of TE polarization. The case of TM polar-

ization, where the electric field has £ and z-components, but the magnetic

10



field has only a y-component, can also be treated but the mathematical
formalism typically becomes slightly more complicated.

In general, Eq. (20) does not apply inside the groove, although there
has been some controversy over this question (Maystre, 1984). To obtain
an appropriate field representation inside the groove we use techniques that
are familiar from any first course on electromagnetics. We separate the
variables in the Helmholtz equation, writing U(z, z) = X (z)Z(z), to obtain
two ordinary second-order differential equations, whose solutions can be
expressed in terms of exponential functions. The electromagnetic boundary
conditions require that the electric field be zero at the perfectly conducting
groove boundaries. Thus the solution may be written as a superposition of

waveguide modes, in the form
U%(5,2) = 3" Xon(2) (XD (Um2) — exDfirtm (26— DN} amy  (21)
where
Xmlz) = (2/c)'*sin (mwz/c), (22)
and 2
[(kn)z - (m-.-r/c)’] if |m| < kne/x
i [(m/c)* - (km)?] "

Here a,, are as-yet undetermined parameters.

T = (23)

otherwise.

We now have expressions for the fields in the region z < 0 (where the
total field is the sum of U* and U?) and inside the groove. It remains
to apply the electromagnetic boundary conditions at z = ( to solve the
parameters a,, and to obtain the angular spectrum R(a) of the diffracted
field. Requiring that the electric field vanishes at the perfectly conducting
boundaries = < 0 and > ¢, and is continuous if 0 < z < ¢ we obtain

[r: [A(a) + R(a)] exp (iaz) da (24)

(25)

) Zro Xa(@) [ —exp (127mh)]an  fO<z<c
1o otherwise.

11



Multiplication by exp (—ia'z), integration from —oo to oo, and use of the .

Fourier-integral definition of Dirac’s delta function then leads to

R(a') = % 3 In(@) [1 - exp (29mh)] am — A(a), 26)

m=1

where the integrals
I.(a) = [ exp (—iax) X,.(z)dz (27
0

can be evaluated analytically. Thus we have an expression for R(a) in terms
of the modal coefficients a,,.

It also follows from the electromagnetic boundary conditions that the
z-component of the magnetic field, i.e., the normal derivative of U, must

be continuous across the plane z = 0 in the groove region 0 < = < ¢. This

implies that
[: r{a) [A(a) — R(a)] exp (iaz) da = i T Xm{Z) [1 + exp (127, ) ar

(28)
when 0 < z < c¢. Multiplication by X,(z), integration over the interval

0 < £ < ¢, and use of the orthonormality of X,,(z) leads to

/ L {o)r(a) [Ale) — R(a)]da = Z T [1 + exp (227Ymh)] Spmam, (29}
—ee m=1

where the asterisk denotes complex conjugation and é is the Kronecker delta

function. Insertion of Eq. (26) into Eq. (29) yields a set of linear equations

12



i {Kpm [1 — exp (129 k)] + Yen [1 + exp (229 D)) bpm } €

m=1

=9 ] () (a)A(a)da,  (30)
where we have denoted
Ky = — / r(@) I ()T (@)dav (31)
27 J_w P

If the summations in Egs. (30) are truncated and the integrals K, are
evaluated numerically, the modal coefficients a,, are obtained from the linear
system (30) and the angular spectrum R(e) is finally obtained from Eq. (26).
Thus the diffraction problem of a TE-polarized field by a groove is solved
completely.

The treatment of the groove-diffraction problem given above is a com-
pletely rigorous solution of Maxwell’s equations and the electromagnetic
boundary conditions, and it requires numerical computations of some com-
plexity. If the incident field is paraxial, one may envisage a far simpler
method of treating the diffraction problem: when traversing to the bottom
of the groove and back into the plane z = 0 the incident field could be
expected to acquire a phase delay of ¢/(27) = 2h/A compared to the field
incident upon regions outside the groove. This would give a diffracted field

of the form
Ud(z,0) = U(x,0) exp [i¢(z)] (32)

where ¢(x) represent the binary-valued spatial variation of the phase delay.
The angular spectrum R{a) is then be given by the y-invariant version
of Eq. (9). In general, we may state that this approximate model gives
acceptable results for R(a) if the groove width ¢ is several times greater
than the optical wavelength A (and A < A).

13
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Figure 3: Diffraction of a plane wave by a grating. Region I is dielectric,
but regions II and III may be metallic, with a finite conductivity.

4 Diffraction by a periodic structure

In the example given above we assumed the substrate to be perfectly con-
ducting, which greatly simplifies the theory but is not an entirely appropriate
assumption in the visible region of the electromagnetic spectrum. Moreover,
the geometry considered was rather special.

We proceed to present a method of solution applicable to a wide class
of periodic media, i.e., gratings (see Fig. 3). The modulated structure of
period 4 in the z-direction is assumed y-independent, z-independent in the
range 0 < z < A, and illuminated by a plane wave

U'(z, 2} = exp [i (aoz + ro2)], (33)

where oy = kn;sin @ and ry = kn; cos 6.

In view of the Floquet-Bloch theorem, the periodicity of the material
forces the field to be of a pseudoperiodic form U(z +d, z) = Uz, 2) exp(i),
and the incident field fixes 9 = agd. If we apply the pseudoperiodicity to
Eq. (20), we obtain a condition

/m R(a)exp {i [axr — w(a)z]} [exp(iad) — exp(icgd)] da = 0, (34)

14



which can only hoid if

a=o =0+ 2?Tl/d, (35)
[ integer. Hence
= > Ribla—ay) (36)
I=—o00
and we obtain -
Uf(z,2) = D Riexpli(az ~r2)), (37)
{==00

with r# = w?(qy) = (kn1)* — ¢f. Similarly, in region III,

Utiz,2) = 3 Thexp {ilenz — ti(z = W]}, (38)

l=—o00
where ## = (knin)? — of and when taking square roots we assume a sign
convention R {£;} +S {#;} > 0 (for a metallic grating nyy; is complex-valued).
Expressions (37) and (38) are known as Rayleigh expansions.
Let us denote by ¢,(x) the (possibly complex) permittivity distribution
of the grating. It then follows from Maxwell’s equations that the electric
field in region II satisfies a non-constant coeflicient Helmholtz equation

32 6 k2 —
Fwl + 332 + k*e.(x)| Un(z,z) = 0. (39)
To obtain a field representation in region II, we again separate the variables,
which yields \
d
e —X(z) + [K’e(z) - ¥*] X(z) =0 (40)
and
d’ )
e —Z(z)+ 7' Z(z) = 0. (41)

To solve Eq. (40), we express the permittivity in the form of a Fourier series

e-(z) = Z £, exp (i2npz/d), (42)

p=—0o0

where the Fourier coefficients are given by

Ep = % fd e (x)exp (—i2npz/d) dz, {43)

15



and attempt a pseudoperiodic expansion of the form

X(x) = i F,, exp (io,.7) . (44)

m=—00

This leads to

3 Y @2 + %) exp (iapz) 6,y — k€, exp (itmspT)] P = 0. (45)
m=—00 p:—m
If we multiply Eq. (45) by exp (—iaz) and integrate over the period, we
obtain a system of eigenvalue equations

o

Z (kzel—m - a316!m) Pm = 72})(: (46)

m=—00

which can be solved by standard numerical algorithms if the summation
is truncated. This yields a set of discrete eigenvalues 42 and eigenvector-
elements Fj,,. The solution for U(z, z) may now be expressed in the form

oo o
Ey(3,2) = Y {an exp (i702) + buexp [—iva(z = W)} 3 Pinexp (iouz),

n=1 I=—oo (a7

which also contains the (obvious) solution of Eq. (41). We adopt a sign
convention R {y.} + S {¥.} > 0 when taking square roots.

It again remains to apply the electromagnetic boundary conditions to

obtain a complete solution of the diffraction problem. Now the boundary

conditions require the continuity of U/ and its normal derivative at z = 0

and z = k. The continuity of U at z = 0 yields

exp {tapz) + Z R;exp (iayx)

I=—00
=3 [an 4 buexp (i7,h)] 3. Py exp (i), (48)
n=1 l=—oo
or o
Ri=3 [an + bnexp (ivah)] P — b10. (49)

n=]1

16



The other boundary conditions give

T =" [an exp (i7nh) + ba] Pin, (50)
n=1
Ty (6l0 - Rl) = Z Tn [an - bn €xXp (t7nh')] Hn: (51)
n=1
and -
4T = Z Yo {an €xp (P h) — bp] Prn- (52)
n=1

We insert Eq. (49) into Eq. (51} and Eq. (50) into Eq. (52) to obtain a

system of linear equations

3" (71 + tn) Pintn + Y (1 = 1) €xP (iYnh) Pinba = 21160, (53)
n=l n=1
z (tr — 1n) exp (i7nh) Pinan + Z (ti + ¥n) Pinba = 0, (54)
n=] n=1

from which @, and b, may be solved by truncating the summations. Then
the complex amplitudes of the diffraction orders are calculated from Eqs. (49)
and (50).

It is probably clear to the reader by now that the complex amplitudes H;
and Ty correspond to the amplitudes of the diffraction orders of the grating in
regions I and III, respectively. The propagation directions 8; of these orders
are given by the well-known grating equations, which can be obtained from
Eq. (35) if we write oy = knsinf; in region I and oy = knyprsin 6, in IIL

We are normally interested in the power that propagates with a par-
ticular diffracted wave. The diffraction efficiency #; of Ith diffacted order
is obtained if we divide the z-component of the Poynting vector associated

with this order by that of the incident wave. For reflected orders we get

m = (ri/ro) |Ri*, (55)
and for transmitted orders

m= (t/re) IT1I . (56)

17



For a dielectric grating the sum of the efficiencies of all reflected and trans-
mitted orders is unity, which is an expression of energy conservation.

The rigorous method given above for the analysis of diffraction gratings
again requires some straightforward programming, and yet again we may use
optical path considerations to obtain approximate results. If the incident
wave is paraxial (sinf ~ §) and the materials in regions I-III are dielectric,

we obtain a spatially variable, periodic phase-delay profile
¢(z) = khyfe (z) = khn(z), (57)

and the complex amplitudes T}, of the transmitted orders are then obtained,
by inverting Eq. (38} in the plane z = &, from

Tw = %/0 exp [i¢(x)] exp (—i2nz/d) dx. (58)

We compare the predictions of the rigorous and the approximate approaches
in Fig. 4 for a binary profile with n; = 1.5, ¢, = 2.25 when 0 < z < d/2,
€& =1 whendf2 <z <d ny=1,8=0,and h = A\. The prediction of
the approximate model is that 7, = 40.5% and 7, = 0 irrespective of d/),
and we see that the approximate model is adequate when the length of the

grating period is at least a few wavelengths.

5 Amplitude transmittance method

The rigorously calculated results given in Fig. 4 show that in many in-
stances it is appropriate to use approximate methods based on optical path
calculations. In general, if the (possibly complex) refractive index of the
modulated region is given by n(z,¥,2), 0 < z < h, we may introduce a

complex-amplitude transmission function
h
t(z,y) = exp [ik/ n(:r:,y,z)dz] (59)
0

such that
UIdII(zaysh') = t(l‘, y)Ui(ma y,ﬂ) (60)

18
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Figure 4: Rigorously calculated diffraction efficiencies of orders m = 0 and
m = 1 for a binary grating as a function of the grating period d (normalized
to wavelength A.

If the element is sufficiently thin and its features are sufficiently large com-
pared to the wavelength, this amplitude transmittance approach gives useful
results for periodic and non-periodic elements alike.

It should be stressed, however, that the range of validity of this approach
depends very much on the type of profile investigated, and that the binary
case considered in Fig. 4 is among the least critical in this respect. Let
us consider a Q-level dielectric surface-relief grating with n{z,z) = n if
z < h{z), n(z,z) = 1 elsewhere, and h{z)} = h(g — 1)/Q when d(g — 1)/Q <
z < dg/Q. A straightforward calculation gives

1 1—exp{—i2n[h(n—1)/A +m]} 2
Qexp {2 {h(n - 1)/A +m} /Q} — 1| ’

where sinc(z) = sin (nz) / (wz). The ratio that appears in Eq. (61) is < 1,

7 = sinc? (m/Q) (61)

and it approaches unity when 27 [h{n — 1)/A + m| — 0. Hence the maxi-

mum {minus) first-order efliciency of a Q-level staircase grating is
n_1 = sinc® (1/Q). (62)

For a binary grating we have n_, =~ 40.5%, for a four-level grating 5, =~
81%, for an eight-level grating 5_, =~ 95%, etc. When @ — oo, i.e., we obtain
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Figure 5: First-order diffraction efficiencies of stair-step gratings with four
(solid line) and 16 (dashed line) levels, calculated with rigorous diffraction
theory, and approximation given by a Beckmann-type model.

a triangular profile, n_; — 1. Figure 6 gives the rigorously calculated results,
which show a complete failure of the approximate model when d/) = 2, and
a relatively slow convergence towards the complex-amplitude transmittance

results when d/A is increased.

6 Synthesis approaches

Let us denote by U, a field that satisfies the signal function s in W at least
within the tolerances of the application. If W is a section of some plane
z = z, and we know U, in it, the methods of sect. 2 may be applied to de-
termine the field distribution U,(x,y,0) across the exit plane of the element
(confined between » = —h and z = 0). It appears that the remaining task is
to find a diffractive element that transforms the incident field U;(z,y, —h)
into U,{(z,y,0) at least within a proportionality factor. Hence, in view of
the complex-amplitude transmittance approach, we should realize a trans-

mittance

U,(z,y,0)

Ut‘(x: Y, -h’) (63)

tz,y) = a
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where « is chosen such that |t(z,y)] < 1 for all z and y (in a passive
diffractive element we have no amplification).

We note that it is, in general, not a trivial matter to determine U, from s
if only the intensity is fixed in W by s. A constant phase could be chosen, but
then U,(z,y,0) will have a high intensity near the axis, and weak off-axis
components that nevertheless contain most of the important information
about U,(z,¥, z,). This situation is well known in holography, and is highly
unsatisfactory in view of Eq. (63), because the factor o is determined by
the dc peak and a lot of attenuation is needed to obtain a linear recording
of the important off-axis information.

In holography one typically employs diffuse illumination to smooth the
intensity of U,(z,y,0). Following this lead, we could introduce a random
phase in U,{z,y, z,). However, then a significant portion of U,(z,y,0) may
fall outside the finite aperture of the diffractive element and we obtain
speckle-like intensity variations, also well known in holography. What we
therefore need is a signal-dependent phase that makes U,(z,y,z,) essen-
tially band-limited, i.e., |U,(z,¥,0)| is confined within the permitted aper-
ture of the element. Practical methods of designing the phase of U,(z,y, z.)
have been described by Wyrowski and Bryngdahl (1989), and by Brauer,
Wyrowski, and Bryngdah! (1991).

In view of Eq. (63), we need in general an element with continuous
attenuation and phase-delay profiles. It is possible to fabricate such elements
(Chu, Fienup, and Goodman, 1973), but it is difficult to reach a sufficient
accuracy. One would prefer elements with more restricted structure. First,
in view of fabrication considerations, it would be convenient to have no
attenuation at all, because then a surface-relief profile alone would suffice.
Second, one would often like to quantize the surface-relief profile, permitting
perhaps only two levels.

Any constraint on the structure of the element will undoubtedly lead to
a diffracted field

Us(z,y,0) = t(x, y)U;(z,y, —h) # U.(z,9,0) (64)
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If we now propagate Uy into the plane z == Z,, we obtain a field of the form
Ud(m: Y, z,) = Ua(l‘: /P Z,) + Uf(x,y, zu) (65)

where Uy represents noise. This noise is of no concern if it vanishes inside W.
Therefore our objective must be to achieve this situation by modification of
the diffractive structure. This procedure is known as coding.

An effective approach to coding is the use of a carrier grating to divide
the incident field into several diffraction orders, of which we utilize one
(typically the strongest diffracted order) and therefore move W off-axis. We
encode the amplitude and phase of the ratio U.(z,y,0)/Udz,y, —h) into
local variations of the diffraction efficiency and phase of the chosen carrier
order, respectively.

1t is not difficult to prove analytically, or to see by geometrical construc-
tion, that a shift of the carrier-grating structure by an amount Az in the
z-direction will modify the phase of mth diffraction order according to

Bl = bm — 2rmAz/d, (66)

where d is the period of the carrier grating. This result holds quite rigor-
ously, irrespective of the structure of the grating period, and it is known
as Lohmann’s detour-phase principle for Lohmann was the first to use it
in coding (Brown and Lohmann, 1966; Lohmann and Paris, 1967). Equa-
tion (66) shows that we can modulate the phase of, e.g, the first diffraction
order at will by local modulation of the shift Az. For example, a binary
surface-relief grating with a first-order efficiency of 40.5% can be used as a
carrier, and coding of the amplitude information is achieved through a local

variation of the aspect ratio (groove width/period) since
4,
M1 = sin (me/d), (67)

where we have assumed a groove depth & = A/(n — 1). In two-dimensional
modulation of the carrier grating it is convenient to divide the element into

stripes and apply phase and amplitude modulation to each stripe separately.
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The diffraction efficiency and also the signal-to-noise ratio within W can
be improved significantly by iterative coding schemes, which make use of the
design freedoms introduced in sect. 1. There are two géneral approaches to
iterative solution of the synthesis problem. We call these the direct approach
and the inverse approach. In both we make use of a merit function, which
measures the quality of the solution.

In the direct approach we first define a type of microstructure that we
are able to manufacture. This structure contains a set of parameters that
may each take at least two different values. We then try to obtain s in
W by making modifications in this set of parameters and by observing the
effects of such modifications in the merit function. Typically we first choose
a random parameter set and evaluate the merit function associated with
this configuration. Then we begin an optimization process, in which the pa-
rameters are modified according to some coherent strategy until the merit
function reaches a satisfactory value or the process stagnates. Any optimiza-
tion scheme (gradient algorithms, simulated annealing, genetic algorithms,
etc.) may be used. Of course, the numerical efficiency may depend critically
on the choice of the optimization scheme and also upon the skill of numer-
ical implementation. However, from a fundamental point of view, these
are secondary considerations compared to the choice of the merit function,
which should simultaneously account for the available degrees of freedom
and the constraints of the synthesis problem. Since the merit function is
defined only inside W, the amplitude freedom is effectively used throughout
the design procedure. The scale freedom can be accounted for by includ-
ing in the merit function a ya,ria.ble related to efficiency 1 and planning the
optimization strategy in such a manner that 5 is ultimately maximized.

In the inverse approach, we start from the signal wave U, in W. Once
U.(z,y,0) has been calculated, we determine a transmittance t{x,y) by re-
quiring that the constraints be satisfied. Then we calculate Us(z,y,0) =
t(z,y)U.(z,y, —h) and compute the field in W. If this new field satisfies the

signal function within the prescribed accuracy, the process is stopped. If
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not, we modify it such that s is satisfied within W, using some or all of the
available freedoms to avoid exceedingly drastic changes (for example, if only
the intensity is fixed, we leave the phase unchanged). Then we return to the
plane z = 0 and continue the iteration until a satisfactory solution is found
or the process stagnates. We stress that it is not necessary to demand that
the constraints in z = 0 be fully satisfied in the beginning stages of the pro-
cedure. For example, if we wish to design an element with a binary-valued
t(z,y), it has proved beneficial to introduce the constraints gradually during
the iteration (Wyrowski, 1989).

If we compare the direct and the inverse approaches, the strength of
the direct scheme is that it is available whenever we are able to determine
the response of the diffractive structure either analytically or numerically.
The inverse approach, on the other hand, is applicable only if the complex-
amplitude transmittance approach is valid. However, within its domain of
applicability, the inverse approach is numerically much more efficient than
the direct approach, not least because the Fast Fourier Transform (FFT)

algorithm may be used to evaluate the Fresnel and Fraunhofer propagation
integrals in a highly efficient parallel fashion.
We now proceed to apply these synthesis methods to some selected ap-

plications.

7 Design of diffractive lenses

It is sometimes possible to ignore the amplitude modulation altogether with-
out causing error in the signal. For example, if we wish to focus U;(z,y, —h)
into a spot, the essential point is to transform its phase profile into a perfect
spherical profile with a radius of curvature equal to z,. Hence, in view of

Fig. 6, the phase of {(x,y) should be

#(o,) = k (20— oo+ V) -uglUa R (69)
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Figure 6: Focusing of an incident wave into a spot by a diffractive lens of
focal length f = z,.

Note that we have permitted here an aberrated incident wave, and that
a diffractive element can straightforwardly compensate for the aberrations.

Very often the incident wave is a plane wave, and then we have

o(ry =k (z_, — /22 + 1'2) , (69)

where r = /7% +%?. In what follows, we assume this to be the case for
simplicity.

An element that generates the required phase transformation can be
constructed, e.g., by means of Lohmann’s detour-phase principle, Eq. (66),
if we consider a circular grating instead of a linear one and vary the radial
shift Ar in a monotonic manner. This implies that the local grating period

becomes a simple function of r:
A
V1+(z/r)?

In general, the phase profile ¢(z,y) and the local grating period are related

d(r) = (70)

through
& 2T

el ()

d(xs y) =
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The local efficiency of a Q-level quantized circular grating is given by
Eq. (61) as long as d(r) > A, but if this is not the case (a high numerical
aperture} we can estimate the local efficiency from Fig. 5. Now, because
we consider a circular grating with a variable period, the directions of the
diffraction orders will vary with position r and generate a set of converging
and diverging spherical waves (only the zeroth order generates a plane wave).
The undesired waves will, of course, interfere with the desired spot at z = z,,
but their influence is greatly reduced by the fact that the radii of curvature
are different. Therefore, in the case of diffractive lenses, it is not usually
necessary to introduce an additional linear carrier frequency to avoid the
overlap.

Very often one is interested in the performance of a diffractive lens over
some finite field of view. We may apply the grating equation and Eq. (71)

to obtain ray-tracing equations for diffractive surfaces:

nysind,, . = nysinf, + %a—iﬁﬁ(ma y), (72)
0 — i m
nysind,, = n;sinf, + ?a—yﬂfﬂ, Y}, (73)

where n, and n, are the refractive indices of the media behind and in front
of the diffractive surface, respectively, the primed angles are related to the
diffracted ray, the unprimed angles to the incident ray, and m is the index
of the diffraction order. Note that with m = 0, or if ¢(x,y) is constant,
we have Snell’s law. The ray-tracing equations can be used to calculate
spot diagrams for diffractive lenses even if the diffractive surface is part of
some hybrid system, which alse contains refractive and reflective surfaces.
Point spread functions of diffractive lenses can be computed by application
of the angular-spectrum approach to the transmitted field, or by the Fresnel
propagation formula in the paraxial case.

If the performance of a diffractive lens (or a hybrid system) is not sat-

isfactory over the desired field of view, we may attempt to improve the
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Figure 7: Diffractive lens in an exact Fourier-transforming configuration,
suitable for, e.g., laser scanning.

situation by adding to the phase function ¢(xz,y) a correction term

¢c(z,y) =k Z CpaT Y, (74)

g

where c,, are parameters that may be optimized using a lens design pro-
gram that contains the diffractive ray-tracing equations (most commercial
programs do). From a fabrication point of view, the addition of ¢.(z,y) is
no complication. Therefore a diffractive surface can act much like a refrac-
tive surface with arbitrary aspheric coefficients, and this provides an idea of
the improvements possible by inclusion of diffractive surfaces in an optical
system.

There is an alternative approach to the design of diffractive lenses, which
is somewhat more restricted in scope (it is difficult to treat hybrid systems)
but bas considerable theoretical appeal {(Winick and Fienup, 1983; Ced-
erquist and Fienup, 1987). We proceed to describe this method in a general
level, using the configuration in Fig. 7 as an illustrative example.

In lens design we typically face a number of competing demands, and look
for a balance between them. These demands can be formally indexed by a

parameter p (the angle of incidence in Fig. 7). It is typically straightforward

27



to find a configuration, which is at least in some sense ideal for a single value
of p, and we denote this by ¢(zx, y; p). Typically the incident field at z = —h
is a function of p, and we therefore introduce the notation P(z,y;p) =
|Ui(z,y, —h;p)|. Furthermore, we define a weight function W (p), which
permits us to emphasize some values of p.

Let ¢(z,y) denote the compromise phase delay that we wish to optimize

by minimization of the norm (merit function)
E= [ [" Wo)Pe,vin) 6(z,0) - 4o, dndydp.  (75)
The variation of E,
oE=2 [ [ We)P(e,:0) 6(2.9) - #(2,:9)) 66(z,v)dadydp, (70

reaches an extremum when §F = . For an arbitrary é¢(z,y), this yields

[ WoIPa s ey - oz v ap @

Hence -
I W(p)P(z,y; p)d(z, y; p)dp

JZ W(p)P(z, y; p)dp
represents the best compromise between ¢(x,y;p) in terms of the norm E

and the weight function W(p).

(78)

#(z,y) =

8 Design of array illuminators

An array illuminator, or a multiple beam splitter, is an element capable of
dividing an incident wave into a specified number of output waves with a
specified power distribution. These output waves propagate into different
directions and separate spatially after propagating a sufficient distance away
from the element. Now the signal s is the distribution of spot intensities in
some signal window W. Since the spots are required to be separate, no
speckle problems will arise and therefore phase freedom is completely avail-

able in the design. Because s is a discrete set of spots, we are tempted
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Figure 8: The structure of one period of an array illuminator that can gen-
erate 64 x 32 equal-efficiency diffraction orders with a diffraction efficiency
n = 75%.

to use periodic diffractive elements in this application: a periodic element
will generate a set of diffraction orders, which will separate spatially upon
propagation in free space if at least a few periods of the element are illu-
minated by a wave with a reasonably planar phase front. When a lens is
placed behind such a periodic element, the diffraction orders give rise to
spots in the back focal plane of the lens. The exact intensity distribution of
the incident field will not influence the relative intensities of the spots, given
by the efficiencies 7,, of the diffraction orders of the grating. The efficiencies
are determined by the internal structure of the grating period, and its opti-
mization is therefore the central problem in the design of array illuminaters
of this type (for a discussion of other types of array illuminator, see Streibl,
1989). It is more than appropriate to cite the contributions of Dammann
(Dammann and Gortler, 1971; Dammann and Klotz, 1978} to the design of
array illuminators at this point.

In the paraxial domain, we may use either direct or inverse synthesis

schemes to design array illuminators. Here the use of design freedoms is
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perhaps more explicit than in any other application discussed above or be-
low. As already mentioned, the phase freedom is completely available. This
permits us to achieve high diffraction efficiencies 7, i.e., to minimize the use
of scale freedom. The use of amplitude freedom remains necessary, and it
leads to non-zero values of the efficiencies of higher diffraction orders out-
side W. Figure 8 shows the structure of a binary surface-relief type array
illuminator that can generate an array of 64 x 32 equal-intensity diffraction
orders in the paraxial domain (Vasara et al, 1992). The black and white
areas distinguish phase-delay values of zero and w. This particular struc-
ture was obtained by a direct approach based on optimization of parameters
that define the trapezoidal features in the profile by the method of simulated
annealing. The diffraction efficiency of the structure is 5 = 75%. Rather
similar structures can be designed by iterative inverse methods at a greatly
reduced computational cost.

We chose not to present a picture of the pattern generated by the element
depicted in Fig. 8, fearing that the reproduction would not do justice to the
actual fidelity. Instead, we show in Fig. 9 the 32 x 16 array of spots generated
by another element with a somewhat simpler structure. Note the higher
orders outside the array (i.e., the signal window W), which together contain
some 25% of the incident optical energy. Note also the central zeroth-order
spot, which is a results of a slight relief depth error.

The efficiency 5 into the array may, as expected in view of the consid-
erations given above, be increased if we employ multilevel instead of binary
surface-relief profiles. This is illustrated in Fig. 10. The replacement of a bi-
nary profile in (a) by a 16-level profile in (b) greatly reduces the noise outside
W but is seen to simultaneously degrade the signal fidelity in W. The latter,
however, if only a consequence of a more complicated fabrication procedure,
which involves alignment of masks between adjacent lithographic steps (see
the fabrication section below)}. The efficiency of the 16-level element is the-
oretically some 95% and in experimental realization ~ 90% (Miller et al.,
1993).
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Figure 9: An array of 32 x 16 spots generated by a binary surface-relief

element of the type shown in the previous figure.

The results given above apply to elements that operate in the paraxial
domain of diffractive optics, i.e., the diffraction angles involved must be
small. However, one increasingly wishes to have multiple beam splitters with
large deflection angles, for example to divide the incident beam into two or
more diffracted beams that can propagate within a substrate material along
zig-zag paths by means of total internal reflection. This requires deflection
angles of ~ 45 degrees, and therefore the application of rigorous diffraction
theory is required (Noponen and Turunen, 1994a).

In the non-paraxial domain the application of rigorous theory can break
some significant boundaries. For example, it is possible to design array
illuminators with n = 100% (Noponen et al., 1992) at least if the substrate
is made of a perfectly conducting material and the period is chosen such that
all propagating orders are included in the signal. In this case phase freedom
and the amplitude freedom of evanescent waves (which do not carry energy)
are used in the design procedure. The upper bound for diffraction efficiency

(Wyrowski, 1991) is exceeded, but this is not a surprise because we no longer
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Figure 10: An experimental cross section of a 32-beam array generated by
an element with (a) a binary and (b) 16-level surface-relief profile.

operate in the paraxial domain and the complex-amplitude transmittance

method is not applicable.

9 Synthesis of subwavelength-period

diffractive elements

Let us consider a grating with a period d that is smaller than the optical
wavelength in the substrate material. Then, in view of the grating equation,
a normally incident plane wave can not generate any diffracted orders but is
divided into forward and backward-propagating zeroth-order plane waves.
The amplitudes of these two waves depend critically on the structure of the
subwavelength-period grating and on the state of polarization of the incident
plane wave. In fact, the effect of the subwavelength grating is somewhat

similar to that of a multilayer thin film deposited on the surface.
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Figure 11: Subwavelength-period gratings. (a) Binary grating. (b) Trian-
gular grating.

If d < A, the properties of the subwavelength-period grating can be
predicted rather accurately by means of the lowest-order theory of form
birefringence (Born and Wolf, 1980, pp. 705—708). Rather elementary, yet
ingenious considerations of Maxwell’s equations lead to the resuit that in
the geometry of Fig. 11(a) the effective refractive index within the grating
is given by

ny = [ne/d +n3(1 ~ c/d)]"", (79)

whereas for TM polarization it is given by

_ T
= [n2c/d + n2(1 — c/d)]/* (80)

This means that the subwavelength-period grating will act like a uniaxial

anisotropic crystal although the grating material is strictly isotropic.

The predictions of the zeroth-order theory of form birefringence may be
refined by a number of techniques; ultimately, only the rigorous theory of
gratings can give correct results. It is noteworthy, however, that the zeroth-
order results hold quite well provided that d < A by only a small margin.
This leads to several important applications that are discussed below.

Let us first consider the effective birefringence revealed by Egs. (79)

and (80). If we ignore boundary effects (which we can show to be a good
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approximation by means of rigorous diffraction theory), this difference in TE
and TM effective indices permits a straightforward generation of polarization
components such as quarter-wave and half-wave plates by a suitable choice
of the grating depth h (Cescato et al., 1990).

Let us next consider a single state of polarization and notice that, in
view of Eq. (79) or Eq. (80), we can achieve any desired effective refractive
index by a control of the grating’s aspect ratio c¢/d. Remembering from the
theory of thin dielectric films the fact that a layer of thickness A/(4n) with
refractive index n = \/mn,; will yield zero reflectivity, we can identify an
antireflection property of binary subwavelength-period gratings for a given
state of linear polarization. This prediction is again verified, to a good
approximation, by rigorous diffraction theory.

Wide-band antireflection coatings with a wide angular acceptance can
be achieved by subwavelength-period gratings if we employ triangular (or
nearly so) profiles instead of binary profiles (see Fig. 11b). To explain this
phenomenon, we imagine that the grating be sliced into segments in the
depth direction. The effective index of each segment is then determined by
Egs. (79) and (80), being close to n; and n, near the top and the bottom
of the structure, respectively. Hence we achieve a gradual index transition
from n, to n; through the effect of the microstructure. Such a tapered index
modulation will lead to low reflectance across wide angular and wavelength
bands (Raguin and Morris, 1993).

Equations (79) and (80) also indicate an interesting possibility to mod-
ulate the phase of the transmitted zeroth diffraction order by control of the
local aspect ratio of a subwavelength-period grating. This technique was
introduced independently by Stork et al. (1991) and Farn (1992). In prin-
ciple, it permits the realization of any phase transformation in the paraxial
domain (see Noponen and Turunen, 1994b, for an investigation of the limits
of applicability evaluated by rigorous diffraction theory). The drawback of
this approach is the high ratio of the profile depth and the smallest lateral

feature size.
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10 Fabrication methods

Thus far we have considered only the design of diffractive elements. However,
the fabrication is an equally important issue.

Currently there are two major approaches for the fabrication of diffrac-
tive elements: optical interferometry (holography) and the microlithographic
technology adopted from the manufacture of integrated electronic circuits.
These schemes may also be combined such that an element fabricated by
lithography is used, with spatial filtering, as an object for interferometric
recording (Bartelt and Case, 1982). We concentrate on the lithographic
scheme, mainly because the holographic method has been discussed in great
detail elsewhere (Collier, Burckhardt, and Lin, 1971). We emphasize, how-
ever, that the holographic scheme remains the only feasible method in some
instances, e.g., if the complexity of the signal is such that the diffractive
profile can not be synthesized mathematica]ly. because of the high compu-
tational cost.

In the early stages of the development of the mathematical synthesis
of diffractive elements the most common methods of realization were based
on computer-controlled plotters capable of submillimeter resolution (hence
the term computer-generated hologram) and photoreduction to provide a
resolution of some 100 line pairs per millimeter. Therefore the elements
were restricted strictly to the paraxial domain.

The commonly available laser printers are today specified to have a res-
olution of 300 or 600 dots per inch. Unfortunately, these resolution figures
are of rather cosmetic nature from the viewpoint of diffractive optics, be-
cause they bear no relationship to the actual resolution of small features,
measured in lines per millimeter; only the edges of larger features can in
practice be defined at an accuracy approaching these figures.

The methods described above are capable of creating black-and-white
{and perhaps grey-tone) transparencies. If used as diffractive elements, these

have low efficiencies 7. To improve 7, we need to convert the amplitude
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Figure 12: Material removal and material deposition techniques for fabri-

cating binary surface-relief profiles.

transmittance into a phase transmittance, which is traditionally done by
bleaching a silver-halide emulsion as is customary in holography. A nearly
four-fold increase in 7 is easily achieved, but the problem of restricted reso-
lution remains.

The great advances that have taken place in the manufacture of diffrac-
tive elements since the beginning of the era are largely due to the intro-
duction of lithographic microfabrication technology into the generation of
surface profiles. These techniques can be divided into two broad classes, i.e.,
material removal and material deposition, which are illustrated in Fig. 12.

The techniques illustrated in Fig. 12 are based on the use of binary

amplitude masks with a structure that corresponds to the desired binary
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surface-relief profile. Such masks can be fabricated by optical or electron-
beam pattern generators that are in standard use in electronic circuit man-
ufacturing technology. Once the mask is fabricated, it is placed in contact
with a photoresist-coated substrate, or imaged onto it by a high-quality step-
per lens. The resist is exposed by ultraviolet illumination and subsequently
developed to reveal the substrate in the exposed regions.

In the material-removal scheme the selectively resist-coated substrate is
placed in a vacuum chamber and etched, e.g., by means of ion bombardment.
Once the required depth is achieved, the resist is removed and we have a
binary surface-relief structure. In material deposition, thin-film manufac-
turing technology is used to grow a film of the required shickness onto the
substrate. As long as the resist thickness is greater than that of the film,
the resist removal process will also “lift off” those parts of the layer grown
on top of the resist and we again have a binary structure.

The lithographic process can be repeated a desired number of times to
create multilevel surface-relief profiles as illustrated in Fig. 13. The existing
profile is resist-coated and a new mask with a different structure is intro-
duced. In general, Q lithography steps will give a profile with 29 discrete
levels. The main difficulty is the optical alignment of the masks between
the lithography steps, in which an accuracy better than ~ 0.5 pm can only
be achieved with difficulty.

The fabrication methods described above appear attractive, because they
utilize lithographic technology known to be cost-effective in electronic circuit
tabrication. There are also direct-write methods capable of generating con-
tinuous surface-relief profiles by controlled-dose laser beam exposure (Gale et
al., 1992) and electron-beam exposure (Nishihara and Suhara, 1987). Such
direct-write techniques appear quite expensive at first sight. However, they
can be used to generate a master element that may be copied in large quan-
tities by methods such as embossing. For more details on diffractive-optics
fabrication technology, see Herzig et al. (1993).

Thus far we have only discussed passive diffractive elements, ie., ele-
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Figure 13: Fabrication of a four-level diffractive element.

ments with fixed signals. It would, or course; be of great interest to have
the capability of modifying s in real time. This can be achieved by means
of spatial light modulators, i.e., devices that modulate some property of
the incident field (amplitude, phase, or state of polarization}). In diffrac-
tive optics, phase modulation is of greatest interest, and it can be achieved,
e.g., by liquid crystal devices (Amako and Sonehara, 1992). Unfortunately.
amplitude modulation remains commercially more important because of dis-
play applications, and therefore phase-modulating liquid-crustal spatial light
modulators are still at an experimental stage. Compared to fixed diffrac-
tive elements, the main drawback of these devices is the large pixel size
(~ 50 x 50 pm?).

11 Integration of diffractive elements

The great technological impact of electronics in the latter half of this century
is largely due to integration of many electronic components into a single de-
vice capable of performing many different functions. It is not inconceivable

that optical components could be integrated in a similar fashion, and this

38



line of thought led to the concept of guided-wave integrated optics some 25
years ago (Miller, 1969). In guided-wave integrated optics, optical compo-
nents control the propagation of guided waves that are confined in a thin
high-index dielectric layer fabricated on top of a low-index substrate. It is
straightforward to fabricate diffractive elements for waveguide optics: the
effective refractive index is modulated, e.g., by means of a suitably shaped
cover layer. Elements such as diffractive lenses can be realized in this manner
(Nishihara and Suhara, 1987).

The greatest difference between “free-space” and guided-wave diffrac-
tive elements is that in the latter the refractive-index modulation is only
An ~ 0.01 — 0.1, or even less. Hence volume diffraction effects can be quite
significant and sophisticated design of the local grating profile is needed to
design high-efficiency, high numerical aperture diffractive lenses (Huttunen,
Turunen, and Saarinen, 1994).

Active diffractive elements for guided-wave optics can be realized most
conveniently by launching a surface acoustic wave across the beam path by
means of an interdigital transducer (Tsai, 1990). This permits deflection
and scanning of guided waves, reconfigurable beam splitting, and various
routing operations for optical switching. A review of the use of gratings in
guided-wave optics is given by Suhara and Nishihara (1986).

The main disadvantage of guided-wave optics in integration of optical
components is that it restricts optics to two dimensions. However, there are
methods of integration that avoid this loss of the third dimension.

In stacked optics (Iga et al., 1982) arrays of optical elements such as
lenses are fabricated and the substrates are stacked together to form a
solid block. Originally this scheme was introduced as an application of
graded-index microlens arrays to perform operations such as fiber-array to
fiber-array coupling (Fig. 14} but diffractive lenses could be used instead of
gradient-index lenses and various other configurations and applications are
possible.

If, instead of coupling light into a thin waveguide, we let it propagate in-
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Figure 14: Coupling of light between two fiber arrays by means of stacked
optics (Iga et al., 1982).

side a substrate of thickness ~ 1 mm as illustrated in Fig. 15 and control the
propagation by elements fabricated on top of the substrate, we may speak
of substrate-mode optics (Brenner and Sauer, 1988; Kostuk et al., 1989)
or planar-integrated optics (Jahns and Huang, 1989). This relatively new
but very promising approach has been used, e.g., to demonstrate an inte-
grated optical array illuminator (Downs and Jahns, 1990}, a split-and-shift
module (Jahns and Brumback, 1990), and integrated optical interconnection
modules (Sauer, 1989; Walker et al., 1993).

12 Conclusions

In this brief tutorial we have been able cover only some of the issues im-
portant in diffractive optics, and have completely ignored most of its ap-
plications. However, it is hoped that the great scientific, technical, and
commercial potential of diffractive optics has become clear: since diffractive
optics is a significant extension of classical refractive and reflective optics,

its role in modern technology can only expand in the future.
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Figure 15: Principle of planar-integrated optics: light propagates inside a
substrate and is controlled by diffractive elements fabricated on the surface.
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