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1) INTRODUCTION

The kind of light we normally encounter in everyday life is partially coherent. It js
neither strictly predictable like an idealized monochromatic field nor totally disordered. The
field fluctuations possess a certain degree of correlation both in time and in space. Strange
as it may sound at first, it is precisely this often minute amount of correlation that carries the
most important information contained in the light field. In addition, the quantity of
information to be found in the field is usually very large. So large, in fact, that even
nowadays, in spite of the great advances in optical technology, its practical registration is a
challenging task. While you can use holography (o freeze and recreate a coherent wavefront
passing through remarkably large areas, no one knows how to record and repreduce, in a
sensible way, the field coming from ordinary objects (trees, mountains, ...} under the light
of sun and passing through a window pane. This is an unsolved problem of contemporary
optics.

The theory of partially coherent fields or briefly the coherence theory received its
modern formulation through several fundamental papers by E. Wolf. An exposition of these
results can be found in ref. 1. Further general readings are refs. 2 and 3. Today, coherence
theory includes an impressive amount of knowledge thanks to the works of a large number
of authors in the course of some thirty years. The interest in researches dealing with partially
coherent fields is far from subsiding and many new results keep appearing in the scientific
literature. Of course, we cannot give a complete account of the present state of the theory in
these introductory notes. We would like, however, to give the reader some flavour of
current researches. To this aim, we choose the following plan. After an intuitive
introduction, we shall present a brief summary of the foundations of the theory as well as
some of its most traditional applications. We shall then discuss basic elements of more
recent develupments, notably the space-frequency domain approach. After describing the
space frequency domain approach, which is currently used in investigations on coherence
theory, we shall concentrate on some prepagation phefiomena. In particular, we shall
discuss how the correlation properties of the source affect the measurement of the spectrum
of the radiation field.

2) AN INTUITIVE INTRODUCTION TO COHERENCE
2.1) The speckle model

As well known, most objects under illumination with coherent light such as that
produced by a laser give rise to a scattered field exhibiting a granular appearance known as
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speckling. Such phenomenon can be interpreted as a random interference among the
wavelets coming from different points of the scatterer. To be more specific, let us refer to
the scheme of fig. 2.1.1. A ground glass is hit by a laser beam and the transmitted light is
observed on a screen S at a distance z from the scatterer. We assume that the diameter, say
d, of the laser spot on the glass is much smaller than z. We further assume that the grooves
on the glass have a depth much larger than the wavelength, say A, of the radiation field. Let
us divide the surface of the scatterer into tiny areas within which the optical path through the
glass may be considered to be constant. The phases of the wavelels emerging from the
various areas are randomly distributed between 0 and 2rx. In order to obtain a rough estimate
of the speckle size, let us consider the wavelets coming from two certain areas. Two such
wavelets produce, by themselves, Young fringes. When all the wavelets emerging from the
scatterer are simultanecusly considered, we can think of the resulting

scatterer

\

laser beam
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fig. 2.1.1

pattern as a superposition of a large set of Young fringes with various orientations and
spacings that further interfere with one another. As a result, speckles appear and we can
assume that their width is roughty equal to some mean spacing of the undetlying Young
fringes. Such a spacing can be estimated by taking two areas at a mutual distance equal to,
say, d/2. They give fringes whose width L is (see fig. 2.1.1 for notations)

2hz
T. (2.L1)
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and this is also an estimate of the speckle size.

Let us refer to an ensemble of realizations of our scattering experiment. At a typical
point on §; the field behaves as a random, zero mean variable. Use of the central limit
theorem suggests that this variable is of the gaussian type. The existence of speckles reveals
that such a random variable cannot change too rapidly on the screen. If we consider two

points whose distance is smaller than the speckle size we expect the ficld values at those
points to be highly correlated on an ensemble average. In other words, the mean area of a
speckle can be considered as a visualization of the correlation area for the field.

For a more complete description, we introduce the spatial correlation function C(ry,
ry) of the speckle field at two points with radius vectors ry and r;

C(r,,r2)=(V{rl)V*{r2)>‘ (21.2)

where V is the scalar disturbance describing the spatial part of the monochromatic field. The
angular brackets denote an ensemble average and the asterisk stands for complex conjugate.
To get rid of trivial factors depending on the overall power of the field, one introduces the

following normalized version of the correlation function

C(r,.rz)

——t (2.L.3
C(rl,rl)C(rz,rz)

c(r|,rz)=

It will be noted that the functions appearing in the denominator simply give the averaged

intensity at the two points, or
2 .
Clry.r;) =<|V(rj}| >=<lj>, (j=12). (2.1.4)
The following inequality can be proved

0s|cfre) <1 (2.1.5)

The function ¢ whose modulus can be taken as a measure of the correlation between the
disturbances at ry and r is termed degree of correlation.

We can evaluate the function C for a geometry of the form illustrated in fig. 2.1.1.
Let V{p) be the field distribution across the scatterer plane (see fig, 2.1.2). The field V,(r)
on §, can be computed, in the paraxial approximation, through the well known Fresnel
integral

- ik2 i N
Vz(r)=—";1 J volp)e . (2.1.6)

where k=2m/A, We write V,(r;) and V,*(r;} by means of eq. (2.1.6) and average their
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product. Taking into account eq. (2.1.2}, the result can be written
ik 2 2
1 = ("1'91) ‘(fz-Pz]

Cz(r],rz) = WHCD(PIsPZ)C 21[ ] a’pyd’p; (2.L7)

where Cq and C, are the correlation functions at the scatterer and the observation plane,
respectively. Equation (2.1.7) is the propagation formula for the correlation function. The
evaluation of C, is traced back to that of Cg. The latter, in tum, depends on the features of
the scatterer. The simplest case occurs when the tiny areas of the scatterer in which the
optical path stays constant have negligible linear dimensions, say of the order of A. Then,
C; can be approximated by

Co(P1,Pz)= K<Iu(ﬂl))5(Pz"Px)~ (2.1.8)

where 8 is the Dirac function. As well known, when the Dirac 8-function is used to
approximate a weil behaving function attention must be paid to dimensional factors. In order
to obtain dimensionally correct results when eq. (2.1.8) is inserted into eq. (2.1.7), K must
have the dimensions of an area. The physical meaning of K is that of the correlation area on
the scatterer. According to our previous hypotheses, we set K=A2. As a conseguence, egs.
(2.1.7) and (2.1.8) give

%[f%"zz] LU
Cy(ryra)= °——za—j (lo(p))e ™ dp, (2.1.9)

where the suffix 1 in p; sas been dropped. Apart from the factor in front of the integral,
which does not depend on the scatterer, the correlation function C, is determined by the
Fourier transform of the averaged intensity distribution across the scatterer. Note that this
Fourier transform is to be evaluated at the spatial frequency (r|-r)A(Az). i. e., it depends on
ry and r; only through their difference. It is also worthwhile to observe that the Fourier
integral appearing in eq. (2.1.9) is reminiscent of Fraunhofer phenomena. Yet, we only
assurned to be in the Fresnel region. The quadratic terms in p and p, within the exponential
in eq. (2.1.7) disappear by virtue of eq. (2.1.8). If the far-zone hypothesis applies, eq.
{2.1.9) can be further simplified in that the exponential function in front of the integral can
be approximated by one.

As a simple example, we consider the case in which a circular region with diameter d

is uniformly illuminated on the scatterer with mean intensity (ID}. The integral in eq. (2.1.7)

is easily evaluated. Using eq. {2.1.3) we obtain the following degree of correlation

. nd
R )

¢frirs)=e% e, (2.1.10)

where I is the Bessel function of the first kind and order one. The first zero of ¢, is reached
for a certain value of r;-r3l, say Ir-r3ly such that the argument of J; is 3.83, or
383 Az

T

|['] - rziD = T

(2111

This can be taken as the radius of the correlation area in the neighbourhood of a typical
point. The corresponding diameter, namely, 2.42Az/d is in good agreement with the
elementary estimate (2.1.1).

2.2) Time varying speckles and partially coherent fields

Let us refer to the set-up deawn in fig. 2.2.1. The main difference with respect to the
case of fig. 2.1.1 is that the scatterer can be changed in time by setting the ground glass into
rotatory motion. If the motor rotates at a sufficiently low speed, we shall see the observation
screen swarming with changing speckles. On increasing the motor speed our eye will no
longer be able to follow the speckle change and the screen will appear uniformly
iltuminated. We have synthesized a spatially incoherent source, known as a pseudo-thermal
source. To a certain extent, this resembles an ordinary extended source such as a glow
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discharge lamp. It is to be noted that even if the light falling on the rotating ground glass
were perfectly monochromatic the scattered light would have a spectrum with non-zero
width because of the random phase modulation introduced by the moving glass. The
spectram width is an increasing function of the motor speed.

Other types of devices could be used for obtaining a similar result. For example, we
could use scattering from an assembly of tiny dielectric spheres suspended in a stirred
liquid. The above scheme is particularly simple in practice and has the advantage that the

{aser beam

fig. 2.2.1

rotating
ground glass

time evolution of the system can be interrupted simply by stopping the moter. We shall refer
to it in the following.

The light emerging from our pseudo-thermal source is partially coherent from both
the spatial and the temporal viewpoints. Although we do not see speckles any more, in a
sense they are still there. We can think that a sort of rain of three-dimensional speckles falls
on the observation screen. Their cross-section represents the so-called coherence area. The
values of the field at the same instant for two points within such an area have strongly
correlated time fluctuations. The extent of the speckles along z is generally termed the
coherence length and the time needed for light to travel this length is known as the coherence
time. This means that the field fluctuations at a certain point for two different instants remain
highly correlated until the separation between the instants does not exceed the coherence
time.

It is important to note the the simple trick of moving the ground glass has
considerably changed the primitive process, In our initial considerations, correlation was
defined in terms of averages over a suitable ensemble of realizations. Conceptually, time
played no role because in principle an arbitrarily high number of replicas of the experiment

could exist simultaneously. Once the scatterer is set into motion, time becomes a key
ingredient of the process and we look quite naturally at time rather than ensemble averages.
Roughly speaking, we have transformed our initial time independent process into a
stationary ergodic process. The new process, however, has some extra richness in that
besides spatial correlations temporal comelations were introduced. Of course, the temporal
correlation properties depend on the manner in which the time evolution is realized. For the
simple device of fig. 2.2.1, the coherence time is a decreasing function of the motor speed.
How can the correlation properties be put into evidence experimentally? Let us start
from the spatial correlations. We stop the motor and make two pinholes on the screen 3.

fig. 2.2.2

Then, we collect the light emerging from the pinholes on a second screen S; (fig. 222)
whose distance from S is large with respect to the pinhale separation. We first assume that
the pinhole separation is smaller than the speckle size. As a consequence, the field values of

the two pinholes have only slight differences in amplitude and phase. Good Young fringes
will be seen on S, although occasionally they can be very dim if the pinholes happen to be
in a dark region of the speckle pattern. Now, move the ground glass and stop it at a different
position. Again, good fringes will appear on Sy. Even if the amplitude and phase of the field
at each pinhole can vary considerably with respect to the previous case, the amplitude and
phase differences of the field values at the two pinholes remain small. Accordingly, the
contrast and the position of the fringes will be nearly identical to that of the previous pattern.
Therefore, when the ground glass is set into a continuos and fast motion good fringes will
survive on $, under time average. Although we do not see speckles on S, any longer, the
existence of a coherence area is revealed by the presence of the fringes.

We can now repeat the experiment with a pair of pinholes whose separation is much
greater than the speckle size. For cach still position of the ground glass we can see fringes.
However, passing from one position to another the fringes change. Sometimes, one of the



pinholes is located in a dark region while the other one is well lit. The fringes are scarcely
contrasted. Some other times, both pinholes are equally illuminated and good fringes
appear. In certain cases, the fieids at the pinholes are in phase and a bright fringe appears at
the carnser of the pattern. In other cases, they are in antiphase and each bright fringe is
rep -ved by a dark one. When the motor is powered up, all these different fringe systems
wasn our and we do not see any interference effect (on time average). The fields at the
pinnoles are incoherent. In conclusion, we can assess the spatial coherence properties using
as.~7, ‘(oung interferometer.

In order to see the effects of the temporal correlations we refer to the set-up of
fig.2.2.3. There is only one pinhole on 3. Light emerging from the pinhole is collimated
bya

fig. 2.2.3

¢ <l

converging lens and the resulting beam is fed into a Michelson interferometer. Because of
the change of the speckle pattern on S, the beam is temporally modulated. We can think of
it as a sequence of wavetrains. Within each wavetrain the field behaves as an approximately
sinusoidal signal whereas passing from one wavetrain to another random variations of
amplitude and phase occur. At the entrance beam-splitier, each wavetrain is divided into two
copies that go along the two arms. Suppose the path difference between the two arms is
smal] in comparison with the wavetrain length. At the output of the interferometer, each
copy of the wavetrains overlap with its twin. In this case, the fringe position on an
observation screen depends only on the geometry of the interferometer and does not change
from one wavetrain to the other although the fringe brightness can vary. On time average,
good fringes are seen. Suppose now that the path difference between the two arms is
increased until it becomes larger than the wavetrain length. Copies originated from different
wavetrains overlap at the output. The resulting fringes vary both in contrast and in position
because of the random changes of the field amplitude and phase when one input wavetrain is
replaced by the next one. On time average, the fringe pattern cancels out. From a practical
point of view, the path difference to be intreduced between the interferomeler arms may be

very large because the length of the wavetrains produced by our apparatus is considerable
bur this is conceptually immaterial.

The same interferometers can be used with light generated by an ordinary source.
Let us consider an extended thermal source, e.g., an incandescent body. We put in front of
it a narrowband filter (fig.2.2.4). Let Av be the allowed frequency band centered at some
mean frequency v, (Vo >> Av). What shall we see on the observation screen $,7 At any
time the source can be thought of as an assembly of independent pointlike radiators emitting
nearly menochromatic spherical waves with bandwidth Av whose amplitudes and phases
are randomly distributed. For a time span much smalier than 1/Av, the amplitude and phase
of each wave remains nearly constant. As a consequence, we expect speckles to be formed
across S;. We further expect the speckles to change as time goes on and becomes greater
than 1/Av. To a certain extent, this picture can be adopted even if the filter is removed. In
this case, Av becomes the bandwidth of the complete spectrum emitted by the source.

incoherent
source

fig. 2.2.4

L

narrowband
filter

In the course of time, a crowd of coherence cigars, so to say, fall on the screen §;. Each of
them has a cross-section equal to the coherence area and a longitudinal extent equal to the
coherence length. This is how we picture the light field arriving on the observation screen.
Is such a picture correct? Could we record the speckle pattemn that should be seenon S ina
sufficiently small time? Let us start by the second question. For a spectral lamp such as a
rare gas glow discharge the emitted spectrum is made up of separated lines. A typical line,
which can be isolated by means of a suitable filier, has a coherence length of the order of 10
cm, or equivalently, a coherence time of the order of some tenths of one nanosecond. We
should make our observation on a time interval smaller than this. This is not easy but could
be done. The main problem, however, is that with ordinary sources we could hardly record
anything on, say, a photographic emulsion after so short an exposure. As a matter of fact,
one finds that an ordinary thermal source distributes the energy of one photon among some

T



103-10% coherence cigars. Hence, there is not enough energy to record a speckle pattem in a
time interval shorter than the coherence time. Does this mean that our model is incorrect?
Well, it is correct in classical terms. Nevertheless, when quantization is taken into account
the optical intensity in a coherence cigar is to be thought of as proportional to the probability
of finding a photon. Although the above difficulty does not prevent the use of our model in
the classical theory, it makes practically impossible certain experiments. This is why many
experiments on coherence theory are performed using pseudo-thermal sources where,
thanks to the extremely high power emitted by lasers per unit bandwidth, such a difficulty

does not occur.

3) FUNDAMENTALS OF COHERENCE THEORY
3.1)  Analytic signal

After our introduction to an intuitive understanding of basic quantities of coherence
theory, we want (o describe in analytical terms the foundations of coherence theory.

Preliminarily, we need to recalt the standard way in which the complex formalism,
well known for monochromatic signals, can be extended to the polychromatic case. Let
U(P.t) be the real disturbance describing our field. We assume that it admits a Fourier

representation of the form

U(P.0) = J‘:(P,v)c’z’“‘”dv. (3.1.1)

In order to extend the complex formalism, we proceed in much the same way as with
sinusoidal signals. In that case, we associate to the real function cos(2mvt) =
[exp{2mivt)+exp(-2rivt}}/2 the complex representation exp(-27ivt). This is equivalent to
suppress the negative frequency term exp[-2mi(-v)t] and to double the other one. Doing the
same for the polychromatic signal, leads to the so-called analytic signal, namely,

V(P,t) = ZJu(P,v)e_z"i Yidy. (3.1.2)
0

We denote it by the same symbol V that was previously used for the spatial part of a
monochromatic field. Now, however, V is a function of both space and timc. The anatytic

signal can be given the form

V(P,I) = A(P,[) e—zrtivn 1+1@(P,) . (3.1.3)

where A e & are real functions termed amplitude and phase respectively, and v, is some
mean frequency of the field. Although valid for any field, expression (3.1.3) is particularly
meaningful for the so-called quasi-monochromatic case. This means that the function u(P,v)
is appreciably different from zero only in a frequency interval Av that is stnall with respect
to the mean frequency v,,. In that case, A and @ are slowly variable with respect to I/v, as

we shall see in a moment. On equating the right hand sides of eqgs. (3.1.2) and (3.1.3) we
obtain

A(P.1) PP = ju(P‘v)c_Z"“v'v")[dv. (3.1.4)
0

In particular, for =0 we have

A(P,0) T = ju(p,v) dv. {3.1.5)
i)

Note that the integrals in eqgs. (3.1.4) and (3.1.5) remain nearly equal to each other until the
exponential exp[-2mi(v-v }] is almost unity for all frequencies at which u(P,v) is

significantly different from zere. By virtue of the quasi-monochromaticity hypothesis
[u(P,v} vanishing outside a band Av centered at v,]. this bolds true for all values of t

satisfying the condition

tAv<<]. (3.1.6)

Therefore, A(P,1) e ®(P,t) can be significantly different from A(P,0) e ®(P.0} onily when t
is large enough to violate condition (3.1.6), say when t becomes of the order of

ts—, (3.1.7)
or greater than that. Because of the previous hypotheses (Av<<v,), we have

t 2>

i

1t . (3.1.8)
Av v,

In conclusion, in the quasi-monochromatic case the analytic signal written as in eq. (3.1.3)
takes on the form of a monochromatic signal undergoing a slow amplitude and phase

modulation.
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3.2) Mutual coherence function

Let us consider two points P| and P; in the wavefield and two instants t; and t;. The
mutual coherence function of the field at (Py, t,.) and (Py,t;) is defined ast+)

TPt P.ty) = (V(PLE )V ¥ (P 1)) (3.2.1)

where the angular brackets denote ensemble average. In most cases of interest the stochastic
process associated to V is stationary and ergodic. Then I" depends on t) and t; only through
their difference t =t; - t; and the ensemble average can be replaced by a time average.
Accordingly, we shall refer to the mutual coherence function in the form

(0 = (Ve + v, * (), 3.2.2)

where obvious shorthand notations are used and the average is meant to be over time.
In particular, for Py =P, and 7 =0, eq. (3.2.2) gives the mean intensity

rjj(o) =1, (=12}, (3.2.3)

where, according to the usual conventions of coherence theory, the average sign on [ is
omitied.
The normalized version of eq. (3.2.2) reads

[a(%)

Y12(0) = == (3.2.4)
2 O, (0)
and is known as the complex degree of coherence. The following inequality can be proved

0 <y, (TS 1. (3.2.5)

The function T'y3(t) Jor y12(1)] takes simultaneously into account both spatial and
temporal correlations. In order to divide their roles, it is said that T12(0} describes the spatial

(+) An alternative form given by the complex conjugate of eq. (3.2.1) is also used.

12

coherence of the ficld whereas [(t)., (j = 1,2) describes the temporal coherence. A sharper
distinction between space and time coherence will be seen later.

A field is said to be completely coherent if 1 ¥z (¥)] = 1 for any choice of P, P>
and T . This occurs in the case of a strictly monochromatic field no matter how complicated
is the spatial structure. For example, the field coming from a static scatterer under
monochromatic illumination is perfectly coherent in spite of the speckle phenomenon. This
is due to the fact that the temporal evolution of the field is completely predictable.

The other limiting case, namely, complete incoherence, would require | ¥z (T)f = 0
for any choice of P, Py and 7, exceptfor Py =Pzand © =0. An actual radiation field is
neither completely coherent nor completely incoherent. Rather, it is partially coherent. This
means that at any point P} we have |y (1)l = 1 until T does not exceed a certain value
At known as coherence time. On the ground of the results of section 3.1 we can anticipate
that

A, =—, (3.2.6)

where Av is the bandwidth of the field. A more complete description will be seen in the next
section. Similarly, in the neighbourhood of Py there is a set of points Py, forming the so-
called coherence are, such that | vz (0)) = 1. Roughly speaking, the linear dimensions of
the coherence area can be evaluated through eq.(2.1.1) by using the mean wavelength of the
radiation field. We shall come back to this point is the next section.

The case of quasi-monochromatic fields { Av << v, ) is of utmost importance. In
this case, for any delay T obeying the condition

1
t<c— = At 327
Av € ¢ ’

the following approximation holds
[5(T) = T (0)e 2% Yot | (3.2.8)

Within the range of values of T such that eq. (3.2.2) is satisfied, the coherence properties
are determined by [15(0). The function

WP, By) =1, =00, 3.2.9)

is called the mutual intensity. [ts normalized version

13
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1P, Py) = 5 = 7,2(0), (3.2.10)

retains the name of complex degree of coherence.

For quasi-monochromatic fields propagation phenomena can be described by means
of the mutual intensity because propagation formulas for J;, exist. Here, we shall limit

ourselves to the paraxial propagation case in which the propagation formula is the same as
that relating to the speckle correlation function (2.1.7}, namely,

1 lli[{frm)zf(rrpz)z] 22
J(rl,r1)=xz—;”..lo(pl,pz)e z d¥p,d%, . (3.2.11)

where A is the mean wavelength and k,=2m/A,. Notations for the geometrical quantities of
€q.(3.2.11) are the same as in fig. 2.1.2. Knowledge of the mutual intensity I, across the
integration plane permits one to evaluate the mutual intensity J at any pair of points ry and ry
on a plane at a distance z. In particular, for rj=rp=r, the intensity distribution 1(r) can be

found by means of the formula
1 i?k[p,zfpﬁfir-(prpz)] e
l(r)=-ﬁ_”1.,(p|,pg)e z d*pid*pa . (3.2.12)
Q)

It will be noted that unlike the coherent case in which knowledge of the two-dimensional
field distribution across the first plane would suffice for finding the intensity at any point on
the second one, here we need knowledge of the four-dimensional function Jy(p;.p2).

The mutual intensity can be found experimentally through a simple Young
interfercmeter such as the one depicted in fig. 2.2.2. At a typical point on 5, with position
vector r the infensity can be computed by eq. (3.2.12). If the pinhole area, say S, is
negligibly small, we can approximate the result by

s? oot p3-2r{p1-ps)]
(1) = 77| Lo(P) + Lo(p2) + 2RetTo(p1,p2 e NENEPAE)
(4]

where p{ and p, are the pinhole position vectors and Re stands for the real part. We use the
normalized version of J; and se’

Bl gd) ;
e =, 1o(p1p2) =|uolpipa) €2 . G219

Then, eq. (3.2.13) becomes

14
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Aoz

2\} lo(Pl )Io(p2)

Ir) = 55 {Le+1,(p2) +

No(pl,pz)lcos[an +Y12 ‘%"'{Pl 'Pz)]} . (3.2.15)

The interference term in eq. (3.2.15) has a weight proportional to I l. In addition, the
origin of the fringe system depends on ¥,,. Therefore examination of the fringe pattern can
furnish the degree of coherence at p; and p;. Tt is customary to describe the contrast of the

fringes by means of the so-called visibility defined as

V= Imax ~ Linin . (3.2.16)
IMax + [mm

where Iy, and I, are the maximom and minimum intensity values in the neighbourhood

of the observation point. Use of eq. (3.2.15) leads to

21,P)Tp)
v:M |HO(P|~Pz)|- (3.2.17)
Lip)+14py)
In particular, if [(p| =I(p7) eq. (3.2.17) becomes

v =jia(pip2)) - (3.2.18)

4) EVALUATION OF COHERENCE FUNCTIONS
4.1) Wiener-Kintchine and van Cittert-Zernike theorems

We repeatedly used the fact that the coherence time is roughly proportional to the
inverse of the bandwidth of the field. Actually, the spectrum of the field completely specifies
the temporal coberence properties. In fact, a celebrated theorem, namely, the Wiener-
Kintchine theorem asserts that

T, (1= IGI,(v) eV gy 4.1.1)
G



where Gji{v) is the spectral density {on power spectrum) at the observation point. The
lower limit in the integral is zero because the analytic signal has no negative frequency
components. At first, it might seem that specification of the observation point is
unnecessary. This is not so because, in the general case, the spectral density does depend on
the observation point. We shall discuss this point later on.

There is = counterpart of the Wiener-Kintchine theorem in the spatial domain. This is
the van Cittert-Zernike theorem that applies to spatially incoherent quasi-monochromatic
planar sources. Then, the mutual intensity across the source can be approximated by

Jo(Pl'Pz) =35 1o(p1)3(p2 - Pl) . (4.1.2)

where p; and pz are position vectors in the source plane. The similarity between egs.(2.1.8)
and (4.1.2) will be noted. We only consider the paraxial form of the theorem. In this case,
for two peints specified by the position vectors 1y and 15 in a plane paralle} to the source
plane at a distance z, the van Citten-Zemike theorem reads

fien)

J(ri.r2)=-—7——j Iilp)e

2B (ri-ea)p
hz d%p. (4.1.3)

as can be seen by inserting eq.(4.1.2) into ¢q.(3.2.11). Again, it will be noted that this
result is substantially identical to the formula (2.1.9) relating to the speckle correlation
function.

We shall work out some examples of application of the present theorems in the next

section.

4.2) Examples

The Fourier transform relationship between the spectral density and the temporal
coherence function I'y(t) furnished by eq.(4.1.1) suggests that, conversely, by measuring
I'); as a function of T we can obtain the spectral density. This is the idea underlying the
flucrishing technique known as Fourier spectroscopy [4]. To give an idea of this technique,
we refer to the scheme of fig. 4.2.1. Light from the source of interest, after collimation, is
fed into a Michelson interferometer. For the sake of clarify, counterpropagating beams are
drawn with separated lines, Disregarding the beams 1'" and 2" that come back to the
source, beams 1" and 2" provide on the output screen S two superimposed copies of the
input with a mutual time delay determined by the lengths of the interferometer arms. The
compensating plate C made by the same material as the beam-splitter BS insures that the
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time delay is the same for any frequency component regardless of the mateisal dispersion
properties.

>

fig. 4

'_.Z V2 fig. 4.2.1
-

(3]
Y Z

In the case of perfect collimation of the beams and ideal alignment of the interferometer, the
output disturbance can be written

Vo (0 = o Vit = 1) + Vit -1)], (4.2.1)
where @ is a proportionality factor that depends on the reflectivity of BS (mirrors M, and

M, are assumed to be perfectly reflecting while C is assumed to be coated with anti-
reflective layers). The output intensity is

oo =l [ V(- 1)) +{IVee - 1)) +2Re{(Vit—1,)V * (e - )] @22)
Because of the stationarity of the field, eq.(4.2.2) can be written
Lo = 210 [+ Re{T(0}}], (4.2.3)

where I is the input intensity. Measuring 1 and Ly, we can evaluate Re{T(T)}. In order to
invert eq.(4.1.1) we should know I'(T), not only its real part. However, it is easily seen
that
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IRe{F(t)} eV dr = -;»[G(\f}+G(—v)] : (4.2.4)

—em

Accordingly, inverse Fourier transformation of Re{I'(t}} leads to a symmetrized version of
G(v). This does not give rise 0 any ambiguity in that G{v} has no negative frequency
component. Of course, Re{T(1)} can be measured up to some maximum value of 1, say
Ty Equation (4.2.4) is then replaced by

™
IRE[F(I)} 2™V gt = 1y sinc 2Ty V) + [G(V) + G(~V)] . (4.2.5)

-1

Here, the well known convolution theorem for Fourier transform has been applied
[convolution is denoted by the asterisk and sinc(v)=sin{mv)}/(nv)]. As seen from eq.{4.2.5),
we recover a smoothed version of the spectrum. This will determine the resolving power of
the method.

Next, let us briefly discuss an application of the van Citteri-Zernike theorem. Even
large telescopes cannot give a resolved image of certain stellar objects. This occurs when the
diffraction pattern produced by the finjte aperture of the telescope is larger than the extent of
the geametrical image of the star. An equivalent way to express the same condition is to say
that the coherence area of the light coming from the star exceeds the diameter of the objective
so that the incoming field becomes indistinguishable from a plane wave, It is nonetheless
possible to measure .he angular diameter of the star without resorting to a larger telescope by
using the Michelson stellar interferometer depicted in fig. 4.2.2. Substantially, this device
makes two small portions of the wavefront interfere in 2 Young-like manner. These portions
are collected by the outer mirrors M and M'; whose distance Iry-r;l can be varied. The
resulting beamns are led 1o interfere on the observation screen S by means of auxiliary
mirrors M; and M'; and simple optics. Assuming the star to be equivalent to a uniform disc
with diameter d at a distance z, application of the van Cittert-Zernike thecrem gives for the
degree of coherence

plrory) =—g—=. (4.2.6)

L. ., the same expression as that seen in eq. (2.1.10) for the degree of correlation of a
speckle pattern produced by a uniformly itluminated circular scatterer except that the far-field

I8

approximation applies. In order to evaluate the angular diameter d/z it is enough to find
experimentally the value Ir|-r2l, where the first zero

Ir - rat
fig. 4.2.2

LI (4.2.7)

The maximum value of Iry-r;ly that can be detected is about 10 m. For larger distances
between the outer mirrors both atmospheric turbulence and mechanical vibrations make the
fringe disappear before the zero of [ is reached.

In order to circumvent the above limitations Hanbury Brown and Twiss invented a
different device [3]. Suppose the cuter mirrors are replaced by photedetectors whose output
signals are sent to an electronic correlator. Then, the correlation function for the
instantaneous intensities at M; and M3 can be measured. It turns out that such a correlation
function can be expressed, for light from ordinary sources, by means of t|,. Therefare, the
zeroes of gz can be found by measurement of the intensity correiation. The influence of
phase changes produced by turbulence and mechanical vibrations is eliminated inasmuch as
the intensities are measured. As a consequence, much larger values of Ir;-r2l can be used.
From the historical point of view the importance of the Hanbury Brown and Twiss
interferometer lies in the fact that it gave rise to the study of higher order correlation
functions and stimulated the birth of the quantum theory of coherence [2].

The van Cittert-Zermike theorem has an important role in many astronomical
applications [6]. As for optics, the applications are countless,
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5) COHERENCE IN THE SPACE-FREQUENCY DOMAIN

§.1) Cross spectral density

As we already noticed, the mutual coherence function I'5(1) takes simultaneously
into accoJnt both the spatial and the temporal correlation properties of a field. The division
between spatial and temporal aspects was traditionally done along the lines discussed in
section 3.2. In particular, spatial coherence is described by T'12(0) , i. e., the mutal
intensity, whenever the time delays introduced by the apparatus are smal] with respect to the
coherence time. Such a description is not entirely satisfactory as can be seen by a simple
example. Let us refer to the experimental set-up of fig. 5.1.1. A pair of partially reflecting

fig. 5.1.1

-~

mircors 8, and S, are situated at Py and P; along the path of a plane wave at a distance d
from one another. The beams obtained in this way enter an interferometer of the same form
examined in section 4.2. The visibility of the fringes on the output plane depend on
I'(P}.P,,0) because no time delay is introduced by the interferometer. Accordingly, we
should say that our experiment gives information about the spatial coherence of the field.
However, a moment's thought reveals that in order to assess the output fringes we should
compare d with the coherence length of the field. In other words, we are inquiring on time
coherence. The reason why such a paradoxical result occurs is that in most considerations
about coherence area one implicitly assumes that the line joining Py and P, is orthogonal to
the mean direction of propagation of the radiation. Even if we add such 2 specification,
space and time coherence in the approach based on T'y5(t) remain intertwined.
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It is also important to note that in problems involving the interaction of light with
matter frequency-dependent rather than time-dependent response function are used.
Correspondingly, it seems appropriate to introduce a space-frequency description of the
field correlations.

A satisfactory solution is to introduce the so-called cross spectral density
W(P,,P;.v) [7] defined as

W(P,Py,v) = | T(P P 1™ dt. (5.L.1)

It is seen that the cross spectral density arises from a spectral decomposition of I"y5(t). The

latter is thought of as a superposition
I'(p,P,,1) = JW(PE.PZ,V) e ™ dv, (5.1.2)
[

of monochromatic components. Obviously, for P=P,, the cross spectral density reduces to
the ordinary spectral density, say G(P, v). It is to be said that the spectral density can play
different roles depending on the problem we are considering. In certain cases the frequency
is fixed and one is interested in the distribution of the spectral density in space (for example
in diffraction and interference phenomena). Then the spectral density is considered as a
function of position only and is often termed the optical intensity at the prescribed
frequency. In other cases one is interested in the dependence on v of G. Sometimes the
space dependence can be trivial and one speaks of the spectral density without even
specifying the observation point. Indeed this was assumed to hold in the discussion of
Fourier spectroscopy. Nonetheless, as we shall see later such an independence of G from
the space variable does not hold in general and a more accurate discussion is required.

It can be said that W (v} describes the spatial coherence properties because it does
not contain the time delay . . Its dependence on v shows that these properties can vary with
the frequency. A normalized version of W 4(v) is obtained as follows

W(P,P;.v)

PPy, V) = ———————
MRV = V) GPL Y

(5.1.3)

The function 1 is called the degree of spatial coherence or the degree of spectral coherence.
Tts modulus can be proved to satisfy the inequality

0< PPy, V) £1. (5.1.4)
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There is an important point to be made. At first, one might think that Wi4(v) has the
following meaning: isolate the monochromatic field component of frequency v at both P,
and Py; then W ,(v) gives the correlation of these monochromatie fields. This is incorrect,
A single monochromatic component is necessarily endowed with perfect coherence (see
section 3.2). In particular, the modulus of i would be one at any frequency, The origin of
this difficulty is that for stationary fields the Fourier transform is to be computed by a
suitable limiting procedure. On examining this problem, one finds out that the
monochromatic component of the field at any fixed frequency v, actually changes from one
realization of the field to another. The value of W ,(v) is recovered from an ensemble
average of the correlation between monochromatic field compenents (all at frequency v) in
different realizations. The paradox disappears, Although perfect coherence is exhibited in
each realization, the amplitude and phase cf the correlation function changes across the
members of the ensemble. Nevertheless, the mathematical formalism involved in this type of
explanation is rather cumbersome and unclear. The picture has been greatly simplified by the
modal theory of coherence devised by Wolf [8,9], which we shall outline in the mext
section.

Before ending this section, we add that propagation formulas for the cross spectral
density can be established. In the paraxial approximation, €q. (3.2.11) holds with the
mutual intensity J replaced by the cross spectral density W.

5.2) The meodal theory of coherence
Let us consider the cross spectral density across a certain plane where a partially
coherent field exists. This plane can be thought of as a {primary or secondary) source. We

write the following Fredholm homogeneous integral equation of the second kind

JW(r],rz)(I)(rz)dzrz =Nd(r), (5.2.1)
5

where | and r; are position vectors in the source plane and § is the source area (possibly
infinite}. The explicit dependence on v has been dropped. It is reasonable to admit that for
physically realizable fields the condition is met that

leW(r].rz)lzdzr,dzrz <o, (5.2.2)
S+45

or, which is the same, that W belongs to the class of Hilbert-Schmidt kernels. Starting from
¢q. (3.1.1), it can be seen that W is a Hermitian kernel. Furthermore, it is possible to prove

1

that the kernel is positive. Thanks to these properties, the following conclusions can be
drawn. There exists a discrete set of orthonormal eigenfunctions @,(r), (n=0.1,...) such
that

L¢n(r)¢;(r)d2r =8, (5.2.3)

where 8, is the Kronecker symbol. The corresponding eigenvalues 1, are real non-
negative. In addition, Mercer's theorem can be applied

WrLm) = 3 1,0, 07)05ry) (5.2.4)

n=0

It is 1n fact eq. (5.2.4) that affords an alternative interpretation of the cross spectral density.
To this end, we introduce the ensemble of monochromatic fields

Yo(rt = d, (e 2 (n=01,...), (5.2.5)

and we make a superposition of them of the form

Ur.t) = ch‘i’n(r,t}= e_zni“ch(Dn(r). (5.2.6)

n={ n=0

where the ¢, are random coefficients. Suppose now that we have an ensemble of realizations
of the field (5.2.6). We assume the ¢, 10 be uncorrelated with zero mean value

{eacm) = (cal{em) =0, (n#m}, (5.2.7)
whereas their mean squared modulus equals the eigenvalues
2
<|cn[ ):n“. (=01}, (5.2.8)
Equations (5.2.7) and (5.2.8) can be synthesized by the single equation
(encm) = Noborn - (nm=01,.). (5.2.9)

We now compute the correlation function for U at two points r, ed r, for zero delay



(U DU @.0) = 3, Y (eacm)@ali)OR () = D MB(r)B}(x),  (5.2.10)
n=0 m=0 n=0

where egs. (5.2.6) and (5.2.9) have been used. On comparing eq. (5.2.4) and (5.2.10) we
derive the equality

W(n,5) = (U(n,)U* (5,1) . (5.2.11)

Let us briefly discuss the meaning of this result. According to eq. (5.2.11), the cross
spectral density, at each frequency v, can be thought of as the ensemble comelation function
for zero delay of a suitable monochromatic field obtained by the superposition (5.2.6) under
the cons. -uin (5.2.9). While the field is perfectly coherent in each realization because it is
monochromatic, coherence is generally reduced by the average operation (5.2.10). There is
only one case in which coherence is retained. This is when only one of the eigenvalues, say
the m-th one, is different from zero. Equation (5.2.4) then becomes

W(r,0) = i ®rmir) D). (5.2.12)

and the degree of spatial coherence is

N Pu(@) Pny) _ iaw(n)-om(e)] (5.2.13)

Hr.ry) = [Tﬁn (1,2 |¢m(l'z)|2]”2 =
where 0.p(r) is the argument of ®p(r). Tt is apparent that the modulus of [ is one so that
the field is completely coherent.

Both the functions W(r.t} and their spatial part @, (r), are known as the modes of
the partially coherent source and this is why the above outlined theory is often quoted as the
modal theory of coherence. An alternative name is coherence theory in the space-frequency
domain. Note that the analytic form of the modes can change with frequency because the
kernel of eq. (5.2.1), 1. e., the cross spectral density, is a function of frequency. The same
occurs for the eigenvalues.

Let us illustrate the meaning of the eigenvalues. Define the integrated spectral density
as

P(V) = _[G(r,v) d2r, (5.2.14)
1)
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The juantity P(v) is a measure of the overall power emitted at frequency v by the source.
On inserting eq. (5.2.4) written with ry=ry=r into eq. (5.2.14) and using eq. (5.2.3}, we
easily find

P(V) = Z“n . (5.2.15)
n=0

Therefore, the typical eigenvalue 1, can be interpreted as the contribution from the n-th
mode to the integrated spectral density.

Generally speaking the modes of a partially coherent source are difficult to find in
that the integral equation (5.2.1) has to be solved. Although for a number of sources the
explicit form of the modes has been found the search is continuing. To this aim certain
formal analogies with problems of quantum mechanics can be exploited. An elegant example
of this has been offered in ref. 43 where the modes of a generalized version of the Collett-
Wolf source known as twisted Gaussian Schell-model source were evaluated.

In spite of the above mentioned difficulty, the modal theory affords a powerful tool
for understanding many aspects of coherence theory and has proved its usefulness in several
problems.

5.3) An example

In this section, we shall give an explicit example of modal expansion. First,
however, we discuss a pair of models of partially coherent sources.

A source is said to be of the Schell-model type if its cross spectral density has the
form

Wt 1) = GGy p(r — 1) (5.3.)

The essential point is that the degree of spectral coherence depends on r) and r; only
through their difference. Once this condition is satisfied, eq. (5.3.1) follows from eq.
(5.1.3). Sources of the Schell-model type play an important role in coherence theory and are
easily synthesized in the laboratory. We omitted again the explicit dependence on v because
we are going to work at a single frequency. It should be appreciated however that the v-
dependence is implicit. This means for example that for a given source f{ry-ry) can be a
different function of ry-r; at different frequencies.

For a large class of sources, the degree of spectral coherence is a function of ry-rp
that decreases quite rapidly as compared to the law of variation of G(r) with respect to r. To
a good approximation, the cross speciral density for such sources can be written
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r +r;

W(rl.rz)=G( )u(rl—rz). (5.3.2)

Sources of this class are known as quasi homogeneous [10] [a strictly homogeneous source
would be one for which W(r,,r;)=W(r;-ry)]. They furnish a very good description of
many natural sources. Their analytical form simplifies several problems [10].

After these preliminaries, let us consider the so-called Collett-Wolf source [11,12] or
Gaussian Schell-model source. Its cross spectral density is

rl2 +r22 (r| -3 )2

T 192
Win.r)=Ge %0 e B (5.3.3)

for each temporal frequency. On the other hand, the parameters G, 0g and o, generally

depend on the frequency. The spectral density and the degree of coherence are given by

2 !
252 202
G(r)=Gye 6 wr -r)=ec ¢ . (5.3.4)

At any frequency, the source has the form of a gaussian disc and, in the neighbourhood of
any point, the coherence area is a gaussian disc too. The parameters Og and ¢, can be taken

as equivalent radii of the source and the coherence area respectively. Note that the ratio
0,/0g can be chosen arbitrarily. As a consequence, the coherence features can be very
different passing from a globally incoherent source for o << 0 to a nearly completely
coherent one for 6,>> 0. In particular, for o,<< 0 eq. {5.3.3) can be easily given the
form (5.3.2).

The Collett-Wolf source was very important in clarifying the relationship between
directionality and spatial coherence and, more generally, between coherence and radiometry.
It was shown, in fact that such a source even in the quasi-homogeneous limit could generate
the same far zone intensity distribution as a laser. This came as a surprise inasmuch as the
high directionality of a laser beam was traditionally attributed to its full spatial coherence.
This prediction, which was confirmed by experiments [17,18), stimulated a large number of
investigations with many significant results [19-40].

In view of the importance of this type of source, it is interesting to find the
corresponding modal structure. If the kernel (5.3.3} is inserted into eq. (5.2.1), the
following eigenfunctions and eigenvalues are found [22,23]

26

2,2

X 4’:{
1 2 X2 yv2 )T
Cbmn(x,)')_ v, m Hm[ v, }Hn[—v—(’_ i : (5.3.5)
Thran = Moq™ " (mon=0,1...}, (5.3.6)
where the parameters v, T, and g are given by
| ~ 5 2

1 o
—=— 14| =60 (5.3.7)

v, 405 o,

G,04
81G,05 (5.2.8)
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In egs. (5.3.5) and (5.3.6) a double index has been used instead if the single one appearing
in section 5.2. This gives a simpler ordering of eigenfunctions and eigenvalues. In addition,
cartesian coordinates have replaced position vectors.

The form of the modes is well familiar. Equation {(5.3.5) gives in fact the field
distribution across the waist of the Hermite-Gauss modes of laser theory [44]. It is seen
from eq. {5.3.6) that the eigenvalues decrease according to a geometrical progression. We
could define an equivalent number of modes by taking into account only those modes whose
eigenvalues are appreciably different from zero. Then, it would be found that the equivalent
number of modes is an increasing function of 6/0),. In other words, poorly coherent

sources have a large equivalent number of modes.

5.4) Propagation of partially coherent fields

Upon propagation partially coherent fields can exhibit behaviors that are rather
different from those pertaining to coherent fields. In order to show this we shall first refer to
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the simple case of paraxial propagation. As we said at the end of section 5.1, we can use eq.
(2.1.11) with J replaced by W. More explicitly, we have

2 ‘llt.\l _ 2_ _ 2z
Wlrorzd)= oz [ Wolovpav)e sl el i s

Here, ¢ is the speed of light and both A and k are expressed through v. The spectral density
is obtained by letting ry=ry. Accordingly,

2 v a2 2
v =[p}-pl-2r(p,-p2
6. =1 [[ Walprpzvje = 12 g2, (5.4.2)

We see from eq. (5.4.2) that the spectral density at r depends on the field correlation
properties across the plane z=0. To have a clearer insight, let us use eq. (5.1.3) into eq.
(5.4.2). This gives

G(r,v}=
2 2 62 apfp -
< [{Gelo1V)0e (P2 o102 v)e Pt o2l g, (s

Equation (5.4.3) makes it clear that even for a prescribed form of G,(p,v) the spectral
density can be different for sources characterized by distinct degrees of coherence. In order
to see some implications of this result we shall first refer to the case in which conly a single
frequency is considered leaving the general case for the next section. According to the
terminology discussed in Section 4.1 we shall speak of G as the optical intensity.

A case that received much attention [11, 12, 17-40] is the propagation of the field
gencrated by the Collett-Wolf source. The corresponding spatial intensity distribution can be
obtained on inserting eq. (5.3.3) into eq. (5.4.2) and evaluating the resulting integral. We
shall adopt however a different approach based on the modal expansion because this leads to
a very simple picture of the propagation process. We have seen that the modes in Section
5.3 that the modes pertaining to the Collett-Wolf source are Hermite -Gauss modes. As is
well known from laser cavity theory [44] each of them propagates according to the simple
law

1 2
@ (X.y.2) _';,"(;)' 2™ " min x
(_.-k_ __l_)[,s o)
« l-mementol gy (X2 y (32 2R " . (5.4.4)
v(z) v(z)
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where

IV2 : 3 2 Az : Az 7
R(z)=z 1-{-—«—"] vz =V, 1+{ IJ ; ‘P(z)zarctg[ 2). (5.4.5)
Az v, v

Taking the squared modulus of eq. (5.4.5) we see that the intensity distribution of each
mode maintains the same shape across any plane z=const. The only change is a pattern
magnification by a factor v(z)/vg Now, according to the modal theory the overall field
produced by the partially coherent source is a superposition of mutually uncorrelated modes.
As a consequence, the total intensity is simply the sum of the intensities pertaining to the
various modes each of them being weighted by the corresponding eigenvalue. This can be
seen from eq. (5.2.4) letting ri=r;. We conclude that the optical intensity distribution is
shape invariant the only effect of propagation being a transverse scale magnification. It may
be worthwhile to note that this would not be the case were the superposition of coherent
type. As shown by eq. (5.4.4) in fact modes with different values of n+m experience
different phase shifts on propagation. Therefore in a coherent superposition the interference
pattern among the various modes would change from one plane to another.

The previous shape invariant propagation of the beam generated by a Collett-Wolf
source can be seen as a sort of generalization of the properties of a single Hermite-Gauss
coherent beam Thus it may be helpful to show a case in which a partially coherent beam has
propagation features that could not be attained with a coherent beam. Instead of eq. (5.3.3)
let us consider the following slightly different form [29] for the cross spectral density across
the plane z=0

2

2 2,2
_MtE ¥ty (x-x3) N (y1-¥2)°

2 2 2 2
40 4a io 26
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W(x.¥1.X2.73) = Gy e (5.4.6)
Again both the intensity and the degree of coherence across the source are Gaussianly
shaped. Yet there can be an anisotropy between x and y if the intensity and coherence
varjances along the two axes are different. Generally speaking the beam generated by such a
source will not be shape invariant. However the shape invariance holds if the following
condition is met [29]

1 1 1 1 1 1
- | —— = —t— . (547)
(Gé,)[“ﬂéx Gﬁx] (Géy)[“"%y "ﬁv]
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This condition can be satisfied by beams whose cross section is shaped in the form of thin,
elongated ellipses. In this case the beam appears as a sort of luminous blade. This is why
these fields are known as blade-like. No similar behaviour could be obtained by a coherent
bear. As a matter of fact if we start from an elliptical coherent field distribution elongated
along say the x-axis the very law of diffraction makes it change into an ellipse rotated by 90°
in the course of propagation as is well known from the study of astigmatic beams.

There is another aspect relating to propagation phenomena that we can briefly treat.
We noted already that a partially coherent field possesses a huge quantity of information. To
specify in a complete way a partially coherent field we have to give the cross spectral density
for each frequency and at any pair of points across a selected plane. Direct and inverse
propagation formulas can then be used to evaluate the cross spectral density at any other pair
of points in space. Simple as this may be at the analytical level, it takes an enormous effort if
the characterization is to be done experimentaliy. We should manage in fact a five
dimensional set of data. In addition, the measurement of the cross spectral density, although
straightforward in principle, is an error prone and time consuming process A much simpler
task is to measure the intensity (at any selected frequency) even across a multitude of planes.
One is therefore led to ask what kind of information about the field can be deduced by
knowledge of the intensity alone. Could perhaps the complete intensity distribution in space
be enough to determine the cross spectral density at a certain plane (hence everywhere
thanks to propagation formulas)? Let us put it another way. Can two wavefields with
different coherence properties give rise to the same intensity everywhere? There is a
tendency to assume that the answer is negative and that the space intensity distribution of a
field gives a sufficient characterization of it. Indeed this is tacitly assumed whenever we
characterize laser beam by some global parameter such as the M2-factor related to its space
intensity distribution. Yet the answer to the above question is positive. There exist fields
endowed with different coherence properties that cannot be distinguished on an intensity
base only. We shall show this by a simple example.

Let us consider the following monochromatic field distributions

ik 1 2
_— - r
A ellkz=2¥)] rv,v2 e [2R(z) vi(z)} eti®

ES =
Vi 8.2) = <

(5.4.8)

where v(z), R(z), and ¥(z) are given by eq.(5.4.5). For either choice of the sign eq. (5.4.8)
represents a simple Laguerre-Gauss laser mode [44}. Clearly, the corresponding intensity
distribution is the same regardless of the sign we choose. We have here two coherent
wavefields producing the same intensity everywhere. Suppose now that we construct at
ensemble of fields of the form
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V(r,8,2)=atVi(r, %0 +a V{2, (5.4.9)

where atand a are uncorrelated random coefficients with zero mean and the following

<|a*|1> =(|a_|2> = % (5.4.10)

It is easily seen that the field (5.4.9) gives everywhere the same intensity that would be
produced by either V+or V-, Yet, the field (5.4.9) is partially coherent. It is not difficult to

mean squared values

evaluate the modulus of the pertaining degree of coherence. This tumns out to be
Ip(rl.ﬂl,z;rz,ﬁz.z)| =cos{0, - 9, (5.4.11)

Although the field (5.4.9) is indistinguishable from the coherent field V* or V- on an
intensity basis, it has different physical properties. It is to be stressed that such different
properties would be revealed by most interference or diffraction experiments.

The existence of fields with different states of coherence yet producing the same
intensity everywhere does not mean, of course, that the intensity distribution is an irelevant
constraint as far as the determination of a partially coherent field is concemed. However, the

exact influence of this constraint is still under investigation [41, 42].

5.5) Spectral changes induced by source correlations

The words "spectrum of a light field" are often used as if they were of wnambiguous
meaning. The phrases "spectrum of a star”, “spectrum of a lamp” are example of this usage.
To be more precise we introduce the so-called normalized spectrum of a radiation field
defined as follows
S(P.v)=w. (5.5.1)
.[}G(P,v)dv

It is a widely held idea that the normalized spectrum is uniquely determined by the spectrum
of the source fluctuations and that it is independent of the observation point. Except for
some pioneering papers in [2,7} such an idea was not questioned until relatively recent times
[31, 45] . Since then a great deal of research has been carried out stimulated by the results of
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Wolf [45-61]. In order to show that the above idea is generally incorrect we shall referto a
very simple example first proposed by Wolf [48]. Let us consider two very small sources
located at certain peints A and A;. The field produced by these sources at point P and
frequency v can be written

kR oikR2
U(P,v) = Q){(V)——+Q,(V) , (5.5.2)
R R;

where R|{R2) is the distance between P and A;(A2) while Q; and Q; denote the source
fluctuations (e.g., charge density). On multiplying eq.(5.5.2) by its complex conjugate and
taking an ensemble average we obtain the following expression for the spectrum at P

Javi®) (oa’) i e

G(P,v) = +
R} R3 RiR;

(5.5.3)

For the sake of simplicity we assume the source spectrum {o be the same at A| and A; .
Letting
G _ z\ _ 23 . _ *
o ={Q)={Qelf):  Wam=@WQ*w). (554

€q.(5.5.3) becomes

RC{W]z(V)ﬂik(RI_Rz)}

RiR;

I 1
G(P.v)=G —+—5 |+2 5.5.5

Here we see that the field spectrum G(P, v) depends not only on the source spectrum G,(v)
but also on the correlation function Wz between the source fluctuations. Equation (5.5.5) is
formally identical to the familiar law describing two wave interference. Yet while the
ordinary interference formula accounts for spatial variations of the optical intensity here the
observation point has been fixed and we inguire about the dependence on v of the spectral
density G(P, v). Wolf showed that different spectra can be obtained at a fixed observation
point for different source correlation laws. These predictions were confirmed by
experimental results [49, 511,

Two essential conclusions should be suggested by the above example: a) source
correlations affect the field spectrurn; b) the normalized field spectrum may change in space.

Although the previous conclusions are sound we may wonder why these types of
phenomena were not observed before. As shown by eq.(5.5.5) for the case Wz (v)=0a
possible answer is that no spectral modification is to be expected if the source is strictly
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incoherent in the sense that no correlation exists between any two source elements. Such a
crude model for a natural source however is rather unphysical in that it is krown that source
correlations exist across regions where linear dimensions are at least of the order of the
wavelength. One is then led to inquire about the existence of correlated sources that can
produce the same normalized spectrum at any observation point. In this connection an
important result was obtained by Wolf [45]. He considered a planar source of the quasi-
homogeneous kind (see eq.(5.3.2)) and confined attention to the far-zone. On assuming that
the fluctuation spectrum was the same across the whole source, Wolf showed that the
normalized far-zone field spectrum in a direction specified by the unit vector u had the
following expression

K*Go(v)ilp(ku,, V)

$%(u,v) = (5.5.6)

rszO(v)ﬁo(kup,v)dv
0

Here Gy is the field spectrum at the source plane, |Lp is the corresponding degree of
coherence and the tilde denotes the Fourier transform. Furthermore, up is the vecior
obtained by projection of u on the source plane.

It is easily seen that the normalized far-zone spectrum is generally different from the
normalized spectrum at the source because of a) the factor ky; b) the factor flo . Suppose
however that |1y has the following form

ko(py-p2) = k(p1 - p2)}. (5.5.7)

where h is any correlation function such that h{0)=1. On computing the Fourier transform
fiy we obtain

fioCkuyv) = Fz';lr?! ofp)e Py = (21:11()2 I h(o)e"*%dlo = hwp),  (5.5.8)

where we let p; - pz = p' and kp' = 6. On inserting £q.(5.5.8) into eq. (5.5.6) we have

Gg(v)

57w, v)= — .
JGO(v)dv
0

(5.5.9)

The far-zone normalized spectrum is now independent of the observation point. In addition,
it equals the normalized spectrum at the source plane. Accordingly, eq.(5.5.7) is a sufficient
condition for a quasi-homogeneous source to produce throughout the far zone the same
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normalized spectrum as at the source plane. This beautifully simple result is known as the
Wolf's scaling law.

An important class of sources obeying the scaling law is given by the Lambertian
sources so that eq.(5.5.7} is likely to apply to several natural sources. However when the
degree of coherence violates the scaling taw the spectral invariance is generally lost. This
was first proved experimentally by Morris and Faklis [50].

Other experiments were performed by Indebetouw [52] and by Kandpal, Vaishya
and Joshi [53). The latter authors also made some important work [54, 55] about the
implications of the Wolf's effect on the spectroradiometric scales. Such scales are
maintained by the national standard laboratories of the various countries. Comparisen
among radiometric scales from different laboratories revealed large differences. The work
by Kandpal, Vaishya and Joshi suggests that some of these discrepancics could be caused
by the Wolf's effect.

We also mention that spectral changes rather similar to the ones produced by source
correlations carn be exhibited in scattering pheromena [56, 57].

A good review paper about spectral changes due to source correlations is ref. 62.

5.6) A glance at further topics of coherence theory

The aim of this final section is to sketch very briefly a few other topics of cumment
interest in coherence theory.

One of them can be traced back to a question first raised by Wolf [62]. Why is Jaser
light (generally) coherent? It can be crudely said that the laser cavity selects a single mode,
which is a coherent field. However, a description based on the exact laws of coherence
evolution is much richer than that [64-70]. The fundamental phenomenon is propagation of
partially coherent light through periodic sequences of apertures and lenses. It has been
shown recently that in certain cases partially coherent modes exist [69]. In addition, some
lasers produce very short pulses so that their emission cannot be described by a stationary
state. The study of coherence of transient states then becomes essential.

Speaking of periodic structures we may add that there is a connection between this
subject and the one dealing with transversally periodic objects illuminated by partially
coherent light. This is another area of current interest {71, 72].

We finally point out the investigations about formal analogies between classical
coherence theory and quantum mechanics. To avoid misunderstanding, we stress that we
are not alluding to the quantum theory of coherence. We are simply saying that certain tools
of coherence theory are mathematically equivalent to well known quantities of quantum
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mechanics. The most significant of these correspondences is between the cross spectral
density of coherence theory and the coordinate representation of guantum mechanics. As a
consequence, known results from one field can be transferred to the other, The reader can
consult refs. 43 and 73 for beatiful examples of this.

The list of themes and references given in the present notes is far from being
complete but it should give an idea of the vastity of coherence phenomena.
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