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These notes have been prepared for a half-day course in Optical
Information Processing as part of the Applied Opties Summer Courae
given at Imperial College in July 1985. My aim has been to give the
basic principles of various techniques of analyhing data using optical
systems. References to specific topics are given in each Section,
although no attempt has been made to be complete in this respect. For
further reading I would suggest the following books:

R N Bracewell, 'The Fourier Transform and its Applications’.
McGraw Hill, 2nd Ed 1978

D Casasent (Editor) , ‘Optical Data Processing: Applications’,
Topics in Appl Phys 23, Springer Verlag, 1978

J W Goodman, "Introduction to Fourier Optics’, McGraw Hill, 1968

S H Lee (Editor), ’'Optical Information Processing’, Topics in Appl
Phys 48, Springer-Verlag, 1981

G L Rogers, 'Noncoherent Optical Processing’, Wiley 1977

H Stark (Editor), 'Applications of Optical Fourier Transforms’',
Academic Press, 1982

F TS Yu, 'Optical Information Processing’, Wiley 1982

An excellent review of modern developments is given by Goodman in IE
and IREE Aust., 2, 139-149 (1982).



1.1 One and Two Dimensjonal Fourier Tranaforps

Let f(x) represent some physical quantity of interest, for
example the complex amplitude of light as a function of distance across

@ slit, The Fourier transform of f(x) is defined as

F{u) = I rf{x) exp(-2niux) dx (1.1)

The units of the variable u are reciprocal to those of x - thus if x
has units of length, u has units of inverse length or apatial frequency.

The function F(u) is called the Fourier transform of f(x). It contains
all of the information present in f(x), but displays that information
in a different way (i.e, as a function of u instead of x). The

original function f(x) can be obtained from F(u) by an inverse Fourier
transform:

f(x) = I F(u) exp(2niux) du (1.2)

As an example, consider the function, called rect (x/a), that could
represent the complex amplitude of light across a slit,

rect (x/a) = 1 Ixl ¢ ar2
= 0 Ixl > ar2

This function is shown in Fig 1.1(a). 1Its Fourier transform is
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Figure 1,1 Some one-dimensional Fourier transform pairs



F(u) = I f{x) exp(-2niux) dx

—

/2
= Ia exp(-2niux) dx
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- [ i ] 8/2
-2niu —a/2

sin(nua)
nu

or,

F(u) = g sinc(ua) .,

where  sinc(X) = sin(naX}/(nX).

Other examples of one dimensional Fourier transforms are shown in Fig
1.1.

The twe dimensional Fourier transform is defined in a similar way:

Flu,v) = H £(x,y) expl-2ni(ux+vy)] dx dy (1.3)

and the inverse Fourier transform is

f{x,y} = II F(u,v) expl+2ni(ux+vy)] du dv (1.4)

Figure 1.2 illustrates the meaning of a two dimensional spatial
frequency — 1t is simply a one dimensional sinuscidal sheet of
frequency w = (u2 + u2)1/2 at an angle O = tan~1(v/u) to the u-axis.

Figure 1.3 shows some two dimensional Fourier transform pairs.
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Figure 1.3 Some two dimensional Fourier transform pairs



1.2 Convolution apd Correlation

The convolution of two functions f(x) and g(x) yields a third
function h(x) defined by

n(x') = I £(x) glx'—x) dx (1.5)

il

Convolution is often denoted by the symbol *:

h(x) = fi(x) & g(x} .

Figure 1.4 illustrates the convolution of two functions,

In two dimensions, convolution is defined by

nix',y') = jj £(x,y) g(x'-x,y'~y) dx dy .  (1.6)

The process of convolution occurs often in optical systems. For
example, when imaging in spatially incoherent light with an isoplanatic
optical system, the image intensity i(x,y) is equal to the convolution
of the object intensity o(x,y) with the point spread function p(x,y):

i(x.y) - o{x,y) * pix,y) . (1.7)

In this case (and in many other similar cases), we may know i(x,y) (the
image intensity) and p(x,y) (the point spread function) and wish to
find the object intensity o(x,y). This is not a straightforward
problem if we consider only the (x,y) space. By using Fourier
transform=, however, the problem is quite easy, at least in the absence

of noise.



-

N

Figure 1.4 The convolution of two real functions
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Figure 1.5 The cross-correlation of two real functions



The gonvoplution theorem states that the Fourier transform of a
convolution equals the product of the Fourier transforms. That is, if

h{x) = fix) ¢ gix) .

then

H(u) = F(u) G(u) (1.8)

Thus, to solve for the object intensity in (1.7), we (i) find the
Fourier transforms I(u,v) and P(u,v) of 1(x,y) and p(x,y) respectively.
(ii) divide, yielding O(u,v) = I{(u,v)/P(u,v), and (iii) find the
inverse Fourier transform of O(u,v). This may seem at first sight to
be a complicated procedure, but it is readily carried out either by a
digital computer or by a suitable coherent optical system (see Section
4),

The cross-correlation of two functions is defined in one dimension by

hi(x"') = I r*(x) g(x’'+x) dx {(1.9)

-l

and in two dimensions by

w
hix',y') = II £%(x,y) glx'+x,y’'+y) dx dy (1.10)

Cross-correlation is illustrated in Figure 1.5. It is very similar,
but not identical to convolution. Finally the two dimensional spatial

0
hix’,y") = II £ (x,y) f(x'+x,y’'+y) dx dy . (1.11)



1.3 Sampling Theorem

This states that

‘A function whose Fourier transform 1s gzero for lul > ug,, (i.e. a
bandlipited function) is fully specified by values spaced at intervals
6x < 1/(2upay), except for any harmonic term with zeros at the sampling
points.*

This is an extremely important theorem in practice, because it tells us
how to sample continuous functions without loaing any information.

Let f(nbx), n = ~ =,,.., + =, be samples of f(x) taken at intervals
6x. The samples f(néx) can be used to reconstruct the continuous
function f(x) using the following interpolation formula:

f(x} = ( 3 f(néx) 8(x-nbx) } * sinc(x/8x) ,  (1.12)

—

where 8( ) is the delta function. Figure 1.6 illustrates the sampling

theorem.

The best textbook for further reading on Fourier transforms is by R N
Bracewell, 'The Fourier Transform and its Applications’, 2nd Ed, McGraw
Hill, 1978.
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Figure 1.6 Illustration of the reconstruction of a continuous
function f(x) from samples f{ndx) of it (see Eq.1.12)



2. FOURIER NSFORMIN ERT NSES

2.1 Freunhofer Piffraction Formulas

Suppose that some distribution of complex amplitude U({,n)
fills an aperture — if the iight diffracted by the aperture is viewed
at a large distance z, then the complex amplitude in the observation

plane U(x,y) is given by the er tion u
- 2.v2
U(x,y) = -% 9’-‘9-—-(:"’1 cu:p[-i-"-———":"z‘z+ Y

H UE.n) expl 2 xgeyn)) ag an  (2.1)

Eq.(2.1) applies when the distance from the (3,n) plane to the (x,y) is
large (z > =) or gffectively large. The important thing is that light
diffracted at a certain angle corresponds to a particular point in the
(x,y) plane. This can be achieved with a well-corrected lens, as shown
in Fig 2.1. Thus the Fraunhofer diffraction formula (2.1) relates the
complex amplitude at the focus of & well-corrected lens to that in the

pupil of the lens,

Consider the arrangement shown in Fig 2.2 in which a tranaparency of
complex amplitude transmittance t(%,n) is 1lluminated by a plane wave.
In this case, U(f.n) = t({.n) and EQ.(2.1) may be written

_ 2,2
Ux,y) = T3 SERLIKE) g5y dkixey), TG0 . (2.2)

where T(x/Az, y/Az) is the Fourier transform of the transmittance
t(3.n) of the transparency. Note that this Fourier transform is

evaluated at spatial frequencies (u,v) = (x/Az, y/Az) - that is,
distances (x,y) in the observation plane are equivalent to spatial
frequencies (u,v) of the object., We relate these quantities using the
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Figure 2.2 The use of a lens to form a Fraunhofer diffraction
pattern



factor Az:

X = Azu , Yy = izv

(2.3)
u = x/az , v = y/az

Equation (2.2) shows that the complex amplitude U(x,y) in the plane of
focus is closely related to the Fourier transform of t(%,n), but not
equal to it. If one is only interested in the intensity in the
observation plane, then the Phase factors in Eq.(2.2) disappear leaving

- - X ¥y 2
I(x,y) 272 'T‘xz'zz" . (2.4)

Thus, apart from the unimportant constant 1/(iz)2, the intensity at the
focal plane equals the s uarec modulus of the Fourier transform of the
complex amplitude transpittance. This is the basis of the technique of
diffraction pattern sampling described in Section 3.

2.2 Exact Fourier Transform

In Eq.(2.2), the first two factors
z1 explikz)
A 4
do not depend on (x,y) and ean usually be neglected, leaving

2.2
U(x,y) = K exp{1513511~11 2D (2.5)

where K is the unimportant (complex) constant.

The remaining phase factor exp [ ] represents, in physical terms, a



epherical wave centered in the diffracting pupil and its presence
prevents the existence of an gxact Fourier transform of t(t.n) in the

observation plane.

It can be shown that this phase factor can be cancelled by an equal and
opposite factor if the transparency t{(%,n) is placed in the front focal
plape of the lens, as shown in Fig 2.3. In this case,

Uxy) = K TGRP (2.6)

where the distance z has been replaced by the focal length f., This is
an important result, for it signifies that the optical arrangement
shown in Fig 2.3 can be used to perform an exact Fourier transform -
this arrangement is in fact the building block of many coherent optical

processors,

The detailled design of lenses for Fourier transforming optical systems
is discussed by van Bieren, Appl Opticas, 10, 2739-2742 (1971). For
further reading on the Fourier transforming properties of lenses, see J
W Goodman, 'An Introduction to Fourier Optica', MeGraw-Hill, 1968,
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Figure 2.3 The building block for a coherent optical processor. The
complex amplitude U(x,y) in the back focal plane of the
lens is proportional to the Fourier transform of the
amplitude U({.n) in the front focal plane.



3. DIFFRACTION PATTERN SAMPLING

This is the simplest and probably the mosat successful application
in commercial terms of coherent optical processing. The intensity of a
Fraunhofer diffraction pattern (i.e. the squared modulus of the Fourier
transform) of an object is measured using a suitable detector, usually
linked to a computer, with the aim of estimating some parameter of the

object auch as its size or shape,.

Most of the commercial applications have the aim of naasufing size of
known shapes of objects, e.g. particle size distribution and wire/fibre
diameters, and the discussion below is directed particularly at the
measurement of droplet sizes in aerosols. In scme scientific
applications, the diffraction pattern intensity itself is of interest
and its measurement provides structural information about the

diffracting screen (such as a transparency).

The basic optical arrangement is similar to Fig 2.2 and 1s shown with
some possible detection methoeds in Fig 3.1, In this arrangement,
distances (x,y) in the Fourier plane are related to spatial frequencies
(u,v) of the object by

x = Afu . y = Afv ’

where A 1s the optical wavelength and f is the focal length of the
lens. Note that the distance from the diffracting object to the lens
does not enter into this relationship, with the result that a
measurement of the size of an object does not depend on its location in
the diffracting volume. This fact allows the technique to be applied
to the measurement of particle size distributjions in a volume.

In order to understand the basic principles of diffraction pattern
sampling, consider first the estimation of the diameter of a round hole
in an opaque screen, The diffraction pattern intensity (squared
modulus of Fourier transform) is given by (szee Fig 1.3):
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AL
I(r) = [ -_"""(!g-"r“") » (3.1)

Af

where r is a radial coordinate (r? = x2 + yz). and d is the diameter of
the hole. A photograph of this intensity is shown in Fig 3.2 along
with a graph of I(r) v r: this function is called the Airy disc
function and the radius of the firat dark ring is given by

Tpin = 1.22afr/4 . (3.2)

Thus a sizmple measurement of rpi, yields the diameter d if A and f are
known. For example, if A = 633 nm and £ = 200 mm, a measured radius of
the first dark ring of 5.0 mm yields a pinhole diameter equal to

d ~ 1.22Af/rp4n = 31 pym. Note that the sgaller the hole, the larger
the diffraction pattern.

The extension of the technique to the measurement of particle or
droplet size distributions in a volume 1s non-trivial. First one
assumes that Babinet’s Principle holds: that is, if the diffraction
amplitudes produced by no screen, a certain screen and its complement
are U;, U; and Uz respectively, then U; = Uz + Ug. Thus at any point
where Uy = 0, if follows that U; = ~ Uy and I = I,.

The complement of a pinhole is an opaque disc. Real particles or
droplets are not opaque discs and some assumption regarding their shape
and/or refracting properties may be necessary. For very small
particles, scalar diffraction theory is not applicable and it may be
necessary to use Mie scattering theory. Finally, when there is a
distribution of sizes, the inverse problem of estimating the histogram
of particle sizes from the diffraction pattern intensity is not
straightforward. Further informaticn on the inverse problem is given
by W L Anderson in the review book by Stark (see Introduction).
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Figure 3,2 The diffraction pattern intensity produced by a circular
hole of diameter d: this is called the Airy disc function.

The first zero of intensity occurs at a v
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alue of r equal to



4, COHEREN C OR

4.1 Optical Lavout

The most common layout for a coherent optical processor is
shown in Fig 4.1. A laser beam is sent through a beam expanrder,
pinhole spatial filter and collimating jens to produce a uniform plane
wave. This is incident on a transparency (or other input device, see
Section 8) of amplitude transmittance t(¢.n) to yleld a complex
amplitude U;(3,n) = t(¢,n) in the input plane of the processor. The
input plane (1), first lens, spatial frequency plane (2), second lens
and output plane (3) are each separated by the focal length f of the
(identical) lenses. Thus, according to the analysis in Section 2, the
complex amplitude Uz(x,y) in plane 2 is proportional to the Fourier
transform of the amplitude U;(%.n). In practice we can ignore the
constant of proportionality and simply write

Up(x,y) = Ty(x/af,y/af) . (4.1)

where the tilde denotes the Fourier transform. Eq.(4.1) ignores the
fact that the diameter of the lens is finite: its effect 18 not
difficult to incorporate but we shall ignore 1t as it complicates the
essential simplicity of the analysis.

The second optical system alsoc performs & Fourier transform between

planes (2) and (3):

ug(E.m) = Ua(&'/af.m'/An) (4.2)

and combining Eqs.(4.1) and (4.2) we see that the complex amplitude in
plane (3) is a unit masnification_inverted image of that in plane (1):

U3e' ') = Up(=g,mm) : (4.3)
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Figure 4,1 The coherent optical processor. The complex amplitude
Up(x,¥) is the Fourier transform of the amplitude
U1 (§.n): the complex amplitude U3(Z',n’) is the
Fourier transform of Usix,y) and thus U3(%’'.n")
= Us{(-%,—), excluding aperture effects.



This result is obvious from geometrical optics. The power of the
coherent optical processor is that we have access to the Fourier
transform of the input and by altering the complex amplitude in this
plane (i.e. ’spatial filtering’) we can alter the appearance of the
image. Simple spatial filtering is discussed in the following sectiocn,

4.2 Simple Spatial Filterine

The complex amplitude Us(x,y) in the back focal plane of the
first Fourier transform lens in Fig 4.1 is of course a gomplex function
(has a modulus and a phase) and in general optical spatial filtering
involves modifying this using a complex spatial rilter (i.e. one which
alters both the modulus and phase of Uz). Methods of accomplishing
this are discussed in Section 5. However, the basic principles of
optical spatial filtering, as first demonstrated in 1893 by Abbe, can
be illustrated using modulus-only filters (i.e. simple absorption
filters) such as s8lits and circular apertures., Figure 4.2(b) shows an
object consisting of a mesh and the intensity of its Fourier transform
as it appears in plane (2) is shown in 4.2(a). The Fourier transform
is a map of the spatial frequency content of the object and in this
case we see from Fig 4.2(a) that the object consists of a number of
discrete frequencies (terms in a Fourler series) spread over the (u,v)
spatial frequency plane. If a horizontal slit is placed in the Fourier
plane (2}, as in Fig 4.2(c), then only the zero frequency (DC term) is
transmitted in the vertical direction and the resulting image (Fig
4.2(d)) contains no detail in the vertical direction — we have
'filtered out’' the vertical spatial frequencies, leaving structure only
along the horizontal axis. Similarly, Figs 4.2(e) and (f) show the
effect of a vertical slit in the Fourier plane.



Figure 4,2

|

|

Optical spatial filtering. (a) unmodified spectrunm

(b) object (c) spectrum modified by horizontal slit

(d) resultant image (e) spectrum modified by vertical slit
(f) resultant image. (From Goodman, see Introduction),
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5. COMPLEX SPATIAL FILTERING
5.1 Phase-Contrast Mjcroscopy
Probably the firat application of complex spatial filtering
was to the visualisation of the phase of an object wave by

phase-contrast microscopy. The complex amplitude for an input phase
object can be written

Ul(c,ﬂ) - Oxp(iﬂtp‘ll)) » (5.1)

where $(&.n) is the phase. If the phase is small, § << 1, we can write,

U¢.w) = 1 o+ idz.m) (5.2)

so that without any spatial filtering the image intensity is simply
constant:

I3¢'n) = lug(-g.-w 12
- 1 (5.3)

However, by inserting a spatial filter in the Fourier plane (2) we can
produce an image intensity variation proportional to the phase of the
object. The complex amplitude in the Fourier plane is

Uz(x,y) =  8(x,y) + 1§(x.y) (5.4)

Now we insert a small phase disc, of phase retardation n/2 (explin/2]

= 1) at the centre of the Fourier plane so that the complex amplitude
is now )

Up(x,y) =  1[8(x,y) + $(x,7] (5.5)



and the image intensity is

I3(E'.n') ~ 1+ 24(-F,) (5.6)

Thus, for weak phase objects, the image intensity is proportional to
the phase of the object wave, The Phase—contrast microscope works on
this principle and is an elezentary example of complex spatial
filtering. The spatial filter is not difficult to comstruct in this
case.

5.2 n_der Lugt ers
Consider the possible application of a coherent optical
processor to image deblurring or sharpening. A normal incoherent

optical image i(¥¢,n) is equal to the object intensity o(Z,n) convolved
with the point spread function P{%.,n) of the imaging system,

i(g.n) = o(f,n) = pl&.m) . (5.7)

In order to recover the original object intensity from the image
intensity we have to multiply the spectrum of 1(%,n) by a suitable
filter function H{u,v). 1In the absence of any noise (this is obviously
an idealisation), the optimum filter is simply the inverse filter,

H(u,v) = 1/P(u,v) (5.8)

since it is clear from the Fourier transform of Eq.(5.7) that

O(u,v) = I(u,v) [1/P(u,v)] . {(5.9)

In general, when there is noise present, the inverse filter (5.8) is
not the best choice, but nevertheless the filter H(u,v) is usually



gopplex, as in Eq.(5.8). 1In optical terms, the filter transmission

must have & phase and a modulus (absorption) component.

The van_der Lugt filter (IEEE Trans Information Theory, IT-10, 139
(1964)) is a way of making a complex filter using an absorption—only
medium such as a photogaphic emulsion. It is essentially a
Fourier—hologram. One arrangement for making a van der Lugt or
holographic filter is shown in Fig 5.1. 1If we wish to make a filter
H(u,v) we start with an object whose amplitude tranamittance is
h(E,n). The complex amplitude at the focal plane of Ly in Fig 5.1 is
therefore H(x,y}). Before recording, we coherently add this to a plane
wave reference beam at angle ewhoae complex amplitude 1is

Up = exp(-2niay) s

where the spatial frequency e = 8in/A. This frequency is chosen to be
greater than the highest frequency present in H{u,v) by ensuring that
the angle G is greater than three times the convergence sepi-angle of

light from lens L.

The intensity in the hologram plane is therefore given by

Iy = | Hx,y) + expl-2niay) 12 . (5.10)

As in ordinary holography, there are four terms in the expansion: the
term H(x,y).expl2niay] is of most importance. If the holographic
recording medium has a linear relationship between incident intensity
and amplitude transmittance after development, the complex amplitude
transmittance will also have the four terms, with the term involving
H(x,y).exp[-2riay]l again being the important term.

Note that we required a complex filter B(x,y) but have in fact made one
with complex transmittance proportional to H(x,y).expl2niayl. If we
insert this filter into the Fourier plane (2) of the coherent optical
processor of Fig 4.1, then the ‘corrected’ (e.g. deblurred) image will
appear at plane (3), but centred at n’' = —-alf instead of at the origin:
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this is because multiplication by expl2niay] in plane (2) is equivalent
to convolution by 6(n’ + aif) in plane (3). The other terms in the
expansion of (5.10) give apurious (unwanted) images centred at the
origin and at ' = aiAf, but these images do not overlap the important
one centred at n' = —alf, provided that e is large enough.

Although the van der Lugt or holographic filter has been described for
inverse filtering, its most practical application is to so—called
‘matched filtering’ for the automatic recognition of patterns,
characters, etc and this is described in Section 6.

5.3 Computer—geperated holograps

A major drawback of van der Lugt filters is that the inverse
Fourier transform h(&,n) of the filter function H(u,v) is required in
order to make the filter. For inverse filters in particular it is
almost impossible to realise h(Z,n), which is the function that
deconvolves the point spread function of the imaging aystem (it is
easier to make the filters required for matched filtering, see Section
6).

The technique of making holograms using a computer output device was
pioneered by Lohmann (see Appl Optics 7, 651-655 (1968) and references
therein). Because of the binary nature of many computer—output devices,
computer—generated holograms usually have only clear and opaque areas.
In phase detour CGHs the modulus and phase characteristics of the
hologram are formed in the following way, see Fig 5.2(a) and (b). Each
sampling point (n,m) in the hologram is represented by a square of side
d. A clear aperture within the aquare is adjusted in area to give the
required amplitude transmission for that pixel - this provides the
correct modulus of the hologram element. The diaplacement & of the
clear aperture from the centre of the pixel gives an additional path
length A6/d and thus phase associated with that pixel.

If the wavefront to be recorded (and reconstructed) contains only phase
variations, then the fringe positions can simply be encoded in a binary
computer_generated_jinterferogram. The fringe maxima and minima are

encoded as transmitting and opaque bands. Fig. 5.3 shows a result of
this technique which is particularly important for wavefront testing.
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6. MATCHED FILTERING AND PATTERN RECOGNITION

6.1 he tched er

When discussing van der Lugt filters in Section 5.2, we
considered the case of making an inverse filter K(u,v). This filter
has the property that, when inserted in the Fourier plane (2) of a
coherent optical processor, it produces a deblurred or sharp image from
a blurred or degraded input, centred off-axis at n' = gif. In this
case, both input and output are similar, the output simply being an
improved version of the input.

Other filters can be constructed for other tasks. For example, suppose
that we wish to identify each occurrence of a certain character in a
page of characters. In this case, our output need only be a bright
point at the location of each occurrence. It can be shown that, when
additive gaussian ‘white’ noise is present, the optimum filter in this

case 1s the matched filter.

Let s({.n) be the particular signal of interest (e.g. the letter ‘e'),
The matched filter has a point spread function h(i.,n) = 8*(-f,—q) and a
Fourier transform H(u,v) = S%(u,v), where S(u,v) is the Fourier

transform of the signal of interest.

6.2 Optical Implementation

An optical matched filter is easily constructed by the van der
Lugt method (see Fig 5.1). For a real signal (the usual case), the
input is simply an upside-down version of the signal of interest., The
intensity in the hologram recording plane is, c.f. Eq.(5.10),

I(x,y) = | s%(x,y) + exp(-2niay) & (6.1)

where S{x,y) is the optical Fourier transform of the signal a{{.n).
Assuming linearity of the holographic recording medium, the amplitude
transmittance of the hologram, t(x,y) has four components:



tx,y) = 1 + 1812 + 5°* exp(-2niay) + S exp(+2niay). (6.2)

Suppose that this matched filter is placed in the Fourier plane (2) of
a coherent optical processor (see Fig 4.1) and that an arbitrary signal
g(%.m) is placed in the input plane (1). The signal g(I,n) may or may
not contain the signal of interest. Immediately after the Fourier
plane we now have G(x,y).t(x,y). Subatituting for t(x,y) from
Eq.{(6.2), there are four terms:

(1) G(x,y)

(11) G(x,y) Istx,y)1?

(i11)  G(x,y) S*(x.y) exp(-2niay)
(iv) G(x,y) S({x,y) exp(+2niay)

(6.3)

The first two terms give an output in plane (3) that is centred at the
origin. The third term gives the cross-correlatjon of g(&.,n) and
8(%,n} and the fourth gives the convolution of g(Z.n) and a(Z,n). The
third is the important one in matched filtering. Suppose that the
unknown signal is in fact the signal of interest - in that case, G(x,y)
= 5%(x,y) so that all phase effects, except the plane wave, in term
(iii) of Eq.(6.3) are zero. This means that the second Fourier
transform lens will focus the light to a bright apot in the final

output plane.

6.3 Examples

Fig 6.1 shows an optical correlator for matched filtering. Fig
6.2 shows an example of character recognition (upper) and the detection
of a signal in noise (lower). Figure 6.3 shows the full cross
correlation matrix for 25 diatoms. Each diatom i3 cross-correlated
with all others and the strong component along the diagonal shows that
each diatom can be identified correctly using this technique.
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Figure 6.2 Examples of the use of optical matched filtering in
character recognition and signal detection. (From
F TS Yu, see Introduction: original by van der Lugt)
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Figure 6.3 A 25 x 25 correlation matrix obtained with spatial
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6.4 tched Filtering by Degenerate Four Wayv

Matched filtering is achieved by multiplying the Fourier
transform of the unknown signal by the complex conjugate of that of
interest, i.e. G(u,v) S*(u,v). The transform of this product is a
cross—correlation of g({.n) and s(%,n) and shows large peaks at points
where the unknown g(i,n) matches the signal of interest s{{,n). When
S*(u,v) is in the form of a transparency, as with the van der Lugt
filter, then the multiplication is carried out simply by illuminating
the transparency by G(u,v).

Suppose, however, that S*(u,v) is got available in the form of a
transparency, i.e. for one reason or another it is not posaible to make
a matched filter. (Perhaps the signal s(%,q) is only avallable in
transparency form.) In this case the product can be performed by
degenerate four wave mixing (DFWM) in a non-linear crystal such as
bismuth silicon oxide (BSO), as first shown by Pepper et al (Opt Lett
3, 7-9 (1978)).

The method is illustrated in Fig 6.4. DFWM is a generalised form of
real-time holography. In Fig 6.4(a), imagine that beam 1 is a
reference beam and beam 3 is an object beam - together they form a
hologram. If this hologram is illuminated by beam 2, one reconstructs
the object beam of travelling in the opposite direction to the original
object beam 3. In fact, beam 4 is the phase conjugate of beam 3 if
beams 1 and 2 are plane waves. If three beams 1,2 and 3 illuminate
a suitable non-linear crystal Simultaneously, then under the
appropriate conditions one obtains a fourth beam whose complex
amplitude is proportional to the product of beams 1, 2 and 3. This can
form the basis of an optical correlator for matched filtering and other
applications,

Referring to Fig 6.4(b), let the éomplex amplitude incident on the BSO

crystal due to beam 2 be a plane wave uy and let the complex amplitudes
after planes 1 and 3 (which contain the fields to be correlated) be u;

and uz. The lenses L; and Ly perform the Fourier transform, Uy and U3

on these fields, so that a total of three fields uz, Uy and Ug are

incident on the erystal, They induce a non-linear polarisation
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Figure 6.4 (a) Basic configuration for DFWM
(b) Schematic diagram of image correlator
(c) Upper: {inputs to correlator
Lower: correlator output showing correlation
peaks
(From Petts et al, Electronics Lett, 20, 32-33 (1984))



3)

P = x*u; v, 03 ’

where X(3) 1s the third-order non-linear susceptibility of the medium.
This induced polarisation produces a fourth (output) field Uy and since

us; is a plane wave,

Uy « Uy Ug. .

This is the product of Fourier transforms required for matched
filtering and the lens L, performs the final Fourier transform
necessary to display the correlation peaks.

The advantage of DFWM is that there is no need to make a matched filter
provided the input for the signal-of-interest is availlable in
transparency form. As with many coherent optical processcrs, the
inputs may be provided through various electro—-optic devices (see
Section 8). Fig 6.4(c) shows an example of character recognition using
this technique. For a review of information processing using DFWM, see
White and Yariv, Opt Engng, 21. 224-230 (1982).



7. SINTHETIC APERTURE RADAR (SAR)

One of the most successful applications of coherent optical
information processing has been in the formation of high-resolution
maps from synthetic aperture radar data. This technique was developed
by Cutrona et al (Proec IEEE, 34, 1026-1032 (1966)). In this section we
give only a brief outline of the method, stressing the basic
principles. For a review, see K Tomiyasu (Proc 1EEE 66, 563-584
(1978)) or E N Leith in the book edited by Casasent (see Introduction).

Figure 7.1(a) illustrates the terminology. A side-looking radar on an
aircraft has an intensity pattern on the ground called the 'beanm
foot-print’'. Th aircraft flies along the azimuth direction, the
direction perpendicular to azimuth along the ground being called the
range. The beam ‘}ook-angle’ is O and the range along @ 1s called the

slant-range.

The name ’'synthetic aperture’ is derived from the method of {(coherent)
imaging in azimuth, shown in Fig 7.1(b). Here and below we consider
the imaging of a point scatterer ~ the image of an extended object can
clearly be constructed from many point images. The radar emits pulses
at tj, tz......tn, and the time taken for the pulse to return to the
aircraft clearly depends on 1, T2+....rn. Figures 7.2(a) and (b) show
that the time delay varies parabolically with the flight time as the
aircraft makes its closest approach to the point object. If the return
signal is heterodyned (‘interfered') with a local oscillator on board
the aircraft, the signal shown in the lower part of Fig 7.2(b) is
obtained. This signal, when recorded on film is simply a
(one-dimensional) hologram of a point source and can be reconstructed
in the normal optical way, see Fig 7.2(c). Note that the angular
resolution depends on the extent of the azimuth flight - this may be
1km, giving an angular resolution of 10-4 rad (e.g. 1m at 10km) for A =

.1lm radar,.

Imagery in range is simply achieved by timing the delay between
transmission and reception of the Pulse and the use of s
frequency-modulated pulse gives the highest resolution for the lowest
power, see Fig 7.3(a). The FM or ‘chirp’ pulse is also a hologram of a

At -t
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Figure 7.1 (a) Terminology of synthetic aperture radar
(b} Imaging by the synthetic aperture in azimuth
{Courtesy of K Cuchi)
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point object, so that the final two-dimensional film recording is a
hologram in both the range and azimuth directions, as shown in Fig
7.3(b).

This hologram can be reconstructed by the simple coherent optical
system shown in Fig 7.4. The ‘focal lengths’ of the hologram are
different along the range and azimuth directions and these can be
compensated by using two cylindrical lenses in the optical systen.

The above processor is somewhat oversimplified, since the focal lepgth
of the azimuth hologram clearly depends on the prange of the point
scatterer (see Fig 7.2). This can be compensated by using a conjcal
lens placed in contact with the hologram. An improved tilted plane
processor is described in Kozma et al, Appl Opt 11, 1766-1777 (1972),
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8. = UT

The nature of coherent optiecal processing requires that the signal
being analysed be transformed to a suitable input medium - in previous
Sections we have assumed that this is photographic film. Although
photographic materials have many advantages, particularly high speed
and large storage capacity, they require chemical development to render
the recorded image visible and are not suitable as real-time input
devices to a coherent optical processor.

A typical application for a real-time device, or spatial light
modulator, would be in a character-recognition system. A page of

printed characters are illuminated with spatially dncoherent light (to

avoid the problems of speckle). The image has to be oonverted so as to
modulate the complex amplitude of a soherent light beam. (The second
input in this case would probably be a set of van der Lugt rfilters of
individual characters pre-recorded on film.) The real-time device that
transforms the signal is sometimes called an 'incoherent-to-coherent
convertor’. In other applications, we may wish to use an electronic
signal to modulate the complex amplitude of a coherent light beam.

A recent review of spatial light modulators for coherent optical
processors has been given by G R Knight (in the book edited by Lee, see
Introduction). Figure 8.1 summarises the main characteristics of a
number of devices. Compared to photographic film, which has a writing
energy of approximately 1072 ergs/cm2, all of the devices are fairly
insensitive and the time-response of several devices is on the order of

milliseconds.

As an example, we shall briefly describe the liquid crystal light valve
(LCLV) which is a commercially available device. Its construction is
shown in Fig 8.2. The light blocking layer and dielectric mirror serve
to isolate the writing beam of light from the reading beam, which
operates in reflected light. The insulating layers are overcoated with
sputtered Si0, films that are jon-beam etched at an angle to provide
twisted nematic alignment for the liquid crystals. In the reading
process, light travels twice through the liquid crystal layer, which is

typically 2um thick.
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Characteristics of spatial light modulators

(From G R Knight in Lee, see Introduction)
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The device operates by rotating the plane of polarisation of light and
is therefore placed between crossed polarisers in the readout beam as
shown in Fig 8.2(b). In the off-state, linearly polarised light is
rotated through 45 degrees on its firat pasa of the layer as a result
of the twisted nematic configuration of the crystals but is restored to
its original polarisation on the second pass - no light is therefore
transmitted by the analyser. In the on—-state, with the photoconductor
activated, there is a voltage acroas the liquid corystal layer that
causes the molecules to rotate somewhat - the optical birefringence of
the layer then causes the plane of polarisation of the twice
transmitted light to rotate, thua giving a signal passed by the

analyser.

Devices one inch in diameter are avallable with approximately 1500
resolvable lines across the aperture. The rise time is about 15 ms.

In another form of liquid crystal device intended for use as an
adaptive Fourier plane filter, electrodes in a ring/wedge matrix
modulate the response, thus providing an electronic-to-coherent optical

interface,.



9. COUSTO-QPTIC N N

9.1 rinci f er on

Acousto-optical techniques of processing signals utilise
either bulk acoustic waves or surface acoustic waves (SAW) (mainly
Rayleigh waves). Figure 9.1 1llustrates the difference between these
two types of waves. In the case of bulk waves, the signal to be
analysed is injected by bonding a piezo-electric input plate to the
medium (commercial devices have used Te0; and PbMO4). In SAW devices,
where the acoustic medium (e.g. lithium niobate) is also
Piezo-electric, use is made of the fact that the surface acoustic wave
has an electric field above it in air extending almost one (acoustic)
wavelength. The basic SAW element is the delay line, see Fig 9.2(a).
The signal 1is injected using an interdigjital] transducer which produces
an electric field and hence a surface acoustic wave. An interdigital
electrode pattern may also be used to detect surface acoustic waves.

For a monochromatic acoustic wave travelling in the z~-direction in an
isotropic, homogeneous medium, we can represent the refractive index in

the region of the wave as

n(z,t) = ng + n; sin(et-kz) , (9.1)

where n, is the unperturbed index and n; 1s the maximum change arising
from the sound wave., In the case of SAW, n also varies with depth y
into the medium. The velocity of the acoustic wave is typically 1073
that of light, so that an optical beam of free space wavelength Aor and
wavelength Ag in the medium sees an almost stationary phase grating of
period A. If the interaction length is small, then the optical beam
sees a thin phase grating and is diffracted at angles On-

sin op = nmge/a (9.2)

with intensity
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I/t = 3%y, (9.3)

where

8 = (2r/ag) ngL

and L is the interaction length. The interaction is considered amall
if Q << 1, where

Q = 2mgeL/(ngr2) (9.4)
and this type of diffraction is called Ramap-Nath diffraction.

If Q >> 1 then Bragg diffraction occurs with a single diffraction angle

8in oy = +5 Agp/A (9.5)

of intensity

sin®(8/2) . (9.6)

EqQ(9.5) can be derived using the usual Bragg diffraction argument or
using conservation of momentum between the interacting photons and

phonons, Conservation of energy leads to the result

wy = Wi +  wg (9.7)

where the suffices d, 1 and s denote diffracted, incident and sound
respectively. Thus the diffracted optical wave is Doppler-shifted in
frequency.

Bulk wave acousto-optic devices are commercially available. One key
parameter is the time-bandwidth product, TAf, where T is the time
aperture, i.e. the time taken for an acoustic wave to travel the length
of the aperture. A typical Teoz modulator has a bandwidth of 30 MHz



centred at 45 MHz, an aperture length of 30 mm or 50us and a
time-bandwidth product of 1500. A PbMO4 device might have a bandwidth
of 200 MHz and a time-bandwldth product of 1000. Surface acoustic wave
devices are not readily available yet. They can be fabricated as a
planar waveguide thus allowing potentially long interaction lengths.

9.2 Applications

Acousto—optic devices can be used as modulators, spectrum
analysers, image scanners and convolvers, Fig 9.3 shows a generalised
acousto—optic signal processor which can perform all of these

operations.

Modulator. With fa(t) = 0 and T(z) = 1 in the interval 1/2 < z ( 1/2,
the intensity of the diffracted wave can be modulated according to
Eq.{(9.3) or (9.6) for Raman-Nath or Bragg diffraction respectively.

Spectrum Analyser. With f7(t) = 0, the diffracted light at z' depends
on the input frequency of the signal fi(t). If fy(t) has many
frequencies, a photodiode or charge coupled array in plane z' measures

the spectrum of fy(t).

Image Scanner. With f,(t) = 0, a pulse sent into the acousto-optic
device scans the spatial distribution of light T(Z%).

Convolver. Two signals f;(t) and f5(t) can be convolved, as shown in
Fig §.4. A review of accusto—optic convolution is given by Rhodes
{Proc IEEE,~§2, 65-79 (1981)). This convolver can alsoc implement the
Fourier transform operation (using a single photodiode, not an array)
via the ‘chirp’ transform algorithm: the Fourier transform (see Eq.1.1)

may be written

Flw) = exp(-niwz) I {rit) exp{-nitz)} explni(t-w)2] dt (9.8)

This is equivalent to multiplying the original signal by a chirp
expl-nit?], convolution with a chirp exp[-nitzl and then multiplication
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by the chirp expl-niw?].

All of the above functions can in principle be carried out in a planar
waveguide using surface acoustic waves, Fig 9.5 shows the design of a

spectrum analyser in a planar waveguide.
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10. ON-COHERENT OPT G

10.1 JIntroduction

All of the optical information procesaing techniques that
have been described so far rely on the fact that the light is
monochromatic and spatially coherent (i.e. there is a fixed phase
relationship between all spatial points). Such radiation is naturally
emitted by most lasers, However, it is well-known that coherent
illumination gives rise to spurious fringing effects when dust or other
optical imperfections are present in the optical system. Furthermore,
any randomly rough surface gives rise to laser speckle which severely
degrades the quality of images formed in perfectly coherent light.
(Laser speckle is discussed in the Statistical Optics lecturas),

Light that is either temporally non-coherent (i.e. polychromatic),
and/or spatially non—coherent (i.e. emanating from an extended source)
reduces these artifacts by an amount depending on its degree of
coherence. Totally incoherent light does not give rise to any speckle
at all.

In this Section we present a few simple examples of non-coherent
optical processing. Further details may be found in the books by Lee,
Rogers, Stark and Yu (see Introduction). Methods of non—coherent
processing can be conveniently classified into those that are based on
the wave nature of light and those based essentially on geometrical
optics. We describe polychromatic spatially coherent and monochromatic
spatially incoherent optical Fourier transform systems as examples of
the former and two Fourler transform systems based on geometrical
optics as examples of the latter. However, it should be streased that
many other optical processing operations other than the Fourier

transform can be carried out by non—coherent optical systems.

10.2 The Achromatic Optical Fourier Transform

In Section 2.1 we stated that the complex amplitude in a
Fraunhofer diffraction pattern was given by
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This is the complex amplitude at a large distance from a coherently
illuminated diffracting screen. As shown in Section 2.1, a lens can be
used to achieve an exact Fourier tranaform relationship between its
front and back focal planes, with distances (x,y) in the Fourier plane
being related to spatial frequencies (u,v) of the input plane by

X = Afu and y = Afv .

Suppose now that an input object, for example a grating of frequency
(u,v), is illuminated by spatially coherent but polychromatic (white
light). This could be achieved by replacing the laser source with a
spall tungsten-halogen lamp. Each wavelength A 4in the illumination
will now form a pair of diffraction spots at (Afu,Afv) resulting in a
Pair of spectra in the back focal plane.

An achromatic Fourier transform optical system is one which compresses
the spectra back to small spots, i.e. gives a relationship

Xx = ifu and y = ifv ,

where % is a pre-determined constant. Such optical systems can be
designed using at least two separated lens groups, as shown by Wynne
(Opt Commun 28, 21-26 (1979)) and Morris (Appl Opties 20, 2017-2025

(1981)).

Figure 10.1 shows the effect of using an achromatic Fourier transform
lens when the object consists of a set of nested triangles, By using
two achromatic Fourier optical systems in tandem one can construct an
achromatic matched filtering or inverse filtering optical processor.
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Figure 10.1 (a) Output of a conventional coherent diffractometer
for an input consisting of nested triangles
illuminated by white light.

(b) Output of achromatic diffractometer (left Ai=300nm,
right AA=200 nm),.

(Courtesy of G M Morris and N George)
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Suppose that we wish to optically find the Fourier transform of
a spatially jincoherent distribution of light, such as a transparency
i{llumirnated by an extended aource or a television monitor. We shall
assume here that the light is fairly monochromatic, although the
technique descrided below can be made achromatic.

Let the light intensity of the object whose Fourier transform is to be
found be denoted by I(%,n) and the time-varying complex amplitude
incident upon a distant detector be V(x,y,t). 1In coherent light,
V(x,y.t) would be a well-behaved sinusoidally varying signal, but in
incoherent thermal (chaotic) light it is a randomly varying function.
However, as shown by van Cittert and Zernike (see Born and Wolf,
'Principles of Optics, Pergamon Press, 6th Ed, 1980), the Statistical
correlation or putual intensity of Vix,y,t) is equal to the Fourier
transform of I({,n), provided certain elementary conditions are
satisfied. Thus, defining the mutual intensity

M(x,y) - Vx',y',t) V(x'+x,y"+y,t)) (10.2)

then the van Cittert~Zernike theorem gives,
® 2n1
M(x,y) = II I{¢.n) exp[-iﬂ-(x¢+yq)] 4% dy (10.3)
— z

where 2 is the (large) distance from the source plane (Z,n) to the
observation plane (x.y).

Any technique of measuring the mutual intensity thus also measures the
Fourier transform of the intensity distribution I(Z.n). The simplest
way of measuring M(x,y) is to use an interferometer - ye shall describe
8 one—dimensional 1nterferometer.-but it can easily be extended to two
dimensions (see Mertz, 'Transformations in Optics’, Wiley, 1965,
Breckinridge, Applied Optics, 13, 2760~2762 (1974) and Roddier et al, J
Optics (Paris), 9, 145-149 (1978)).

bl



The wyavefront—-folding interferometer (see Fig 10.2) gives an intensity
at its output equal to

I(x,y) = < vixt) + Vix,t) 1

- 2 [1+ Re{M(2x,0)}] (10.4)

if the intensity IV|2 is spatially uniform and set equal to unity for
normalisation. Since I(%.n) is necessarily real, it follows that
Re{M(2x,0))} is equal to a section of the Fourier gosine transform of
I(¢,n). The Fourier sipe transform can be measured by introducing an
additional n/2 phase change in one arm, for example, by translating the
mirror by i/8.

10.4 Fourier Transforms using Geometrjical Optics

One simple non-coherent method of Fourier transformation is
based on the use of Moire fringes. Fringes of cosinusoidal (or
sinusoidal) intensity distribution of frequency (u,v) illuminate a
transparency t(t.h). If all of the transmitted light is collected by a
detector, the detector output is proportional to the cosine (sine)
transform of T(f,n) at spatial frequency (u,v). This is a very simple
way of finding the Fourier transform, although like most non—-coherent
methods it suffers from the presence of a large DC component in the

measurements.

The incoherent optical system shown in Fig 10.3(a) can be used to
perfornm the following matrix operation

gl = [s) [f] (10.5)

and a discrete Fourier transform ia a special case of this. This
system can of course only deal with real, positive light intensities.
However, as shown by Goodman et al (Opt Lett 2, 1-3 (1978)) complex
signals can be handled by decomposing them into three components - this
means that for N complex input points we require 3N real inputs (light
emitting diodes), a 3N x 3N mask and 3N outputs (photo-diodes).



ANy MIRROR
INPUT Y
PLANE BEAMSPLITTER

V(X) —> —c

| | ROOF PRISM

< OUTPUT
V(-X)  V(x) PLANE

Figure 10.2 The wavefront-folding interferometer
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multiplication (after Goodman et al, Opt Lett
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