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Abstract: A fundamental formula in the study of elliptic functions is the product formula for
Dedekind’s eta function or, equivalently, for the holomorphic cusp form on the upper half plane h
which is of weight 12 with respect to the action by PSL({2,Z). A related formula expresses the deter-
minant of the Laplacian which acts on the space of smooth functions on an elliptic curve with a period
of the elliptic curve and the Dedekind eta function. In [JT 94a), we constructed a holomorphic function
on the moduli space of marked, polarized, algebraic K3 surfaces of fixed degree using determinants of
Laplacians. The aim of this article is to state a conjecture which expresses product formula for this
holomorphic form. In addition, we will present speculative relations with the representation theory of
the Mathieu group M3, as well as stating many other problems currently under investigation.

§1. Determinants and the eta function for elliptic curves
Given r=a + th € C with b > 0, let A, be the two dimensional lattice in C
Ar={n+mr|nmeZ},
and let E; be the elliptic curve E; = C/A,. View E; as a Riemannian manifold with flat metric of

area one. If {A,} denotes the sequence of positive eigenvalues of the Laplacian which acts on smooth
functions on E;, then the associated spectral zeta function is defined for Re(s) > 1 by

el T adt
Cr(s):ZAn —F_(ST/Z‘:A tT'

If the metric is represented by u(2) = Elagdz A dz, then the associated Laplacian is

32

A = _4baz_az_'.

The eigenvalues are explicitly computable, and the spectral zeta function is

GO = Y

—_
(o0 P ™I

The function (,(s) is the classical non-holomorphic Eisenstein series on the hyperbolic upper half plane
h with respect to the group PSL(2, Z), and the study of its analytic continuation and special values are
well known; see, for example, [L 87] or [W 76]. Let g, = exp(2wir), and let n(r) denote the Dedekind
eta function

[e=]
nn=a[0-a)
n=1
A direct application of Kronecker’s first limit formula yields the equation

exp(—(7(0)) = bln(7)]*.

Both authors gratefully acknowledge support from NSF grants. The first author was partially supported through a
Sloan Fellowship and through visits to the Max-Planck-Insitut fiir Mathematik.
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Following standard conventions, the special value exp(—(.(0)) of the spectral zeta function is known as
the determinant of the Laplacian, and we shall write

exp{~(L(0)) = det *A.

The asterisk redects the fact that the zero eigenvalue has been omitted in the definition of the spectral
zeta function. Let (dz,dz} denote the L? norm squared of the holomorphic one form dz on E,. With
this, we can write the above formula as

sy = I

This expression lead us to seek and obtain in [JT 94a] and [JT 94b] similar formulae in the setting of
polarized, algebraic K3 surfaces, which we now shall briefly recall.

§2. Basic properties of K3 surfaces.

Let us review some basic properties of K3 surfaces. For a more general and complete discussion, the
reader is referred to [Ast 85].

A K3 surface X is a compact, complex two dimensional manifold with the following properties.

a. There exists a non-vanishing holomorphic two form w.
b. HY(X,0x)=0.

For the purposes of this article, we will assume that all surfaces are projective varieties. From the
defining properties, one can prove that the canonical bundle on X is trivial. In {Sh 67], the following
properties of K3 surfaces are proved. The surface X is simply connected, and the homology group
Ha(X,Z) is a torsion free abelian group of rank 22, The intersection form ( ,) on H3(X,Z) has the
properties:

a} {u,u} =0 mod (2);
b) det({e;,e;)) = —1, where {e;} is a basis of Hy(X, Z);
¢) the symmetric form {, ) has signature (3,19).

Theorem 5 from page 54 of [Ser 76] implies that as an Euclidean lattice Hy(X, Z) is isomorphic to
the K3 lattice A, where

3
Hz(X,Z)EA:* [2 (]jjl @(WES)Z

Let X be a K3 surface, and let o = {a;} be a basis of H2(X,Z) with intersection matrix A. The
pair (X, @) is called a marked K3 surface. Let e € H'1(X, R) be the class of a hyperplane section. The
triple (X, a, e) is called a marked, polarized K3 surface.

The period map 7 for a marked X3 surface (X, ) is defined by integrating the holomorphic two form
w along the basis o of H3(X,Z), meaning

W(X,a):(...,]w,...).

oy

The Riemann bilinear relations hold for #{X, «), that is

(m(X,a), (X, a)) =0 and (m(X, o), r(X,a)} >0

The subvariety in CP(H%(X,Z) ® C) described by the Riemann bilinear relations is isomorphic
to 500(3,19)/50(2) x SO(1,19). Following Piatetski-Shapiro and Shafarevich [PSS 71], the results
from Burns and Rapoport [BR 75] and Todorov [To 80] combine to prove that the space of all isomor-
phism classes of marked, polarized X3 surfaces (algebraic or not) is in one to one correspondence with
500(3,19)/S0(2) x S0(1,19). If a K3 surface is not algebraic, one defines a polarization as a class in
H'(X,R) lying in the Kihler cone of X (see [To 80]).
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If (X, e, a) is an algebraic, marked, polarized K3 surface, the degree of the polarization is the integer
d such that 2d — 2 = {e,e). From [PSS 71] and {Ku 77) we have that the moduli space of isomorphism
classes of marked, polarized, algebraic K3 surfaces of a fixed degree is equal to an open dense set in the

symmetric space
' hy 19 = 500(2,19)/50(2) x SO(19).

Let

T, = {6 € Aut(HA(X,2)) | ($(u),#(v)) = (u,v) and é(e) =e}.
The moduli space of isomorphism classes of%gzla.;'zqd, algebraic K3 surfaces of a fixed degree, which we
denote by M(x,e), 18 isomorphic to an open, %5( in the quasi-projective variety I'\hze. If we allow
our surfaces to have singularities which are at most double rational points, then the corresponding moduli

space of isomorphism classes of marked, polarized, algebraic surfaces is equal to the entire symmetric
space ha 3. )

Using the period map, one can give the following description of hy19. Let { ,) denote the bilinear
form defined by the cup product on the second cohomology group H*(X,Z). Then hz,19 is deseribed by

hy 1o = {{u, ) =0,{u,a) >0 and {u,e} =0} C CP(H*(X,Z)®C.

Let Tmare * M(X,0,0) — Mx ) be the natural map which forgets the marking. From the surjectivity of
the period map, it foltows that Tmar,e coincides with the action of ', on M(x «.¢)-

§3. A canonical family of holomorphic two forms.

In the case of elliptic curves, one has a specific family of holomorphically varying holomorphic one
forms, namely the family {dz}. The construction of a canonical family of holomorphically varying
holomorphic two forms can be described as follows.

1. Any marked, polarized, algebraic K3 surface is an element of a famnily of K3 surfaces £ — D,
where D is the unit disc, such that the monodromy has a Jordan cell of dimension 3; i.e., if T
is the monodromy operator, on Hz(X,Z), then (TN —id)® = 0 and (T —id)” # 0 (see [To 76}
and [JT 94a) for details).

9. On the generic fibre X of this family, we have, up to sign, a unique cycle v such that Ty = v
and any other T invariant cycle is an integer multiple of 7. Further, there exists a cycle y such
that Tp =7+ u.

3. Since hy 19 is contratible, there exists a globally defined, non-vanishing, holomorphically varying
family of holomorphic two forms, say

wy € Ho(hz_lg, W*K:E(x.a)/hz,m)'

4. In [JT 94a), it is shown that the function

8(t) = [ e

The canonical family of holomorphic two forms is defined to be {w/¢(t)}. We remark that when
following the identical steps in the case of elliptic curves, one constructs the family of holomorphic one

forms {dz}.

is non-vanishing on hy 10.

§4. Definition of the apalytic discriminant for K3 surfaces.

Let T(x,) be the sheaf of holomorphic vector fields on (X, e). From Kodaira-Spencer deformation
theory, we can identify the tangent space Trx,o Of the moduli space of M(x ) at the point (X, e) with
HY (X, Tix.0)) The existence of the non-vanishishing holomorphic two-form w on X implies that we can
identify HY(X,T(x.)) with H}(X,Q). One can then deduce that the tangent space Ta x .., to the
moduli space M(x a,¢) at the point (X, a,€) can be identified with the space

HYX, QY0 = {u e HY(X, Q') | {u,e} =0}
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We view any ¢ € H1(X, Tix,ey) as a linear map from Q10 to Q01 pointwise on X. Given ¢, and ¢, in
Hl(x, Tix,c)), the trace of the map

¢’1¢T2-: QO,I - QO,I

at a point x € X with respect to the unit volume Calabi-Yau metric ¢ (meaning a Kahler-Einstein metric
compatible with the given polarization class e) is simply

Te(¢:82)(z) = 3 GOHGBIT)e gem.

klm.n

We define the Weil-Petersson metric on M x &) via the inner product

161, 62) = f Tr(¢1 37)vol,
X

on the tangent space H!(X, T(x,0,)) of Mx 0.y at (X, ,e). It is shown in [To 89] that the Weil-
Petersson metric on M X,a,e 18 equal to the restriction of the Bergman metric on hs 19. Therefore, the
Weil-Petersson metric is a Kihler metric with Kihler form HBWE.

For any holomorphic two form w on X, let

flwflZs = ~(w,w) :/wm.

X

In [To 89] and [Ti 88] it was proved that log llw|i%. is a potential for the Weil-Petersson metric. The
following theorem from [JT 94a] proves the existence of a second potential for the Weil-Petersson metric.
Theorem 4.1. Let (X, e) be a polarized, algebraic K3 surface of degree d, and let p denote the unit
volume Kdihler-Einstein form compatible with the given polarization. Let det* AE}I) be the delermi.-

e)
nant of the Laplacian which acls on the space of smooth (0,1) forms on X. Let {w(x,e'a)} be the !

normalized family of holomorphically varying 2-forms on the moduli space Mix 5 ). Then

det* ALV .
dd® log ( (Ze) | 0, .

”""’(X,a,e)u_%:

or, equivalent! .
e y e = A 00,1y _ c 2
—dd det A(X,e) = —dd ”w()(,a,e)“[,ﬂ = Hwp.

In other words, —det* A% s 4 rotential for the Weil-Petersson metric on M X ool
(X.e) {X,0.¢)

From results in [Kon 88], we have that N, = #(L./[Te,T.]) is finite, With this, we can follow the -
pattern observed for elliptic curves to define an analytic discriminant for polarized, algebraic K3 surfaces.
In [JT 94a] and [JT 94b] we proved the following theorem.

Theorem 4.2, Let D, = (Te\hz 1) \ Mx,ey. Then there is a holomorphic function fe on hy o
which vanishes on D, such that

det* A%V

(X,e)
fe X,Q‘,e — —_— N
| fe([ DI otk aolis

whence f. does not vanish on M x,a,e). Moreover, fNe is qn automorphic form on hy 19 with respect
to the action by T,.

In section 8 below we shall discuss further properties of f, as an automorphic form.
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By Theorem 4.2, we can view flNe as a section of the line sheaf (7. Kx/ Mu.e))N" which vanishes

precisely on D,. The holomorphic function fe defined as in Theorem 4.2 will be called the analogue of
Dedekind n function for polarized, algebraic K3 surfaces.

To conclude, let us remark that D, can be realized as the moduli space of algebraic K3 surfaces whose
polarization & is of degree d and is is such that any associated projective embedding has singular double

rational points. Further discussion of this point, together with interpretations in terms of singularities
of the Calabi-Yau metrics, is given in [KT 87).

§5. Realization of I'.\hz 10 @as 2 tube domain.

In order to state a product formula for the analytic discriminant defined in Theorem 4.2, we need a
specific realization of the symmetric space hj 19 83 8 tube domain; that is, we need to define a convex

cone V+ in R!® and represent hy 19 a8 R!? ++/—1V*. For this, we will follow the approach in [I 82}, [PS
69], and [To 94]. To begin, we need two elementary lemmas in linear algebra. Throughout this section,
we use the notation

hyn = 504(2,n)/S0(2) x 50(n).
Lemma 5.1. Let {, ) be a symmetric bilinear form on R™*? which has signature (2,n). Let
A={ue€ P(R"*?® C) | {v,u}) =0 and (u,) > 0}.
Then:

(a) Ais isomorphic 1o hen.
(b) A is isomorphic to {(ECR*? | dimE =2 and (, ) |g> 0}-

Proof. For the proof see [To go). O
Lemma 5.2. LetQ=[, ] bea pilinear form on R*(n > 1) of signature (3,1 — 1). Let
vV ={veR"|[yv,v} >0},
and let V't be one of the components of V. Then R" + V=1IV* is isomorphic to hn
Proof. Let H{(V)=R" + V=1Vt CR" + V—=1IR" = C". Define the map
Yy H(V)— cprtl by uw— (u1,. .., Un; —1/2[u,u],1) € cprtl

Consider a new symmetric bilinear form {,)on R™? by

(=0oeld o)

which naturally extends to a hermitian form. over P2 =R"T2QC. It is immediate that the signature
of {, ) is (2,n). Moreover, we have

(p(u), $(w)) = 0 and {P(u), ¥{(u)) > 0

By Lemma 5.1(a}, ¥ isan embedding of H(V) into hy.. It remains to prove that ¢ is surjective. For this
purpose, it suffices the establish the following observation. For any g € SO0p(2,n), the last coordinate of
g(¥(u)) is different from zero.

Assume g¢(¥(u)) = (v, Un41,0). Since {g(u), g(u)) = 0 and {g(u), gip(u)) > 0, we then conclude
fv,v} = 0 and [v,9] > 0.

From Lemmna 5.1(b) it follows that the two dimensional subspace in R"™ spanned by Re(y) and Im(v) is
such that [, ] restricted to this space is strictly positive. However, this is impossible since [,]hasa
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signature (1, n — 1). Therefore, the last component of g(1)(u)) is never zero, and the proof of Lemma 5.2
is complete. O

Recall that the lattice of primitive cohomology classes of degree d is define by

Hd:(—:E'g)zea [(1) é]zmz, where (e,e):Qd-—-Z.) Ld:éEﬁ)ﬁ (?g ‘fﬁtz

iy v*doe L @illlw.-uwa

From [To 80], we have that the automorphisms of Ly which preserve V¥ is isomorphic to T, where e
has degree d. With this, we have the following theorem.

Theorem 5.3. Let O, (La) be the group of automorphisms of the laltice Ly which preserve the cone

V*t, and set
Ma =04 (La)\(Ls ® R+/=1V+)
Then Co\bapo 2 My Ly @R +{f Y = K

We shall let denote the isomorphism given in Theorem 5.3 by

Te Fe\h2,19 — O+(Ld)\(Ld ® R + v/ —1V+).

§6. Realization of D, in the tube domain.

With Theorem 5.3, we need to identity the subset in the quotient of the tube domain corresponding
to D.. To begin, let us write a canonically defined divisor in the quotient of the tube domain, and then
we will prove that this subset corresponds to the divisor D,.

Recall that D, ¢ hy 19 can be realized as the set algebraic K3 surfaces whose polarization e is of
degree d and is such that any associated projective embedding has singular double rational points. Let

A.={le H(X,Z} | (1,) = -2, (I, ¢} = 0). »

In [PSS 71], it is proved there is a decomposition A, = A} U (—A}) where Af N (-AF) is empty. The
main result of this section is the following theorem.

Theorem 6.1. For each | € A¥, let
Hei={ue P(HYX,2)® C) | (u,1) = 0}.

Then ﬂ'e(ﬂ‘r;;r,e('pe)) = U+ (He,; N, (M(x,a‘e))).
leA]

In order to prove Theorem 6.1 we need the following lemma,

Lemma 6.2. Let £ = Ox (D) be a line sheaf on ¢ K3 surface X such that ¢, (L) = 1 and (1,1) = ~2.

Then either HO(X,0(D)) # 0 or H(X, O(-D)) £ 0. -
Proof. From the Riemann-Roch theorem we have .
4
x(Ox(D)) = dimc H°(X, Q(D)) ~ dime HY{ X, O(D)} + dimc H*(X,0(D)) = ——(-1’2—1) +2=1, '
hence
dime H(X, O(D)} + dimg H(X, O(D)) > 1.
It follows from Serre duality and the triviality of the canonical class that & (X, 0(D)) and the dual of -
H%(X,0(-D)) are isomorphic. Therefore,

-

dime H°(X, O(D)) + dime HO(X, Oo(-D))>1

from which the result follows. [J

®



"

Lemma 6.3. Let £ = O(D) be a lne bundle on a K3 surface X such that H(X,L) > 0 and
(D,D} = 9. Then D is a union of non-<ingular rational curves. Further, D can be described by
Dynkin diagrams of type An, Dn, Eg, E7, Es.

Proof. This corollary follows directly from Lemma 6.2 and Theorem 2.7 and figure 2.8 from [A62]. O

Proof of Theorem §.1. Let
D= U (HeaO1me (Mix.a0))) -

leat

Let 7 € i o(De). From the surjectivity of the period map, there exists a polarized K3 surface (Xr,er)
such that for any projective embedding associated to any pOWeT of the given polarization, the image of

X, has at least one double rational singulaz point. Take a minimal resolution of these double rational
points to obtain a minimal K3 surface X,. The preimage of each double rational point from X, onto
X, will define a divisor D such that the Chern class ¢, (O(D)) will be a vector ! € H*(X,,Z) for which
ey =0, {7 =0, and {I,1) = —2. Therefore, we(The o(De)) CD-

Conversely, for each | € H?(X,Z) such that {1,1) = ~2 and (I,e) =0, there 1s a hyperplane
H = {r€hyse CPHHLOCYIT Iy = 0}.

From Lemma 6.3 and the surjectivity of the period map, we conclude that 77 1(7) € Toe (Do), which
completes_the proof of Theorem 6.1. O

NEEEd product formula.
For each { € L such that {I,I) = -2, we define the linear map
sVt VY by si(v) = v+ (v, M-

It is immediate that 51 € @4 (L). LetTp be the subgroup generated by st Then, I'f, is a normal subgroup
in @4(L), and T'p acts properly and discontinuously on V+. Let F (L) denote the fundamental domain
of 'y, such that F(L) is a convex polyhedra whose walls are defined by the hyperplanes H;. For a proof

of these facts, see [Bour 89].

Let A={leL|{LD= —2}. Each choice of F(L) defines a splitting of A = A1 U (—A™). Let us fix
F(L)andlet ey, ... €19 be vectors in L, which lie on the walls of F(L) and spanned L. Then the family
{e;} defines a flat coordinate system 7i,..., 719 in L® R+ =1V* (see [COGP 99} and [To 94]).

Conjecture 7.1. Consider f. as a function on Maq. Let Ng = #((’)+(Ld)/[0+(Ld),O+(Ld)] and
19
sel T = z Ti€i- For each | € A+, lel qr(T) = EXP(Q’"'V —1(‘?’, I)) and set qU(T) = exp(zﬂ'\/—_l—zﬂ')-

i=1

Then there is a constant ¢4 and a set of positive integers {m(l)} for L€ At such that

e
() = cano(@ TL =T (- 200 27 BA)
! ; } i | leat el
. Ly, :
2 for ey 020~ La(e,2,) welid Bdc,ktc: \{A\ a4 heTY 1
For a detailed discussion concerning the structure of the integers {m({)}, the reader is referred to the
preprint [Bor 94]. A stronger version of Conjecture 7.1 would assert that, as in the case of the Dedekind
eta function for elliptic curves, almost all integers m({) are equal to one.

When expanding the product in Conjecture 7.1, one obtaius a Fourier series with integer coefficients.
The integers are related to the number of —2 curves on the K3 surface. In this way, out discriminant can
be viewed as a type of generating function. Recursive relations between the coefficients can be established
and suggests that a connection with Hecke theory on h3 19 should be studied. Further investigation into

these questions is under consideration (see [JT 94d)).

Remark 7.2. One can prove that the product defined in Conjecture 7.1 converges for pl} vector
7€ Lg ®R+\/—1V+. Recall that f. 15 a section of the line sheaf (1. Ks/Mx,0y ) herefore, fe vanishes
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on D,. It is immediate from results in section 6 that the product in Conjecture 7.1 vanishes on this
space as well.

In the case of elliptic curves, one can prove that the holomorphic function constructed from the
determinant of the Laplacian has a product formula by proving that the product expansion has the same
automorphic behavior as the holomorphic function. This fact can be verified through the Kronecker }imit
formula. An analogue of the Kronecker limit formula in the setting of algebraic, polarized K3 surfaces
is currently under investigation (see [JT 94d]).

Remark 7.3. It was shown in {JT 94b] that det” AE()](',IB) < 1. Therefore, Conjecture 7.1 would then

2

give an upper bound for the product in terms of the I, norm of the image of the period point in the

tube dormain.

§8. An analogue of the elliptic g-parameter and j-function,

It is known that the space of weight 12 holomorphic modular forms on the hyperbolic upper half plane
h with respect to the group PSL(2,Z) which vanish at infinity is one dimensional (see, for example,
page 88 of {Ser 73]). Analogous to this fact, we have the following conjecture.

Conjecture 8.1. Let Mg be the moduli space of polarized, algebraic K3 surfaces of degree d, and
let X be the unwversal family of K'3 surfaces over Mg. Then

v

dimHU(Mg,ﬂ'.K;‘y/Mg) =1.

In (JT 94a], we constructed, following [COGP 92] an analogue of the g-parameter which exists in the
setting of elliptic curves. Briefly, the construction is as follows.

Let 7 : {X,£) — D be a semi-stable degenerating family of polarized K3 surfaces such that the
monodromy operator T € Aut(H2(X,, Z), L) has a single Jordan cell of dimension 3 (see [To 76]). In
the language of [Ku 77), such a farmily is of type III. Then there is a free, three-dimensional submodule
W(X:, L) C Ho(Xy, Z) for which the action of the monodromy operator is unipotent. That is, with
respect to a continously varying basis {As, B, Cy} of W(X,, L) over Q, the action of the monodromy

is by the matrix
11 1/2
0 1 1

0 0 1

Thus, there is a unique invariant 1-dimensional submodule, generated by + 4, for t € D. Let we be as

in section 3, so
/Wg =41

Ag

The vanishing cycle is the cycle A, such that the above mtegral is equal to 1. An element Bein W(X,, L)
for which T(B;) = B; + A, will be called & transverse cycle. Note that two transverse cycles differ by
an additive factor of the form nA, where n is an integer. The K3 modular parameter associated to the
above degenerating family is defined by

7 (t) = exp 2m’/m

B,

Since hy 19 is simply connected, one can use deformation arguments to show tliai g, is independent of
the family and depends solely on (X, e, e), hence we shall write %(X,a,e)- Using results from [JT 94a],
we can prove the following. If (X, «, €) is a Kummer surface associated to the abelian surface C?2 /L(2),
where L{Q) is the lattice associated to I3, the two by two identity matrix, and {2, a matrix in the Siegel
upper half space of dimension two, then 9(X,x,e) = exp(miTr(£2)). Using the asymptotics of the periods
as given in [Gr 70], we can prove

q(X,cz,e)(O) =0 and qEX,a,e)(U) 5& 0.
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An interesting question is to relate the above g parameter and the parameter defined in Conjecture 7.1.
It can be shown that when one restricts T to a line in the tube domain generated by 2 rational direction
(meaning a line such that some integer multiple lies in the lattice), then the two ¢ parameters coincide
(see [IT 94d]).

Let us now define the K3 analogoue of the elliptic j-function, together with a conjecture concerning
its Fourier expansion. As above, let us view fNe as a holomorphic modular form on the tube domain
constructed in section 5. The main result from {Ba 70}, as stated on page 141, asserts that fNe can be
written as an isobaric polynomial involving Eisenstein series defined in [Ba 70]. Let h. be the weight of
the polynomial. Let Sa denote the set of isobaric polynomials in the Eisenstein series of weight h with
integer coefficients. Further work in {Ba 70] and [Ba 73] asserts that for sufficiently large h, a basis of
S provides a map defined over Q of the quotient of the tube domain into projective space such that
the image is birationally equivalent to the Satake compactification of the quotient of the tube domain.
Let h = c.h. be the smallest weight divisible by he, so ¢, is an integer, such that Sp provides such a
map, and let {Exr} withk=1,...,NbeaQ basis of Sa. The set of modular functions {Enp/fs}
with £ = 1,..., N is the K3 analogoue of the elliptic j-function, which is known to be expressible as
the quotient of a weight twelve Eisenstein series divided by the Dedekind delta function. In the case of
elliptic curves, one scales the elliptic j-function so that the lead coefficient in a ¢ expansion is one.

Conjecture 8.2. For every k, there isack €Q such that for every type IIT degenerating family, the
g erpansion cx En i/ fi has posiiive inieger coefficients.

Going beyond Conjecture 8.2, we speculate, assuming the validity of Conjecture 8.2, that the co-
efficients are related to the dimensions of irreducible representations of the Mathieu group Mg4, in 2
manner similar to that which relates dimensions of the irreducible representations of the Fischer-Griess
monster simple group and the g expansion of the elliptic j-function. We base this speculation on two
facts. The first observation is a combination of the connection with Ma24 and the monster, as discussed in
[CN 79], together with the connection between elliptic curves and boundary components in the moduli
space of polarized, algebraic K3 surfaces (see [Ku 77))- The second observation 1s a result of Mukal
[Mu 88], which states that any automorphism group of a polarized, algebraic K3 surfaces is a certain
subgroup of Mza. The reader is referred to [Mu 88] for further details of his proof. In ongoing work, we
are investigating the following so far heuristic approach to Mukai’s theorem.

As described in [T 85], one can embed May4 into the automorphism group, modulo reflections, of a
26-dimensional Z lattice of signature {25, 1). More specifically, let Log be the set of vectors inue R
with coefficients in 52 and such that (u, f) € 22, where f is the vector in R2® with all entries equal to
1/2, and (,) is an inner product of signature (25,1). Let W be the subgroup of Aut(Las) generated by

reflections of the form
se{w) = w4 (u, DI where ([, 1) = -2

Then one can embed Mas into Aut{Lag)/W. On the other hand, it is shown in [PSS 71] that Aut{X, L),
the automorphism group of a polarized, algebraic K3 surface, 1s equal to Ot (Pic{X))/ W, where Pic(X) is
the Picard group H*(X, Z)nH X, R) and W is a group of reflections. Using the Hodge decomposition
theorem, one can show that the signature of the inner product on H?*(X,Z) has signature (7, 1) on
Pic(X), where n = tk(Pic(X) - 1. One can embed Pic(X) into Las; namely, we need to consider
subgroups in O+ (Las) which stabilize Pic(X ). Such subgroups will define subgroups of Mo4 in a natural
way via intersection.

In [JT 94c], we are investigating the continuation of these ideas to the setting of Enriques surfaces.
The corresponding symrnetric space is §0(2,10), and the corresponding simple group 18 Mia.

In [LY 94], the authors are using ideas from mirror symmetry to study a connection between the
Fischer-Griess monster simple group and K3 surfaces which are complete intersections in weighte
projective spaces.
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toward the existence of a product formula for the K3 discriminant and for calling attentiong to work of
Borcherds. Both authors acknowledge 1. Frenkel, I. Grojnowski, 5. Lang, ¢ -T.Yau, and G. Zuckerman
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10
Bibliography

[A 62] ARTIN, M: Some numberical criteria for contractability of curves on algebraic surfaces. Amer.
J. Math. 84 (1962) 485-496.

[Ast 85] Géométrie des surfaces K3: modules el périodes, Astérisque 126 Paris: Société mathématique
de France (1985).

[Ba 70] BAILY, W. L. Jr.: Eisenstein series on tube domains. in: Problems in Analysis: A Symposium

in Honor of Salomon Bochner, Gunning, R. C. ed., Princeton: Princeton University Press (1970)
139-156.

[Ba 73] BAILY, W. L. Jr.: On the Fourier coefficients of certain Eisenstein series on the adéle group.
m: Number Theory, Algebraic Geometry, and Commutative Algebra: In Honor of Y. Akizuki,
Kusunoki, Y., et. al., ed., Tokoyo: Kinokuniya (1973) 23-43.

[Bor 94] BORCHERDS, R.: Automorphic forms on Os42,2(R) and infinite products Preprint (1994).
Bour 89] BOURBAKI, N.: Lie Groups and Lie Algebras, Chapters 1-3. New York: Springer-Verlag (1989).
g £

[BuR 75] BURNS,"D. Jr., and RAPOPORT, M.: On the ‘Torelli problem for Kihlerian K3 surfaces. Ann.
scient. Ec. Norm. Sup. §° série, t. 8 (1975) 235-274.

[COGP 92] CANDELAS, P., dela OSSA, X, GREEN, P., and PARKES, L.: A pair of Calabi- Yau manifolds

as an ezactly soluble superconformal theorem. in: Essays on Mirror Manifolds. Yau, S.-T. ed.,
Hong Kong, International Press Co. (1992) 31-95.

[CN 79] CONWAY, J. H., and NORTON, S. P.: Monstrous moonshine. Bull. London Math. Soe, 11
(1979) 308-339.

[CS 93] CONWAY, J. H., and SLOANE, N. J. A.: Sphere Packings, Lattices, and Groups. Grundiehren
der mathematischen Wissenschaften 290 New York: Springer-Verlag ( 1993).

(Gt 70) GRIFFITHS, P.: Periods of integrals on algebraic manifolds: summary of main results and
discussion of open problems. Bull. AMS. 75 (1970) 228-296.

(T 82] INDIK, R.: Fourier coefficients of non-holomorphic Eisenstein series on a tube domain associated
to an orthogonal group. Princeton University Thesis (1982).

[IT 94b] JORGENSON, 1., and TODOROV, A.: An analytic discriminant for polarized algebraic K3
surfaces. Yale University Preprint (1994).

[T 94b} JORGENSON, J., and TODOROV, A.: Analytic discriminants for manifolds with canonical
class zero. Yale University Preprint (1994).

[JT 94c] JORGENSON, J., and TODOROV, A.: Spectral theory and holomorphic forms on Enriques
surfaces. In preparation.

{JT 94d] JORGENSON, J., and TODOROV, A.: A Kronecker limit formula associated to the moduli
space of algebraic K'3 surfaces. In preparation.

[KT 87) KOBAYASHI, R., and TODOROV, A.: Polarized period map for generalized K3 surfaces and
the moduli of einstein metrics. Tohokuy Matk. Journ. 39 (1987) 341-363.

[Ko 88) KONDO, S.: On the Albanese variety of the moduli space of polarized K3 surfaces. Inyent.
Math. 91 (1988) 587-593.

(Ku 77} KULIKOV, V .- Degenerations of K3 surfaces and Enriques surfaces. Math. USSR Izv. 11
(1977) 957-989.

[La 87] LANG, §.. Elliptic Functions, second edition. Graduate Texts in Mathematics 112 New York:
Springer-Verlag (1987).

(LY 94] LIAN, B., and YAU, S.-7T.. Preprint (1994).

.-

L]



11

[Mu 88) MUKAL .. Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent.
Math. 94 (1988) 183-221.

[PS 69] PIATETSKI-SHAPIRO, 1. 1 Automorphic Functions and the Geometry of Classical Domains.
New York: Gordon and Breach (1969).

[PSS 71] PIATETSKI-SHAPIRO, 1. L and SHAFAREVICH, L: A Torelli theorem for algebraic surfaces
of type K3. Math USSR Izv. 5 {1971) 547-588. (Collected Mathematical Papers. New York:
Springer-Verlag (1989) 516-557.)

[Ser 73] SERRE, J-P: A Course in Arithmetic. Graduate Texts in Mathematics 7 New York: Springer-
Verlag (1973).

[Sh 67] SHAFAREVICH, I, et. al.: Algebraic Surfaces. Proc. of the Steklov Institut 75 (1965) (trans-
Jated by the AMS (1967)).

[Ti 88] TIAN, G.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and
its Petersson-Weil metric. in: Math. Aspects of String Theory. Yau, S.-T. ed., Singapore: World
Scientific (1988) 629-646.

[T 85] TITS, J. Le monstre; Astérisque 121-122 (1985) 105-122.

[To 76] TODOROV, A.: Finiteness conditions for monodromy of families of curves and surfaces. Izv.
Akad Nauk USSR 10 (1974) 749-762.

[To 80] TODOROV, A.: Applications of Kihler-Einstein-Calabi-Yau metric to moduli of K3 surfaces.
Invent. Math. 61 (1980) 251-265.

[To 89] TODOROV, A The Weil-Petersson geometry of the moduli space of SU{n > 3) (Calabi-Yau)
manifolds I. Commaun. Math. Phys. 126 (1989) 325-346.

[To 94] TODOROV, A.: Applications of ideas from mirror symmetry to the moduli of K3 surfaces.
Preprint (1994).

[Y 78] YAU, G..T.. On the Ricci curvature of a compact Kahler manifold and the complex Monge-
Ampere equation 1. Commun. Pure Appl. Math 31 (1978) 339-411.

(W 76] WEIL, A.: Elliptic Functions according to Eisenstein and Kronecker. New York: Springer-Verlag
(1976).






