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CARTAN GEOMETRY OF QUANTUM RELATIVITY
WITTEN’S LAPLACIAN AND ERGODIC STRUCTURES

DIEGO L. RAPOPORT

Instituto Argentino de Matematicas, CONICET,
Viamonte 1636, Buenos Aires, ARGENTINA; e-mail: raport@amba.edu.ar

Abstract - We present a geometrization of Relativistic Quantum Mechanics
and a quantization of gravitation, in terms of the Riemann-Cartan-Wey! (RCW)
geometries with Weyl-torsion and their associated diffusion processes. The cen-
tral role is played by the Laplacian operator associated to the RCW geometries.
We extend these diffusions on scalars to differential forms, and relate the RCW
Laplacian with Witten’s deformed Laplacian. The field equations for the RCW
geometries are derived from a mean Cartan scalar curvature extremal princi-
ple which yields the coincidence between the quantum potential and 1/12R(g),
R(g) the metric scalar curvature. We introduce the quantum Perron-Frobenius
semigroups of ergodic theory and the Lyapunov spectrum, associated to the
flows generated by the RCW diffusions and give topological obstructions to the
stability of these flows.

I Cartan Geometries and the Laplacian of Diffusion Processes

In this talk we shall deal with Markovian diffusion processes on a smooth space-time man-
ifold M . For this, we need an invariant description of the most general second-order elliptic

differential operator L acting on real functions on M .

Introduce an arbitrary Riemann-Cartan connection on M |, whose covariant derivative we
denote as V; assume V is compatible with a Riemannian metric ¢ on M . Consider the
Laplacian operator on functions [2,3] H(V) = 1ir(V?).

skew-symmetric torsion tensor of V; then:

H(V) = %tr(v% = %Ag +Q

with @ =TV ﬁdasﬁ , the trace-torsion one-form, Q the vector field conjugate to the 1-form Q:

Q(f) =< Q,grad f > (z) and A, the Laplace-Beltrami operator of ¢g. Therefore,

1 A
L=30+Q+L(1)
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where 1 denotes the function on M constantly equal to 1. If we assume for a start that all the
irreducible torsion components of ¥V vanish with the exception of the trace-torsion, we obtain, in
general, a one-to-one correspondance between Cartan connections with torsion given by its trace
component and Laplacians H(V). These restricted connections we call RC'W (Riemann-Cartan-
Weyl) connections, since () plays the role of a Weyl 1-form, We are interested in the "trivial”
case: Q@ =d Iny, ) : M — Rsq; denote the corresponding Laplacian as H(g,) := LA, + Q.
Assume the Markovian semigroups {P,,r > 0} generated by L preserves probability, then
L(1) = 0, and we are left with a geometrical laplacian H{g,1) for differential generator of
the diffusion processes on M. This is the case we shall discuss.

The Ito representation for these diffusions is as follows [1].

By embedding M on Rd, with d < 2n 4 1, we can obtain a smooth section Y of
L(R*, TM), so that if Y* denotes the dual section of L(T*M,R"}, then for all z € M,

g(x) = Y{(2)Y (). (1)
Then, the representation is given by the stochastic differential eqt. {Ito):
dX; =Y(z)dB: + b X, }dr,b = grad In o, (2)

with B, a standard Wiener process on R?. Observation (Cartan Stochastic Method):
The arbitrariness of the choice of Y, can be removed by constructing a random process on the
orthogonal bundle, whose image by the bundle projection on M has H(g,v) for differential
generator. This is an extension to Wiener processes of Cartan’s classical method.

II. Riemann-Cartan-Weyl Geometries and Quantum Mechanics

The transition density (heat kernel) py(7,z,y) of the process generated by H(g,%) is
determined as the fundamental solution of the "heat” eqt. (7 is an internal time evolution

parameter )
Ju

o = Hg, ) . (3)

The semigroup {P, : 7 > 0} with differential generator H (g9,%) has a unique 7- inde-
pendent invariant probability density determined as the fundamental weak solution (in the
sense of the theory of generalized functions) of the r-independent F. okker-Planck-Kolmogorov
equation: H(g,v)(p) = 0, where H(g,v) is the formal L*(voly) adjoint of H{g,v¥). Then,
H{g,¥)' = 1/2A, — div,. One proves that p = w?voly. It is important to remark that this
density is a relaxation density for the Markov process, in the sense that when = tends to infinity,
py(T,2,y) tends exponentially in 7, with z fixed on a compact set, to ¥2(y). Note that we
must assume that ¢ € L*(vol,), and thus the Markovian semigroup is defined on CX(M),
the space of smooth compact supported functions on M , seen as a dense subset of the Hilbert
space L*(M,¢?*.vol,). By Weyl’s lemma [1], we take ¢ to be everywhere positive and smooth.

We now associate with the diffusion process a Hamiltonean operator on the Hilbert space
L%(voly) [2,11,16]. Denote still as H{g,%) the unique self-adjoint Friedrichs extension of the
RCW laplacian, defined by the choice of the domain Ce(M). Define the inner product

< fits :U?/Mmmﬁ@mwﬂﬁw% 4)
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Integration by parts yields
<f11f2>:_(flaH(g?d))f2) (5)

where (.,.) denotes the inner product in terms of vol,. Consider the quadratic form on C.(M),
g associated to < .,. >,1e. g(f) =<f,f>. ¢ is then a Dirichlet form [16]. From eqt. (5)
follows a unique Hamiltonean operator which generates ¢, —H(g,%), which i1s then positive.
Let us see how this construction is related to the usual formulation of Quantum Mechanics
in terms of quadratic forms in L*(voly). Consider the mapping Cy @ L%(voly) — L*(4*voly)
defined by multiplication by by #~'; this mapping carries Co(M) in C.(M). For any f in
C.(M) we have

w7 ) = 172 [ f1=8g 4 VIfoly = (£ D, (©)
with b= gradiny and H = Cy—_10 H(g,¥)oCy=—1/2A,+V, where in the weak sense:
V =1/2(div, b+ g(b,b)) = Dgb 29, (7)

is the relativistic quantum potential. Thus we have proved that —H(g,v) is unitarily
cquivalent to the Hamiltonean operator H = ~1/2A, 4V defined on L%(voly) and ¢ is a
generalized groundstate eigenfunction of H with 0 eigenvalue. Note the non-linear dependence
of V on the invariant density introduced by 1. We shall see below that this dependence is
removed due to conformal invariance at the level of the field equations.

III. The Mean Curvature Extremal Principle

We start with a general Riemann-Cartan connection, V and we consider its scalar curvature
R(V) Consider the conformal invariant functional (3]

/ R(T)¢*vol,. (8)

We obtain
Tgﬁ =67 O3 Ing — 6;@0 Ing, (9)

so that, up to normalization, @ = d In¢. The field equations are

Gaslg) = —6/6"Tap(d), (10)

with Gaps(g) the Einstein metric tensor, and Top(¢) the improved energy-momentum density
of the field ¢. Taking the trace in (10) we get

H¢:=(Ly —1/6R(g))¢ =0, (11)

so that ¢ is a generalized groundstate of the conformal invariant wave operator defined on
L(vol,). Solving this equation for ¢ positive of class C?, as a weak equation (we can assume
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R(g) is locally integrable and ¢ of class 1 [16]), we obtain a Dirichlet form with Hamiltonean
given by —H | self-adjoint positive on L*(vol,), which is conformally conjugate to —H(g,1)).

As a result of this, if we denote by p(7,z,y) the heat kernel of the diffusion process
generated by H , its relation with py(7,z,y} of (3) is: pyl(r,z,y) = P 2~ W (y)p(r, 2, y) .
Observation: From (11) we conclude that the quantum potential is 1/12R(g) which certainly
does not depend on the scalar field ¢ at all. This is fundamental for the above transformation
of representation from L*(vol,) to L2 (y?vol,).

IV. The Classical Most Probable Realizations of the Quantum Motions

We shall determine classical gravitational motions from the quantum motions {X(r) :
T 2 0} given by (2) [3]. Let {P,, z ¢ M} be the Markovian system on M determined by
{Fr,7 20} : P[X(7) € B} = p(7,z,B), B a Borel measurable set of M. Take an arbitrary
smooth curveon M, ¢ :[0,00) = M, ¢(0) = z, and consider the “tube” of radius ¢ centered
on ¢, £ >0, of all quantum motions X(7) starting at z, 7 ¢ 0,7, T>0,

Te(p) = {X(T) :X(0) ==z, sup | X(r)—o(r)] < E} \ (12)
r€[0,T)
where || || denotes the Riemannian distance. We are interested in the asymptotic expression of

P(T.(¢)] as € — 07 . This expression is derived in the theory of large deviations in probability
theory [4] and is fundamental to the semiclassical approach to quantum gravity [6]. From an
intuitive point of view, it has been developed as a kind of infinite dimensional version of the
method of stationary phase for the evaluation of path integrals in Minkowski space quantum
field theory [5]. We have

Pu[To(p)] m e~ N T/et o~ S 12Le e ds ’ (13)
where L is the so-called Onsager-Machlup lagrangian or probability functional on paths (4]
Lip.¢) = Ib— ¢|° + divyh — 1/6R(g) . (14)
From (11) we finally get that L takes the reduced modified kinetic energy form
1/2L(0,8) = 1/2 417~ < $,b > | (15)

To obtain the classical realizations, ¢, of {X(7):7 > 0}, we extremize (15), so that they are
the most probable realizations of the quantum motions. Note that whenever b is orthogonal
to the classical velocity vector field & we obtain the geodesic flow of g as the most probable
approximation. Otherwise, we get a deviation of geodesic flow due to the torsion drift vector

field b = grad In .

Observation : It is well known that relativistic neutral spinless test -particles are un-
influenced by the torsion of the background Cartan geometry {17] and follow the geodesic flow
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determined by the metric of the Cartan connection. Here we see that in contrast with this,
the realization of the quantum motions deviate from the geodesic flow due to b = grad Iny.
As shown above, this is due to the fact that from the conformal invariance of the field equa-
tions, the relativistic quantum potential 1/2 (]|b]|? + div,b) = A4 /24, which expresses the
non-linear and non-local (in the sense of Einstein-Podolsky-Rosen) dependence of the quantum
system on the square root of the invariant density, equals 1/12R(g), which no longer depends
on the density at all!. This sheds new light on the phenomenology of quantum correlations
produced by the quantum potential [10}: they are mediated by the metric scalar curvature.

V. The Perron-Frobenius Semigroups of Quantum Relativity

The construction of the ergodic theory of the quantum flows associated to a RCW geometry,
resides in the fact that under weak analytical conditions on ¥ and @, the solution flow of (2)

exists and is unique and it defines a diffeomorphism of M. We shall assume for simplicity
that M is compact.

The flow of the s.d.e. (2), is a mapping Fr : M x Q2 — M, 7 > 0, such that for each
w€ Q2 ={w:0,00) > R*, w(0) = 0,w is continuous}, F{. ,w): [0,00) x M — M is
continuous and such that {F.(z):7 > 0} is a solution of (2) with Fo(z) =2, forany z ¢ M.
If we now assume that all components of Y, and b, lie in appropiate Sobolev spaces, by the
embedding theorem we obtain a diffeomorphismin M: Fr(w): M — M, Fr{w)(z) = Fr(z,w),
almost surely for 7 > 0 and w € Q, of appropiate degree of differentiablity. In the following
these analytical conditions are assumed [14].

Recall now the basic structures of the ergodic theory of dynamical systems [7]. Consider
a dynamical system {©,.,50} defined on a topological space ¥, ©,:Y - Y, for any 7 > 0
verifying the semigroup composition property: .y, = 0.0 0O,. Example: The solution
flows of ordinary differential equations on Y a smooth manifold, an instance of which is the
geodesic flow of a metric on Y . In these cases, ©-(z) is the position at time 7 of the integral
curve of the ordinary differential equation, where the initial value has been fixed. We need
more structure on Y, namely a o algebra of sets F on Y such that the inverse image by
©, of an arbitrary measurable set F' € F is a measurable set in F. We further require the
existance of a probability measure g on Y, ie: p(Y) = 1, which is invariant by the flow
{0, :7 >0}, e p(O7Y(F))=pu(F), for any F € F, and 7 > 0. The role of this invariant
measure 15 that of an equilibrium measure on Y. We consider the triple (Y, F, ), which
in the language of the theory of dynamical systems is called the phase space of the dynamical
system {©,,7 > 0}. Then one introduces the following semigroups. Firstly, let f € L>(Y');
we define the Koopman operators: (Vrf)(y) = f(0,(y)), for any 7 > 0; then we have the

semigroup property: Vepr = Vy 0 Ve on L*(Y). We finally introduce the Perron-Frobenius
operators, Ur,7 2 0: for any r a densityon ¥ and F € F,

[ Om@dutw = [ rwduty) (16)
F er (F)

T

which also defines a semigroup: the Perron- Frobenius ( PF ) semigroup of operators. With respect

to the pairing on Y defined by the measure u, these semigroups are adjoint, i.e.: Ul = V., for
any 7 > 0.



For diffusions processes, in which quantum motions are described by s.d.eqts. (2) we wish
to introduce similar structures in terms of the stochastic flow defined by integrating eqts. (2).
Yet, for these flows, the usual composition rules are unvalid. To lift this problem, one needs to
consider the enlarged space ¥ = M x 0, and the mapping

O: Y = V. 0.(2,0) := (Frw)(2),0: (w)), (z,w) € M x 9,

where @ = {w € C°([0,00) = M),w(0) = z,} is Wiener space provided with the Wiener
measure P amd its o-algebra, and 6;(w)(s) = w(r + s) — w(s), for any w € Q. Then,
Orts =0,00,, 1,5 >0, a.s.

Furthermore, if p is an invariant measure for the Markovian semigroup associated to the
s.d.c., then the product measure g = p@P is invariant by the flow: (O (BxA)) = u(BxA)
for any Borel measurable sets B € B(M), A € B(9).

Consider the triple (Y,F, ), where F is the o-algebra B(M) x B(§2), the product of o
algebras of measurable sets on M and § respectively, ¥ = M x Q and p=pRP. (Y,F u)is
a stochastic phase space with y a O, -invariant measure representing an equilibrium measure.
Introduce the stochastic Koopman semigroup of operators: (Vrfly) = f(O:(y))y € Y.f €
L*(Y) and a stochastic PF semigroup defined on the probability densities r on Y by (16).
Then, VI =U,,7 > 0.

In the case of R.Q.M. as constructed in Section I, for a compact space-time manifold,
M, and H(g,y) is an elliptic operator with p(B) = [, ¢?vol,, B € B(M), the unique
invariant measure of the quantum flow defined by integrating eq.(2) we have a stochastic PF
semigroup determined by this flow [11]. Therefore, from the fact that stochastic flows have the
diffeomorphic property alike classical smooth flows, we have a stochastic covariant dynamics on
M enlarged by the canonical shift of 2. Yet, in this setting one is interested in the M -part of
the stochastic flow while its Q-part is considered to be inaccesible [11]. Remark: To resume,
for the construction of an ergodic theory of the quantum flows generated by H (g,%), all what
15 needed is the Wiener measure P and the "Born” measure p. on the M -part of the How.

bl

In our lecture, we shall introduce the notion of ergodicity of the system with respect to
p, its Lyapunov spectrum, give a formula for the computation which is valid for the highest
expounent, introduce the notion of stability [18] and study the relation between the latter and the
contribution of the torsion. Yet, we shall need a stronger condition than stability which appears
to be related to Witten’s deformed laplacian in his proof of the generalized Morse inequalities.

V. Witten’s deformed laplacian and the RCW stochastic flows

Assume in the following M is a smooth n-dimensional orientable compact manifold pro-
vided with a Riemannian metric, g and the canonical volume element, vol(g); consider the
Hilbert space of square summable w of differential forms of degree ¢ on M, with respect to
voly . Denote this space as L»? and the inner product as < .,. >

The de Rham-Kodaira operator on L*? is A = —(d + ) = —(d§ + dd) where § is
the formal adjoint of d defined on L?*¢*!_ For g =0 this is the Laplace-Beltrami operator on
functions encountered before; in the general case we have in addition to tr(V9)? the contribution
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of the Weitzenbock curvature term. Let us assume that the real valued function on M % is
smooth and everywhere positive. We then have an induced smoooth density p = ¥ivol, on M.

Introduce the Hilbert space L?%? = L2Q4(M, p), of differential forms on M of degree ¢ ,
square integrable with respect to p, with inner product:

<@@w¢=ﬁﬁwum@xm>m (17)

for ¢1, ¢, € L27? . Consider the quadratic form ¢{¢) =< ¢, ¢ >*, with ¢ on the Hilbert space
given by the completion of the space of all smooth ¢-forms under the L%? inner product. In
the case of exact one-forms, this is twice the quadratic form defined by H(g,).

The formal adjoint of d the operator §¥ < §Yw,¢ >=< w,dp >*,(18) for any w €
L29+10 and ¢ € L29?. Since d? = 0, we have (§%)? = 0. Introduce the operator on L*%*:
A¥? = —(d+ §¥)?, which equals to —(dé¥ + 6¥d). We have:

A'd)’q = AT+ 2Lgrad inys (19)

Define now the deformed exterior differential operator mapping L*?-formsin L%9*!-forms,

by:
d¢’ = ’l,bd’l,[)—l, (20)
Then, (d¥)? = 0. This operator is the 7 = —1 version of Witten’s deformed differential [12].

The deformed co-differential operator (d¥)* is the formal adjoint of d¥: (d¥)* = ¢~ 16,
Finally, introduce the deformed Laplacian operator due to Witten [12 ], defined as:

L¥ = —(d¥ +d* ), (21)

which can still be written as

—(d¥d¥* + d¥*d).

We have the following relation between the two Laplacian operators on ¢-forms (¢ =0,...,n)
AV — ¢—1L¢,9¢’ (22)

so that these two operators are conformally equivalent under conjugation by . Note that
AVO =2H(g, ).

Since (d¥)? = 0, we define the deformed de Rham complex: HJ(M,R) = Ker(d¥ : A? —
ATt1)/Ran(d¥ : A?7! — AY); then, HJ(M,R) = HY(M,R), for any ¢ =0,...,n. Therefore,
by Hodge'theorem: dim(Ker(A?)) = dim{Ker(L¥?)) = dim(Ker/A¥9). This is be essential
for the proof of the Theorem below.

Define an average exponent of the flow F; generated by H(g,%). For p € R define

: 1
tz(p) = lzm,-_,oo-;lnE | T Er|}?.

7



We shall say that the flow arising form {2) generated by H(g,v) is moment stable if (1) <
0,for p ae. v € M.

Theorem: Assume M compact with H'(M,R). Let ¢ a smooth metric and a C? wave
positive function 4 determining the RCW Laplacian H{g,1’). Then the flow generated by
H{g,v)) with unique invariant density p, is not moment stable.

Remark This result links long time behavior of the flow with the eigenvalues of A%,

Conclusions

We have set a geometrical theory of diffusions which extends the usual association between
diffusions and Riemannian geometry. In constructing the most general diffusion process on
a manifold, torsion represents the average displacement of the Brownian process, and thus it
cannot be neglected but for the standard Wiener process. When one goes from the formulation
of the theory in the Hilbert space given by the groundstate measure to the usual Hilbert space
given by the canonical volume form, oné loses the information on the torsion which now appears
encoded in the quantum potential which equals TIQ—R(g). Thus, the problem if whether the
geometry of quantum gravitation is Cartanian or Riemannian, is here linked with the choice
of Hilbert space, the latter corresponding to the conformal invariant (metric) wave operator.
This presentation has allowed us to derive the classical realization of the diffusions from the
lagrangian on the most probable paths; thus, our derivation is = kind of probabilistic extension
of the derivation of the equations of motion from the Einstein lagrangian, as conceived originally
by Einstein et al {9]. We have found that the group of diffeomorphisms is present still at the level
of the quantumn diffusions. We have introduced the basic structures for the development of the
ergodic theory of these diffusions, and still linked their stability with a topological obstruction
related to the kernel of Witten’s deformed laplacian, or equivalently, to the kernel of its conformal
conjugate. Yet, for doing this, no condition on % of being a Morse function is necessary.
We can go one step further in relating the quantum diffusions with the properties of classical
dynamical systems: If the adjoint semigroups to the P, : 7 > 0 are exact semigroups, i.e. they
are isometric, then they can be intertwined with classical dynamical systems which have the
Kolmogorov property [15].

The core of this lecture’s thesis is,Quantization is Geometry. A similar thesis has been
proposed recently by Klauder [13]. Yet, in this approach the association between quantization
and geometry is realized in phase-space by augmenting the symplectic structure with metrics
on space-phase, which are rather arbitrary. Contrarily, in our presentation all the information is
encoded into the RCW Laplacian operator, and thus the probabilistic features become dependant
on it.
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