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MIRROR SYMMETRY AND ELLIPTIC CURVES

ROBBERT DIJKGRAAF

ABSTRACT. [ review how recent results in quantum field theory con-
firm two general predictions of the mirror symmetry program in the
special case of elliptic curves: (1) counting functions of holomerphic
curves on a Calabi-Yau space (Gromov-Witten invariants) are ‘quasi-
modular forms’ for the mirror family; {2) they can be computed by
a summation over trivalent Feynman graphs.

1. INTRODUCTION

As discussed in detail by Kontsevich in this volume (Kon] the moduli
space M, of algebraic curves has an interesting generalisation to the moduli
space My(X,d) of pairs (C, f) with C a genus g curveand f: C — X a de-
gree d holomorphic map into a variety X. Tautological cohomology classes
in the stable compactification HQ(X,d) are known as Gromov-Witten
invariants. They appeared in Gromov's fundamental work on pseudo-
holomorphic curves in symplectic geometry [Gro] and Witten's equally fun-
damental study of topological sigma models [Wit]. In the special case of
genus zero curves, Gromov-Witten invariants are directly related to the
quantum cohomology of the variety X [LVW] and the symplectic Floer
cohomology of the loop space LX [Flo].

The moduli space M (X, d) is also the primary object of study in the
mirror symmetry program [Yau]. Mirror symmetry is concerned with count-
ing the number of holomorphic curves on Calabi-Yau manifolds, i.e. com-
pact Kahler manifolds X with trivial canonical bundle Kx. One tries to
define and calculate the generating functions

(1) Fiy =) Nyaq?,  q=eét,
d

where Ny 4 is the appropriately defined ‘number’ of genus ¢, degree d curves
on X. It can for example be given by the (orbifold) Euler character of
M, (X, d).

In the above we assumed for convenience that H?(X) is one-dimensional
and generated by the Kahler form w; otherwise, the degree is actually
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2 ROBBERT DIJKGRAAF

a multi-degree and F, a multi-variable function. The above definition
should also be slightly modified in the case g = 0 or 1, since these curves
are not stable. For rational curves C = P! we pick three hypersurfaces
Hy, Hy, Hoo C X, Poincaré dual to w, and consider maps z : P! — X such
that x(z) € H, for z = 0,1,00. This then defines the third derivative Fj"
of Fy. In case of an elliptic curve C = F we pick a point 0 € E and demand
z(0) € Hy, which then gives F{. In this note we will however be mainly
concerned with the case g > 1.

The generating functions Fy(t) are more or less by definition topological
or, more precisely, symplectic manifold invariants of X. They do not depend
on the complex structure of X, i.e. on the particular point in the moduli
space My of manifolds of type X, but there is the obvious dependence
on the parameter t € H?(X), that labels the Kihler or symplectic class.
The mirror conjecture states that for a Calabi-Yau manifold the functions
F,(t) have an alternative interpretations as complex manifold invariants of
a family of ‘mirror’ Calabi-Yau manifolds )Z}, where ¢ is now interpreted as
a suitable coordinate on M, the moduli space of manifolds of type X.

Until recently most calculations were concerned with genus zero, where
mirror symmetry is supposed to relate the function Fy(t), that computes
(part of) the quantum cohomology of X, to variation of Hodge structures for
the family X,. The precise formulation of the mirror symmetry conjecture
for higher genus, i.e. the interpretation of the objects Fy(t) in terms of
the geometry of the mirror family X,, was not clear. This has changed
remarkably with the beautiful work of Bershadsky, Cecotti, Ooguri and
Vafa [BCOV]|. They have indicated the nature of the objects associated to
X that are conjecturally equivalent to the invariants Fy associated to X,
at least for the case of Calabi-Yau three-folds. This leads to two interesting
predictions:

First, F,(t) should be a meromorphic object that can be obtained as the
Hmit

F,{t) = lim F;(t,f)
=0
of a non-holomorphic section ¥ of the line bundle L®29-% over M.
Here L is the bundle of holomorphic 3-forms with fiber HU(KJ?). Sections
of powers of this line bundle can be considered as generalizations of modular
forms. The limiting holomorphic objects F, will have anomalous transfor-
mation properties, and will be named quasimodular forms. So, roughly we

have:

Claim 1 — The counting functions F,(t) of holomorphic curves on X

are quasimodular forms for the mirror family X;.

Since under suitable circumstances the space of these quasimodular forms
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will be finite-dimensional, mirror symmetry imposes great a priori con-
straints on the counting functions (1).

Second, physical arguments indicate that on the mirror manifold we
should count ‘constant’ maps f : C — X instead of holomorphic maps (see
Witten's contribution in [Yau]). For genus zero, these constant maps just
send P! to a point y € X. However, for genus g > 0 (or when punctures are
included) there appear non-trivial ‘constant’ maps when the curve degen-
erates completely into thrice-punctured P!'s and each rational component
is mapped to a different point in X. Such a completely degenerated curve
is combinatorically described by a trivalent graph, where the vertices cor-
respond to the P!s and the edges to the double points. This reduces the
calculation to a sum over (Feynman) graphs with vertices labelled by points

in X:

Claim 2 — The counting functions F, and Fy on X can be computed

with trivalent Feynman graphs on the mirror manifold X.

For this purpose it is useful to combine the functions Fy into the so-called
partition function

(2) Z= epo/\zgszg

g=1

(where A is a section of L~} and define a similar object Z*. This partition
function has then a physical interpretation as the path-integral for the

Kodaira-Spencer quantum field ¢ € Ql(/\szF),

7= f[dw]e‘s(“”,

with a cubic action
(3) S(p) = /} (200 A Bp + EXM0¢)?) .

Here the holomorphic 3-form is used to ‘integrate’ a section of Q3( /\ST;(»).
According to standard arguments of perturbative quantum field theory,
the objects F7, and therefore also the derived quantities Fy, should be
computable by evaluating cubic Feynman diagrams. So, we expect an ex-
pression of the form

I
@) Fo= Y Zaar

red,
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where G, is the set of closed connected trivalent graphs with Euler number
1—g. Ir is the weight of the diagram I and is computed using geometric
objects on X.

The precise details of all these formulas are rather intimidating and are
to a large extent not computable, in the sense that the weight function
I+ is not explicitely known and that the definition is plagued with the
usual divergencies and indeterminacies of a nonrenormalizable quantum
field theory. Although these problems are likely to be overcome in the
future, it would be an overstatement to say that the mirror symmetry
conjecture leads at this moment to directly calculable predictions for the
functions F, for all genera in the case of general Calabi-Yau space .X, even
if the mirror family X is known. (Although in {BCOV] some beautiful
formulas were obtained in special examples and for low genus.)

However, here we will be concerned with a model that is computable and
rigorously defined. In fact, our aim will be to show how the above two claims
are concretely realized in the simplest example of the mirror symmetry
program where we choose X to be a torus or elliptic curve — the unique
one-dimensional Calabi-Yau space. In our analysis we will make use of the
renewed interest in counting covers of Riemann surfaces (not necessarily of
genus one) that was inspired by the fundamental work of Gross and Taylor
on two-dimensional U{ N} Yang-Mills theory in the large N expansion [GT].
In this remarkable development the classical 19th century work of Hurwitz,
Schur et al. on the combinatorics of Riemann surfaces has been rediscovered
and expanded. Tt allows us to compute the objects Fy and Fy and verify
their conjectured properties. It also introduces some interesting modular
objects along the way.

Finally a warning: There is not much new mathematics in this note.
However, the matter is usually not presented from the point of view of
mtirror symmetry, and the material might be useful for (algebraic) geometers
in its present form.

2. THE MIRROR OF AN ELLIPTIC CURVE

We should stress that mirror symmetry for elliptic curves is a simple,
but certainly not a vacuous statement. Recall that a Calabi-Yau space X
has two kinds of moduli. First of all, we have the moduli space Mx of
inequivalent complex structures. In the case of elliptic curves this is the
familiar space M, = [/ PSL(2,Z). That is, we represent the elliptic curve
E as C/(Z7 ® Z) and identify 7 in the upper-half plane H by

a b
— ‘_”_'H’, ( ) € PSL(2,7).
cT 4+ d c d
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We write 7 = 1 + {7y with imaginary part 15 > 0. The second modulus of
a Calabi-Yau space is the (complexified) Kahler class [w] € H*(X,C). In
our case we choose to parametrize w with t € H as

t
w:—ﬁ—dz/\df, fw:?m't.
T2 E

Apgain, we write t = t; + ity, now with ¢ > 0, the area of the surface. The
one-dimensicnal Calabi-Yau space we so obtain is denoted as E, +. Mirror
symmetry for elliptic curves is simply the interchange of T and ¢t [DVV]

(5) E=E,, — E=E,,.

This is already a remarkable formula, since it interchanges two variables
with an alltogether different interpretation. It implies that the modular
group PSL(2,7) acts naturally and nontrivially on the Kihler modulus ¢
and thus on the counting functions F,(t). The transformation t — ¢t + 1 is
rather obvious, since in the definition of F, we only use the exponent ¢ =
¢’™. But the interpretation of the second generator of the modular group,
t — —1/t, is much less evident. It interchanges large area with small area,
and is the most well-known example of a so-called duality transformation
in string theory [GPR].

In fact, the quantum field theory based on the Calabi-Yau space E, 4 is
defined by a four-dimensional lattice in C? with a metric of signature (2, 2}
spanned by the vectors (1,1), (7, 7), (¢,%), (tr, 7). It has an automorphism
group O(2,2,Z) that contains the Z; mirror symmetry (5), see [DVV] for
more details.

We now come to the precise definition of the counting functions F,(t)
for elliptic curves, see also [CMR]. First of all,q let us consider the case
g > 1. A holomorphic map of degree d from a genus g curve Cy to an
elliptic curve E is simply a d-fold, connected cover of E. This reduces
the problem to combinatorics of Sy, the symmetric group on d elements.
Let Xg 4 be the set of simple branched (topological) covers of genus g and
degree d. Simple means here that all branch points have branching number
one (ramification index two). The precise definition of the set Xyua in
terms of representations of the fundamental group is as follows. Choose b
unordered points P,..., P, € E and let 7° be the fundamental group of
the b-punctured curve E ~ {P,,... , F,}. We now have

Xy.4 = Hom'(7?, 5,)/84,

where the prime indicates that: (z) the holonomy around all punctures P;
lies in the conjugacy class of single transpositions (cycle of length two) in
S4; (ii) the resulting cover is a connected curve. The group Sy acts on
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the homomorphisms by conjugation. The number of branch points b is
determined by the Riemann-Hurwitz theorem,

b=2g -2

We see in particular that the number of branch points does not depend
on the degree d of the map. This is a general feature of Calabi-Yau
spaces: by the Riemann-Roch theorem the (virtual) dimension of My{X, d)
is independent of the degree of the map Cy — X and simply given by
(dim X — 3)(1 — g).

The set X, 4 can also be considered as the fibre in the fibration

KXo — Hya — Eogz,

where H, y = M,{E,d) is the Hurwitz space of simple branched covers and
E., is the configuration space of n points on E.
We now define the number Ny 4 of genus g, degree d curves on £ as

1
© %= 3 Fhe

Here Aut £, the group of automorphisms of a homomorphism £, is the prod-
uct of the centralizer of the image £(7%) C Sy and the group Sp permuting
the branch points. Alternatively, one can say we have defined Ny 4 as
the volume of the Hurwitz space M (E, d) with respect to the normalized
Kahler volume form induced from E. A definition as the Euler character-
istic does not make sense here, since that vanishes identically by the free
torus action.
The generating functions F, for g > 1 are now given by

Fg((]) = Z jvq,d qd: q= ezﬂit'

d=1

The case ¢ = 1 should be treated separately, since these covers are un-
branched and there is consequently also a contribution of degree zero (con-
stant) maps. These maps are not stable and, as explained in 81, the pre-
scription is to first compute the first derivative dFy /d¢, where the constant

maps contribute —5; = x(M;). After integration F} is then obtained as

l [= ]
Filg) = —5loga+ > Nigat
d=1

In these counting functions F, we consider only connected covers. How-
ever, as already remarked by Hurwitz [Hur], it is convenient to combine all
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functions Fy in a two-variable partition function Z that counts all covers

(7) Z(g,)) = exp Y _ A92F,(g).

g=1

If we write Z(g,A) = ¢~ %s E(q, A), then by nature of the exponential func-
tion the partition function Z has an expansion

Z(g.0) = Y Nyag®x2,
g,d=1

where Ng,d is the weighted number of all, not necessarily connected covers
of E with Euler number 2 — 2g and degree d,

. #Hom(n}' "2, Sy)
o d'(2g —2)

where the holonomy around the b punctures is a cycle of length two in S,.

3. THREE THEOREMS

We are now in a position to state three theorems about the function Z
that originate in quantum field theory. We will briefly sketch the relation
with physics.

Theorem 1: ‘Yang-Mills' [GT] — Let G = U(N) act on itself by
conjugation, let H = L?(G)Y be the Hilbert space of invariant, square-
integrable functions on G, and let A be the Laplacian on G (as constructed
from the Haar measure) considered as a self-adjoint operator on 'H, then

Trg®/V = Z{q,1/N)™.

The idea to treat the classical Lie groups in perturbation theory around
infinite rank is a very productive idea in physics conceived of by 't Hooft
['tH]. The left-hand side of the equation is actually the partition function
of quantum Yang-Mills theory with gauge group G. That is, if A is a
connection on a (trivial) principal G bundle over E, with curvature F,
then Z is given by a path-integral

z:f[dA]e—NSW, 5=f Tr(F A *F).
E

We will not say anything here about the relation with gauge theory in the
large N limit. The material is excellently covered in [CMR]. We will con-
centrate instead on a second, closely related theorem that gives an explicit
representation for Z:
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Theorem 2: ‘Fermions’ [Dou] — The pertition function (7) is given
by

dz 2
Z(q’)\):qn%f}mjz H (1+que)\p2/2)(1+z_1q"e_)‘p n,
pEZzu*iL%

Note that in these expressions ¢ = e?™ where t can be interpreted as
the modulus of E, the mirror of the elliptic curve we started with, which
explains the modular properties. This second result is due to an alternative
formulation of the partition function as a path-integral in terms of free
fermions b, ¢ € D(E, K1/?),

7t = /[dbdc]e_s(b‘c), 5= ﬂbgc%)bazc
E

The above expression is simply the Hamiltonian representation.

The integrand that appears in Theorem 2 is a natural generalisation of
the usual theta-function. More generally one can define for t(p) = tip"
an arbitrary polynomial (with z = e*¢ and ¢ = ')

o= J[ - JI +eP)a+e72),

nChso pEZEO-I-%

These generalized theta-functions appear naturally as characters of modules
of the Wi, o algebra [AFMO, Dij].
The familar theta-function identity

(8) Iz q) = Y 2"g",
nec

immediately shows that

(9) Fi{q} = —lognlq),

with n(g) Dedekind's eta-function. In fact, the expansion of Z in terms of
the functions F can be considered as a generalization of the theta-function
identity (8). The modular properties of Fy are given by the following coral-
lary to Theorem 2 [KZ. Ru, Dij}

Corollary - The functions F,(q) for g > 2 are quasimodular forms of
weight 69 - 6, FU < @[Ez ) E4, EG]

This corollary is the confirmation of the first claim of mirror symmetry,
namely that the counting functions have modular properties in terms of
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the mirror manifold, which here happens to be again an elliptic curve. The
first few cases are given by (see [Ru] for more examples)

1
{10) Fyq) = WB"BUOEg — 6E,Fy — 4Fg),
1 1] 4 2 3 3
(11) F3(q) = m(—ﬁEz + 15E2E4 - 12E2E4 + 7E4

+4FE3E — 12E; B4 Eg + 4E?).
Here the familar Eisenstein series Fy(g) are defined for even k& > 2 as
2k o nkflqn

F =1- — .
x(q) B: 1-q"

n=I

If £ > 2, they are modular forms of weight k. As is well-known E, and F,4
generate the ring of modular forms. E; is ‘quasimodular’ of weight two,

at +b 12
E =(ct +d)?Ey(t) + — .
2 (ct-l—d) (ct + d)" Ey(t) + 2m,c(ct+d)
E; can be easily made into a proper modular form by allowing a mild
anholomorphicity and defining

- 3
EZ(t, t) = Eu(t) — —.
36D = Balt) -
By replacing E; by EJ we similarly get an anholomorphic partition function
Fy with
Fy e D(M,, L2732,
Here L is the line bundle over M, with fibre Lp = H°(E, T}).
The third theorem expresses the fact that the functions F, can be com-
puted by Feynman diagrams on the mirror manifold. That is, the partition
function is of the form (4).

Theorem 3: ‘Bosons’ [Dou] — F, can be ezxpressed as ¢ sum over
cubic graphs

I
Fa= 2 #AutT

reG,
with weights

Ir = H f;’e’h H P(zv+(e) - zv_(e)}-

vertices v edges ¢

Here the 39 — 3 vertices v of T are labeled by points 2z, € E, the mirror
elliptic curve with modulus t. To each of the 2g — 2 edges e correspond two
vertices vy{e}. The contours -y, are to be taken non-intersecting and in the
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homotopy class of the cycle [0,1] (a-cycle). The propagator P(z) is given
in terms of the Weierstrass p-function as

{ nrp(2) + B, if2#0,

Pz) =
11_2E2, 3f2 =0.

This theorem is due to the famous boson/fermion correspondence in two
dimensions, which gives a third path-integral expression for the partition
function as

2= [, sip)= [ 40pBp+ (00,
E
This is the analogue of the Kodaira-Spencer action (3) in one dimension.
The field  is here a (real) function on the mirror manifold E.

We will now sketch how these results are proven, with emphasis on The-
orem 2. For more details on Theorem 3 see [Dou, Dij].

4. CoUNTING COVERS

Let G be any finite group, R the set of irreducible representations of 7,
and C the set of conjugacy classes of G. We denote the character of an
element in a class ¢ € C in a representation r € R as x,(¢}. 1t is furthermore
convenient to follow Frobenius and introduce the notation

_ #e - x-(c)
fr(e) = dim r
Now let ¥ be a closed, oricnted, topological surface of genus h. Pick
N marked points P,..., Py € T and conjugacy classes ¢;,...,en € C.

Let X be the set of equivalence classes of principal (7-bundles over ¥ with
holonomies around the point P; in the class ¢;. That is, if we recall that the
fundamental group ¥ of the N times punctured surface is freely generated
by elements o, ... @6, F1, -5 B Y- - YN with the single relation

h N
o 37 =
O phy, 3, = T
=1 =1

then X is defined as
X =Y/G, Y = {¢€ € Hom{n) ,G) | &(v;) € ¢;},

where the & action is by conjugation. We now want to count all such
bundles by computing the ‘partition function’

1
Zh(cl,... ,CN) = Z m = #Y/#G

feX
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The automorphism group Aut £ of a bundle £ is by definition the centralizer
of the image of 7] under £&. There is an elegant formula according to the
following lemma.

Lemma [DW, FQ] — The weighted number of G-bundles on a surface
of genus h is given by

2h—-2 N
Zh(cl,...,CN)IZ (d:ﬁfr) Hfr(cj)
F=1

rc R

The proof follows essentially the argument of the proof of the Verlinde
formula [Ver]. Consider the center H of the group algebra C[G], generated
as a vector space by the elements

zC:Zg, ce (.

gEc

This so-called class algebra is a commutative, associative algebra with iden-
tity e and invariant inner product # given by a linear form (.-}

1
W(Z,ZI) = (z : z'), (zc) = ‘f#_Gé‘C‘El
The class algebra H is semi-simple and diagonalized by going to an orthog-
onal basis {z.} labelled by the irreducible representations r € R,

=3 x{9)g

geld

with multiplication
#G
dimr
One should be careful to distinguish H with this multiplication from the
usual representation ring

S S

r'Er@r!

p t Xyt = 6r,r" Zr.

The calculation of the function Z for a general punctured surface now
follows from Verlinde’s argument by decomposing the surfaces in 29— 24+ N
pairs of pants. One should carefully check that it takes into account the
right automorphism groups [FQ).

One can put this also as follows: The above data define a two-dimensional
topological field theory, with ‘Hilbert space’ X and ‘correlation functions’
Zn(e1, ... ,cn). Note that we have for genus zero

ZU(CI!"' vCN) = (261 "'ZL'N>1
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and, more relevant to our interests, for genus one
Z]_(Cl,- . :CN) = TrH(ZC‘[ t 'ZCN)‘

Orne can think of this topological field theory as a two-dimensional gauge
theory for the finite group G.

5. FERMIONS AND BOSoNs

We now apply the lemma of §4 to the case of a simple d-fold covering
of an elliptic curve. That is, we choose G to be the symmetric group Sy
on d elements and write C'y, Ry and Hy for the set of conjugacy classes,
irreducible representations and the class algebra of 53 We further put the
genus b = 1, all conjugacy classes c; = ¢, where c is the conjugacy class of
a simple transposition, and N = b = 2g — 2, the number of branch points
and minus the Euler number of the cover. We now want to compute (with
7 = q—1/24 2‘}

7 o A b
Zig N =Y oy #eHom(nl, Sa).

d,b=0

That computation reduces with the use of the above lemma simply to

Z(Qv’\) — Z ng Z (fr(c))b

(12) =3¢ Y exp(Afr(e)).

Equivalently, we can express the partition function as

[= 9]

2{(;, A) = quTer (e’\“) .

d=0

If we define universal objects C = |Jj., Ca, R = U Ba, and the infinite-
dimensional, graded algebra

o0
= D
d=0
then the partition function can be written as

(13) Z(g,\) = Try (%)

with L the degree operator (L = d on Hg) and W the dicgonal z..

The vector space H has two natural bases: the representation basis
{2+ }rer and the conjugacy class basis {2z }cce. Both are naturally la-
beled by partitions, Physically they correspond respectively to fermions
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and bosons. Evaluation of (13) in these two bases leads to Theorems 2 and
3 respectively.

Since the element z. acts diagonally in the representation basis, the
fermionic description leads to the simplest formula. More precely, let I be
the set of positive half-integers, I = Z>0+1 = {3, },...}. Every irreducible
representation r of the permutation group Sy is given by a partition of d,
or equivalently a Young diagram with d boxes with rows of length m, >
mg > ... > 0. Such a Young diagram gives us two subsets P,Q} C I,
P={pr>p2>---},@={q1 > q > ---} by slicing the diagram through
the middle and counting the fraction of boxes respectively in the rows and
columns of the two halves, as indicated below

LT s
[ T
SRR
= N
|
|
227
q1

For a representation r labelled by such a pair of subsets P,{) we can

define the numbers
wk=Y"p* - > (-p).

peP PEQ
These numbers have surprisingly interesting properties
W) = #P-#Q=0,
w, = d,
wf = 2fe(c),

where ¢ is the class of transpositions, cycles of length two. This last formula
was first derived by Frobenius ([Fro]). (For general k the quantity wf is
again expressed in terms of characters.) We can now replace the sum of
over all representation of all symmetric groups Sy by a sum over all subsets
P,Q C I with #P = #Q, i.e. with w® = 0. Since every element p € [
either appears once or not, we have a simple formula for the generating
functions. If we use the notation

Hp) =3 tp®,  we= b= tp) - Y H-p),
k k

peEF peEQ

then we find a simple generating function i7-ntitv

(14) i Z et = H(l +et®)(1 4 P,

d=0reR4 pel
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Using the result (12) and specializing to e'® = z,e'* = g and ¢, = A/2 gives
immediately the proof of Theorem 2.

To obtain Theorem 3, we have to consider bosons. That is, we have to
evaluate the trace {13) in the conjugacy class basis. The problem is now
that the operator W is no longer diagonal. The corresponding expression
(Theorem 3) is therefore much more complicated. Unfortunately, we do
not have the space to explain this relation precisely, but have to refer to

[Dou, Dij}.
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