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Abstract

We describe an approach to the b — ¢ system on a compact Riemann
surface, based on investigating the dynamical content of its operator prod-
uct ezpansion (OPE). The analyticity constraints implicit in the OPE
are brought out using techniques of modern algebraic geometry. Algebraic
geometry is shown to provide a natural language to describe the system as
well as powerful computational tools. The entire structure of the system
finds a natural description in this way and all the correlation functions
can be determined rigorously and explicitly. The current correlation func-
tions are also obtained from the field correlation functions using ringed
spaces with nilpotent elements. This provides a global geometric formula-
tion of the problem of normal-ordering the product of the fields b and ¢.
A geometric formulation of the energy-momentum tensor of the system is
also provided. Algebraic geometry proofs of classical formulas in function
theory on a Riemann surface are obtained in the course of this study.

invited talk in the conference Topological and Geometirical Problems related 1o Quantum
Field Theory, Trieste, Italy, 13-24 March, 1995.
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1 Geometric formulation of the system

Onr systeun consists of a pair of “quantum fields”™ 4 and ¢. The quotes
indicate that we do not define what we mean by a quantum field, since it is
a very singular object and extremely difficult to deal with mathematically
with any rigour. Instead we shall always deal with certain well-behaved
functionals of the fields, called the correlation funetions of the system.

We denote the general correlation function C{m,n) by the symbolic
expression

Clim,n) = <b(Q1)...0(Qm)c(P)...c(P,) > (1.1)

where Qy,...,0Qm, P1,.... P, are points on M. Intuitively, of course, such
a correlation function should give the expectation value of finding m par-
ticles of the field b and n of the field ¢ at Q,,...,Qn and P,..., P,
respectively, in their ground state. It is difficult, however, to sustain a
serious physical interpretation of the correlation functions in view of the
apparent artificiality of the model. In fact, the model does arise naturally
in intermediate steps in string theory as Faddeev-Popov ghost fields. The
rather pedestrian origin, however, does not give any idea of the remarkable
interest of this model, firstly from the viewpoint of mathematical physics
and, secondly, for the study of conformal field theory, which has applica-
tions in “real physics” to the theory of phase transitions in two dimensional
solids.

We shall, accordingly, regard the correlation functions C(m,n) sim-
ply as a set of functionals which specify the model, if they can be deter-
mined. What is more, the C(m,n) will be sections of holomorphic line
bundles (though not necessarily holomorphic sections) rather than func-
tions. The analyticity properties of these sections are constrained by the
operator product ezpansion (OPFE) of the b and ¢ fields, which is given by
the heuristic relation [1]

I
b(z)e(w) = P + holomorphic terms, (1.2)

where [ is the identity operator and this relation is supposed to make sense
only inside one of the C'(m,n).

We shall now interpret C(m,n) as a {meromorphic) section of some
holomorphic line bundle & on M in each P-argument and of some holo-
morphic line bundle 5 on M in each @Q-argument. Thus C(m,n) is a
meromorphic section of the line bundle

PiB)® - @ Pu(B) ® P (@) @ -+ @ Plynler) (1.3)

on M™% = M} X ... X My, the cartesian product of m + n copies
of M, where p; : M™t" — M, is the i-th canonical projection. The
OPFE (1.2) will now be interpreted as saying that the only singularities
of C'(m,n) are simple poles when a ¢ and a P argument coincide. We



must emphasise that this global principle in no way restricts the possible
singularities. All it means is that we require that any singularity, other
than the physical ones coming from the OPE (1.2), must be forced on us by
rigorous mathematical analysis. (See the discussion of the spin (1 —-J) —J
system below). Our principle has a certain resemblance to the “principle
of maximal analyticity” in vogue many years ago.

Our first conclusion from this is that the “one point functions” C(1,0) =
<b>, C0,1) = < ¢ > are simply holomorphic sections of 3 and « re-
spectively. A physicist who was studying this system starting from a la-
grangian would call these one point functions the zero modes of the system
and would want to eliminate them. Starting from the O PE (1.2) as we are
doing, however, there is no reason up to now to disallow them by putting
constraints on the line bundles e and 3.

The first nontrivial case is that of the “two point function™ C(1,1) =
< b(Q)e(P)>. The OPE (1.2) suggests the following definition :

Definition 1.1 < bc > is @ meromorphic section of the line bundle p}(8)®
p3(a) whose only singularity is a simple pole along the diagonal A of M x
M.

It is easy to see that a non-zero two point function exists if and only if the
map ¢ in the exact sequence

O — HO(MxM,pi(B)@ps(a)) S HOM x M, pi(8)@p3(a)@0(A)) (1.4)

18 not an isomorphism. So far the line bundles a and 3 have been com-
pletely arbitrary. We cannot, of course, expect to get anything interesting
without some restriction, but it is important to make these restrictions as
weak as possible. The optimum condition turns out to be to simply bound
the sum of the degrees of the two line bundles by 2¢ — 2. We then have
the following elegant characterisation of the b — ¢ system (see [2] for the
proof):

Theorem 1.2 Let deg({a)+ deg(3) < 29 —2. Then the two point function
< be > exists if and only if :

(i) B® a = K = the holomorphic cotangent bundle of M

() deg(a) = g — 1 = deg(3)

(i1i) neither o« nor 3 have any holomorphic sections.

If these conditions hold then the two point function not only ezists, but it
is also unique (after normalisation).

Thus we see that simply requiring the existence of a non-zero two point
function imposes very stringent conditions on the line bundles & and 3,
even though the degree condition we imposed is very much weaker than
the conditions one would be led to impose in a field-theoretic approach. In
fact we can use Theorem 1.2 to understand the conventional formulation of
the model. Thus condition (i} is precisely the condition that the integrand



of the standard action for the b — ¢ system, viz. § ~ Jur bdc, is indeed
a volume form, as it must be for the integration over M to make sense.
Condition (ii) means that we are in the case when ¥ and ¢ are fields of
conformal spin 1/2, or rather a “twisted” version of it since we do not
require 3 = o = VK. Finally, condition (iii) says that zero modes must be
absent. However, we now see that this is necessary in order to have a two
point function whose singularity structure is determined by the O PE (1.2),
rather than because some undefined functional integral will otherwise give
trouble, as is usually argued !

It may seem that we are excluding from consideration the spin (1—J)—.J
version of the b — ¢ system {J is a positive integer or half-integer) which
is usually considered in the literature. However, that is not the case. For
let us take deg{a) = 2J(g — 1). The Riemann-Roch theorem tells us
that o has holomorphic sections (“zero modes”) if J > 1. Theorem 1.2
asserts that in that case the two point function < be > must have extra
singularities not coming from the OPFE (1.2) and these extra singularities
must be such thal we oblain a new b — ¢ system which does satisfy the
conditions of the theorem. Thus one way is to introduce points zy, ..., zy,
where [ = (2J ~ 1)(g — 1) and let D denote the divisor =, + -+ + 2.
Define ¢ = o ® O(—D),B = @ O(D). Then for & and ﬁ we have the
required properties deg(d) = g— 1 = deg(3) and & @ 3 = a ® 8 =K.
Condition (iii) of Theorem 1.2 will also be satisfied for a generic choice of
the points {z;,¢ = 1,...,I}. This is effectively how physicists handle the
spin (1 — J) — J case of the b — ¢ system. For further details we refer to
(3].

Another interesting consequence of Theorem 1.2 is that it provides a
proof of one of the folk theorems of the physics literature, viz. a kind of
“charge conservation theorem” for “spin fields” (more generally, for “twist
fields”). We are given pairs of points and rational numbers {z;, pu; | 1 <
¢ < N {yy;o—v; | 1 <5 < N_}, where the z,,y; are points on M. The
ii, v; are positive rational numbers which satisfy the constraint Zfi*l i —
Zj\f:“l v; = { (£ s a positive or negative integer called the “total twist”) and
which describe the monodromy of the b and ¢ fields near the corresponding
points :

blz) ~ (z—xz;)™ e(z) ~ (z— x4

~ (z—y) ~ (z—y;)T (1.5)

Then with the help of techniques from algebraic geometry we can re-
duce the problem of studying the b — ¢ system in the presence of such
a “twist structure” to the generalised system of Theorem 1.2 on a finite
cyclic covering M — M, defined by a positive divisor D of M and a line
bundle £ such that £8¢ = Op(D), where d is the degree of the cyclic
covering. Theorem 1.2 then implies that the total twist { must be zero. In
the case of spin fields this immediately implies that for a nonzero two point
function we must have as many spin fields with a positive square-root be-



haviour as with negative, a well known folk theorem [4]. For details of the
construction and proofs we refer to [2].

2 Field correlation functions

In the previous section we saw that algebraic geometry helped us to
achieve a rather detailed qualitative understanding of the b— ¢ system from
its OPE (1.2). In fact, algebraic geometry enables us to do much more
and we will need no more input from physics (apart from the question of
statistics). We shall from now on assume that the line bundles a and 3
satisfy the conditions of Theorem 1.2, i.e. that a € Pied~1( M) and has no
holomorphic sections and that 8 = K ®@ a~ 1. We shall not give any further
discussion of the spin (1 — J) — J system, for which we refer to [3]. We can
now obtain an explicit expression for the two point function < be > with
the help of the following lemma :

Lemma 2.1 Let M (1,1) = pi{(K ® ()@ p3(()@O(A), where deg(() =
g—1. Then

(i) if g = 0, Mc(1,1) is the trivial line bundle on M x M,

(ii) if g > 1, Mc(1,1) = x(O(O)) where 7 : M x M — Pict=Y (M) is
given by (@, P) — O(Q—P)R(. Here O denotes the canonical theta divisor
(in Pic9= (M)). (This becomes a translate of the usual theta divisor by
the Riemann constani once a marking is chosen on M, which defines a
Riemann matrix in canonical form).

We also need the concept of the “prime form” KE(Q, P) for which we
have found it convenient to introduce a new algebro-geometric definition :

Definition 2.2 We define the prime form to be the image of the canonical
element 1 € Oprear tn the exact sequence :

1—E{Q,FP
0 — Onruns - EDPY Onram(A) (2.1)

This definition of the prime form F(@, P) can be related to the usual
function-theoretic definitions in various genera to be found in the books of
Fay[7] and Mumford({8] with the help of Lemma 2.1. Then by once again
using Lemma 2.1, we can obtain the two point function < be > explicitly
and for ¢ > 1 it coincides with the Szegé kernel for a compact Riemann
surface, which was introduced by Hawley and Schiffer [5]. We refer to [2]
and [6] for details of our approach.

The question of determining the higher point field correlation functions
of the system is, of course, not meaningful until we have specified the
statistics of the system. In [2] we have analysed the possible statistics of
the system from an axiomatic analysis of the OPE (1.2). We shall not go
into that here but merely report the conclusion that the usual Fermi/Bose
dichotomy holds (if we weaken our requirements then some more exotic
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possibilities do exist [2]). Of the two cases the fermionic one turns out to
be more interesting and we shall confine our attention to that case, though
the bosonic case requires only a simple modification.

Qur claim that the fermionic case is more interesting than the bosonic
one only holds if we implement the condition of fermionic statistics in a
special way, viz. by adding to the OPFE (1.2) the following O PE’s for two
b and two ¢ fields:

b(z)b{w) ~ Oz — w), c{z)e(w) ~ Oz — w) {2.2)

We can now write down simple axioms for all the field correlation functions
Clm,n):

Axioms 2.3 Euach field correlation function C{m,n) =< b(Q,).. DQm)e{ Py) . oe(Pr) >
ts @ meromorphic section of the holomorphic line bundle

Folm,n) =pi(K@a )@ @pL(K@a™ )@ phy(0) @ @ phy(a)
(2.3)

on M™% having :

(A1) a simple zero for Q; = Q; or P, = P;,

(A2) a simple pole for Q, = P;,

(A3} no singularities other than those required by the second aziom.

Axioms (A1) and (.42) define divisors (formal sums with integral co-
efficients of codimension 1 subvarieties) of M™+" which we respectively
denote by D.(m,n) and Dy(m,n) and the total divisor is D(m,n) =
D.(m,n} — Dy(m,n), where we follow the usual convention of putting
a plus sign for zeros and a minus sign for poles (see [9] for an introduction
to this concept for physicists). Then by (.43) we conclude that C(m,n)
defines a holomorphic section of the line bundle

Ma(myn) = Fo(m,n)® O(-D(m,n)) (2.4)

Thus, C(m,n) defines an element of HYM™t" M,(m,n)) and we have
posed a precise mathematical question, viz. what is the dimension of the
space of holomorphic sections of M,(m,n) ? The answer is given by the
following theorem (see [6] for the proof) :

Theorem 2.4 (i} If m #n, dimHY(M™" My(m,n)) = 0
(it) If m=n, dimHY(M?"  My(n,n)) = 1

This theorem has significant implications for the physics of the b — ¢
system, for part (i) implies that C'(m,n) = 0 for m # n, which is in perfect
agreement with the physicist’s argument that this must happen due to the
requirement of charge conservation. This latter argument would normally
be based on the lagrangian of the system, but here we see that the QPE’s
serve equally well. Part (ii) of the theorem is even more remarkable, as it
implies the validity of the Wick representation

i
Clnyn) = det(<b(Q)e(P) >)|| _ (2.5)



since it is clear that the determinant of two point functions on the right-
hand side of (2.5} satisfies all our axioms. This result shows that indeed
our method of introducing the condition of fermionic statistics through
the OPE’s (2.2) was correct. Moreover, it also leads to - rigorous proofs
of- interesting identities once we can write down the correlation functions
explicitly. For this all we need is the following lemma and our previous
ohservations on the prime form :

Lemma 2.5 (i) if g = 0, then My{(n,n)) is the trivial line bundle on
M?n’

(1) for g > 1, My(n,n)) = 73{O(0)) where nl : M*" — Picd~ (M) is
given by (Qla"'inv le--aPn) = O(Z?(Ql - Pz)) ® .

With the help of this lemma we can write down the 2n-point function
C(n,n) directly as a product of the unique section of M,{n,n) (1forg = 0
and a theta function for g > 1) and the canonical meromorphic section of
O(D(n,n)) (aratio of products of prime forms). On the other hand, by the
Wick representation (2.5), which we have proved, it can also be expressed as
a determinant of two point functions. In this way we obtain, with complete
mathematical rigour, interesting identities. These identities are usually
referred to as the bosonization identities in the physics literature because
of the way they first appeared in physics, viz. they provided a proof that
two methods of obtaining the correlation functions of the b — ¢ system were
consistent [10]. Our analysis, on the other hand, traces their physics origin
to the OPE’s of the system and is more powerful in that it provides a proof
of the identities instead of using them to show consistency. Of course, the
bosonization viewpoint can also be made rigorous in the Grassmannian
formulation[11]. The identities take different forms in different genera and
were first obtained by the mathematicians whose names are attached to
them :

(i) Cauchy’s bialternant identity (g = 0) :

Mcicy<n(@i = Q)P — P) . 1 n
M<ijen(@: — F) = d t((Qi - P;)) ij=1 (2.6)
(ii) Frobenius’ identity (¢ = 1) :
ola + 33(@ ~ P))  Mciq<no(Qi - Qj)o(P; — P)
o) Li<ijena(Qi — P)
ala + Q; — Pj)\n
fet (0(0) o(Qi — P;)) hi=1 @7)

(iii) Fay’s identity (g > 2) :

BT (@i ~ P))  Thcici<nE(Q:, Q;) E(P; , P)
6[a](0) Micijen E(Qi , P;)




n

(GO P

al(0y E(Q; . P;)

Note that in (2.7) and (2.8) the conditions that o(a) # 0 and 8[a](0) #
0 hold if and only if « has no holomorphic sections, which is (.A3) of our
axioms. The case n = 2 of (2.8) is usually known in the mathematics
literature as the trisecant identity for geometrical reasons into which we
shall not go here [8]. Detailed proofs of the results of this section can
be found in [6] and [2]. An exposition of our proof for mathematicians, in
which the connections with physics have been eliminated, has also appeared
in the treatise [12].

Before we conclude our discussion of the field correlation functions of
the b—c system, let us expand on a remark in [2] concerning a variant of the
system dicussed above, which sometimes appears in the literature {see the
paper of the Verlindes in [10]). The only difference is that the defining line
bundle & is now taken to be an odd theta characteristic. More generally,
we take deg(a) = g — 1, R%(M,a) = 1, i.e. o is a smooth point of the
canonical theta divisor © in Pic?"'(M). Of course, Theorem 1.2 says that
this system has no two point function in the sense of Definition 1.1, but in
the physics context what is of interest is the question of the existence of
higher point functions satisfying Axioms 2.3. By a careful analysis of the
proof [6] of part {ii) of Theorem 2.4 we obtain :

=1

Theorem 2.6 dimH%(M™ M,y(n,n)) = 1 (n= 1,2,...) <
either & € Pic9~1 (M) — © or a is a smooth peint of ©.

With this theorem we can not only show that the system has 2n—point
functions (for n > 2) uniquely determined by Axioms 2.3, but with this
we can also give a direct proof of a corollary to Fay’s identity (2.8), which
Fay (7] obtains by a limiting argument from (2.8) (see equation following
eqn.43 on p.33 of (7]). Thus we see that this case of the b ~ ¢ system is
also covered by our approach.

3 Currents

We shall now describe some recent work [13] on an algebraic geometry
approach to the current correlation functions. The heuristic definition
of the current j(z) is through point-splitting and subtracting the leading
singularity :

iz) = lim b(Q)e(P) !

Q—P=z h ﬁ (31)

This definition does not lend itself in any obvious way to a geometric for-
mulation, but we shall show (see [13]) that in fact the modern Grothendieck
formulation of algebraic geometry provides us with the necessary concepts
to achieve this. To understand the problem, let us consider the one point



function < j(z) >. According to the heuristic definition (3.1), < j(z) >
should be identified with the coefficient of (@ — P) in an expansion of
< b(Q)e(P) > E(G,P)— 1 about the diagonal A of M x M. This defi-
nition suggests that < j{z) > is a holomorphic one form on M, but this
procedure does not offer a global geometric definition. Tt involves subtract-
ing sections of (at least for g > 1) two different line bundles, viz. AM,(1,1)
and the trivial line bundle on M x M, and performing a Taylor series
expansion.

Our solution to this problem is based on the observation that we do not
require My(1,1) to be trivialisable on the whole of M x M, which in any
case is not true for g > 1, but only on the first infinitesimal neighbourhood
of A in M x M, which is defined through the concept of a ringed space.
Since ringed spaces are not very familiar to physicists, let us first consider
the variety A itself as a ringed space. It is defined as a pair (A, Oa)
consisting of the topological space A and its structure sheaf of holomorphic
functions @a, which is the quotient of the sheaf of holomorphic functions
on M x M modulo those vanishing on A. The restriction of 04 to an affine
open set U is of the form k[x,y])/S(z — y), where k[z, y] is the polynomial
ring in the variables z and y and S(z ~ y) is the ideal in k[z, y] generated
by (z —y). This quotient is of the form of a polynomial ring in one variable
k[t], where ¢ = z + y, which is as it should be for it to be the structure
sheaf of the one dimensional variety A.

The first infinitesimal neighbourhood 2A of A consists of the pair (A,
034), where A is, as before, the topological space but with a new structure
sheaf @ . This latter is the quotient of the sheaf of holomorphic functions
on M x M modulo those with a double zero on A. The restriction of this
to an affine open set I is of the form k[z,y]/S(z — y)?, where S(z — y)?
is the square of the ideal generated by &{x — y). This quotient is of the
form k[t] & k[t]dt, where ¢t = z + y and dt = = — y so that (dt)? = 0, i.e.
the ringed space (A, Oza) contains nilpotents. The global geometric way
of describing this is that

P1(C2a) = Om & Am, (3.2)

which says that the direct image of the structure sheaf of Oz4 to the
first factor of M x M is the direct sum of the trivial line bundle and the
cotangent bundle of M {or rather their associated sheaves). The important
point is that the decomposition (3.2) is canonical. This means that we can
in a natural way find the component of an element of the Lh.s. of (3.2) in
each factor on the r.h.s.

4 Field-current correlation functions

We shall now see how the concepts introduced in the previous section
enable us to compute not merely < j(z) >, but also the general field-
current correlation function



< B(Qy) . B Qnor)e(Pr). el Pooy)j(z) >. By (3.1), this field-current
correlation function is the coeflicient of (@, — P,) in an expansion of
C(n,n)E(Q,, P,) about the diagonal ), = P, = z of M, x M2,. This
suggests that the field-current correlation function is a meromorphic one
form for fixed {@;, F;, 1 < i < n—1}. As explained in the last section,
our proposal is to study C(n,n)}E(Q,. F.,) on the first infinitesimal neigh-
bourhood 2A of A in M, x My, and to use the canonical global splitting of
(3.2} above to determine this meromorphic one form.

Now C'(n,n)E(Q,, F.}is a meromorphic section of F,{(n, n)2O( Dy 2,),
where D;; denotes the divisor of M?" defined by the diagonal of M; x M,.
Since the only relevant variables of ('(n,n)F{(Q,, P,) are @, and P,, we
can restrict F,(n,n) ® O(D, 2,) to general position on each M; for ¢ #
n,2n to get the line bundle £ = M, (1,1)® G on M,, X My,, where § =
pi(O(D) @ p5 (O(=D)), v = a® O(D) and D = 1 (Qi — P). As
explained in the last section, our approach will only make sense if £ is
trivialisable on the ringed space 2A. While it is simple to see that £ is
trivialisable on A, this is a very subtle question on 2A, but nevertheless

true :

Proposition 4.1 The line bundles M. (1,1) and G are both trivalisable
on 2A and thus £ is so as well.

We can now use the canonical splitting (3.2) to compute the image
of C(n,n)FE(Q,, P,) in (3.2), where for g > 1 we take the classical trivi-
alisation of M.,(1,1) by Riemann’s theta function 8[o](X771(Q: — P;) +
@)/8(c]( 7' (@i~ P;)). Here ain square brackets denotes theta character-
istics determined by « {after having chosen a marking on M, a symplectic
homology basis and the dual basis of holomorphic one forms w;,1 < : < g),
# is in @¥ and the sums are Abel sums. We also need to determine what
happens to the natural meromorphic section of G, which is a product of
prime forms.

Lemma 4.2 Let 1 denote the the natural section of O{ D) and now con-
sider

pn(lp)@p5,.(1.p), which can be writien in the notation of prime forms as
(37 E(Qn, Q) E(Pyy P)) /(1] E(Quy PYE(P,,Qi)). Then the restric-
tion of this meromorphic section to 2A takes, in the canonical decompo-
sition (3.2) above, the form 1 + wp, where wp is a meromorphic one
form on A (identified with M, ) having simple poles at )y, ..., Q.1 with
restdue +1 and at Py, ..., P,_y with residue —1.

Lemma 4.2 is an algebro-geometric form of a well known formula for
the prime form: w,_4(z) = d, In(E(z,a)/E£(2,b)). Note that there is no
canonical trivialisation of ¢ on 2A. The effect of choosing a different
trivialisation is to simply change w,_, by the addition of a holomorphic
one form, which does not matter since w,.., was only defined up to the
addition of such a one form. When we want to write the formulas for the
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correlation function in function- theoretic form, the correct choice will be
made by the chosen marking of M and the representation of the prime
form as a function on UxU, where U is the universal covering space of
M.

With these two results it is easy to obtain the field-current correlation
function :

Theorem 4.3 The field-current correlation function is given by :
< W) O(Quo)e(Pr) . e(Pa)f(2) >=Cln—1Lin—-1)x

s n-1
(wD(z) + Y _wi(z) @nbal(}_(Qi - L)+ ﬂ’)/f)“j’g:[)) (4.1)

where the second term is absent for g = 0.

Alternatively, we can compute the field-current correlation function
starting from the determinantal form of the field correlation function. For
this we need an algebro-geometric analogue of a simple formula given by
Mumford (see part (a) of the lemma on page 3.225 of [8]} for the prime
form, viz. d.(E(z,a)/E(z,b))];=c = 1/F(a,b). From the proof it is clear
that Mumford actually obtains d,E{z,a)|,=, = 1 from which this formula
follows. Qur algebro-geometric analogue of the latter is that we can find
the image of the canonical section “1” of the trivial line bundle Qa4 pr on
M x M in Oza(A) by traversing the following commutative diagram in
two different ways :

OM’leA — OQA(A)

! 1
Orxm — OMXM(A) (4.2)

As a result of this calculation we obtain the following alternative form for
the field-current correlation function :

Theorem 4.4 From the Wick representation we obtain,

< b)) B Qnt)e(Pr) . .e(Pr)i(z) >=C(n-1,n-1) < J(z) >

LS < Q1) o B Quat)el Pr) . ePy = 2. c(Pact) >< b2)e(Pe) >
k=1
(4.3)

The two expressions (4.1) and (4.3) for the field-current correlation
functions give us an identity, which is a simple generalisation of the “first
corollary to Fay’s identity” given by Mumford (8], valid in all genera.
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5 The two point function of currents

The two point function of currents < j(zq)j{z2) >> is the most impor-
tant current correlation function from the point of view of physics and so
it is very important to see whether our techniques generalise to this case.
From the OFPFE (1.2) we see that < j(zy)7(z2) > is given in terms of the
4-point function €'(2,2) by the following heuristic double limit :

< j(2)j(z2) > = {C(2,2)E(Qr. P1)E(Q,, P)

—1- < jlz) > - < jlz) >”Qﬁn=z,(==1,2) (5.1)
It may look very unlikely that we can make mathematical sense out of
(5.1), since we have to make sense first of the sum of 1, < j(z;) > and
< j{z2) > and then of subtracting it from the first term in (5.1) !

We expect < j(z1)j(z2) > to be a (meromorphic) one form in each
variable, i.e. that it is a meromorphic section of the canonical bundle
warxa = PH(K) @ ps(K) of M x M. Now C(2.2)E(Q1, P)E(Qu, Py),
which appears in (5.1), is a meromorphic section of the line bundle

R5f0(212)®0(D13+D24):MG(272)®A3 (52)

where

A = O(Dyy + Dzy — Dy — Daa) (5.3)

The natural generalisation of the procedure of the previous section is

to consider the restriction of the line bundle R to the sub-scheme Z =
2A43 % 2A24 of M*. Our basic tool for studying this restriction is the

following beautiful exact sequence

where ¥V = A3 X Agy.

The exact sequence (5.4) does not seem to exist in the mathematics
literature and its only reisen d’élre appears to be to enable us to make sense
of the heuristic formula (5.1}, for which it has just the right properties. For
if pry2 denotes the projection M* — M, x M, and we take the direct image
of (5.4) by it, we get a new exact sequence

O — waty xar, — P12 Oz) — priz«( Oy ) — O (5.5)

The relha,rka.ble feature of (5.5) is that pri2.{ Oy } is a rank 3 vector bundle
on M; x My which is canonically the direct sum of three line bundles :

prio(Ooy) = Omxm, & Knmy @ K, (5.6)

Note that this splitting enables us to make sense out of the formal sum
1+ <jizn)>
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+ < jlzg) > in (5.1). In addition, pri2.((?z) is a rank 4 vector bundle on
M, x M, which is canonically the direct sum of four line bundles :

prisdQz) = Oaxme & Kumy @ Kpap, & wnmyxm, (5.7)

Now all we need is to know whether the line bundle R is trivialisable on

Z.

Proposition 5.1 The line bundles M,(2,2) and A are trivialisable on Z
and hence s0 is K.

In order to be able to actually compute < j{z1)j(z2) > we need to
know what happens to C(2,2)E{Qy, P1)E(Q2, P2) on restriction to Z. It
is the product of the unique section of M(2,2), which is easy to handle
by a simple generalisation of the procedure for the case of the field-current
correlation function, and the canonical meromorphic section of the line
bundle A, defined in (5.3), which we shall denote as 14. The answer
in this case can be expressed in terms of what is sometimes called the
Bergmann kernelwg [5] or, more appropriately, the generalised Weierstrass
¢ function. This concept was introduced for a compact Riemann surface in
function-theoretic form by Hawley and Schiffer [5]. This way is not suitable
for us and so we introduce it through an algebro-geometric definition: it
is a symmetric meromorphic section of waryar, defined by a holomorphic
section of wasx a(2A) which is 1 on restriction to the diagonal A of M x M.

Lemma 5.2 Let 14 denote the canonical meromorphic section of the line

bundle A defined in (5.3), which can be written as { E(Q1, Q2) E( P, P1)}/{E(Q1, P2)E(Q2, P1)}
in the notation of prime forms. Then its restriction to Z has the following

decomposition in the canonical decomposition of eqn.(5.7) :

alZ2 = 1 + wp(z,22) (5.8)

Since there is no canonical trivialisation of A on Z, wg(z, z2) is defined
only up to the addition of a holomorphic bidifferential. However, a definite
one is automatically fixed when the appropriate choices have been made,
just as for wp(z) in Lemma 4.2.

If we think about the meaning of restricting 14 to Z we easily realise
that Lemma 5.2 is simply an algebro-geometric proof of the following well
known formula wg(z,y) = &%In E(r,y)/8zdy (see [7] and [8]). When
g = 1 this gives the following well known formula linking two functions of
Weierstrass, viz. p{z) = —d?Ino(z)/dz2. The link between Lemma 5.2
and this equation is the elementary formula

fateyt i@y N
;_ifé(f(ue,y)f(x,yw) 1) = ggy i fm e dy (59)
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Lemma 5.2 gives a rather remarkable geometric interpretation of this
formula for wg, for if we write down 1,4 on an affine subset of the Riemann
sphere (case when g = 0), i.e. on the complex plane, we see that it is
simply the anharmonic ratio of four points on the complex plane. Thus
1.4 is a natural generalisation of the notion of the anharmonic ratio (or
cross ratio) to a compact Riemann surface of arbitrary genus. Thus the
formula for the Weierstrass function g{z) comes by coalescing two pairs
of arguments in the generalised anharmonic ratio in the case of genus
4 = 1. This viewpoint accords an unexpected fundamental role to this well
known formula as well as a new insight. In Lemma 5.2 we wrote down this
generalised anharmonic ratio in terms of prime forms. By the dictionary we
have earlier established for the prime form in [2] and [6], we find that this
combination of prime forms coincides with a function-theoretic definition
of a generalised anharmonic ratio proposed recently by Gunning [14].

We can now compute the image of C(2,2)E(Qy, P1)E(Q2, P2)|Z in (5.7)
to obtain :

Theorem 5.3 The two point function of currents is given by

. . g 828 —+ -
<j(2)j(z2) > = wp(z,z2) + 3 wi(ﬂ)tﬂj(?zﬁ%

2,71

g=v=0
(5.10)
where the second term on the right-hand side is absent if ¢ = 0.

Theorem 5.4 From the Wick representation we obtain

< J(2)i(z2) > = < j(21) >< j(z2) > — < b(z1)e(22) >< b(zz)e(21) >
(5.11)

Equating these two expressions for < j(z1)j(z2) > gives us the “second
corollary to the trisecant identity” [8] (it is tautological for g = 0).

It is important to note that our results for the field-current correlation
functions (eqns.(4.1) and (4.3)) as well as for the two point function of the
currents (eqns.(5.10) and (5.11}) are perfectly consistent with the standard
field-current and current-current operator product expansions as found in
[1] (with an adjustment for a difference of notation):

bw) iz ~ - S

Z—'U)’ z — W

bw)j{z) ~ (5.12)

1
(z — w)*
It is straightforward to extend our calculations to the n-point func-
tion of the currents < j(z1)...j(z,) > : it is a meromorphic section of
the canonical bundle of M™ which is given by the determinant of the

n X n matrix A = (a;;), where a;; =< b(z)c(z;) > if ¢ # j and a;; =<
J(z:i) >. Now, there is a well known procedure by which one sees that the

J€z)j(w) (5.13)
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OPE (5.13) is equivalent to the infinite oscillator algebra {c¢, julljm,dn] =
My yn0» Ljns €} = 0} [t is then natural to regard the set {< j(z1) ... J(z0) >
|n = 1,2...} as a realisation of the oscillator algebra with ¢ = 1 on an ar-
bitrary compact Riemann surface.

6 Concluding Remarks

We have seen how every detail of the structure of the & — ¢ system
is a consequence of its OPE (1.2) and statistics, at least at the level of
the field and current correlation functions. Algebraic geometry provides a
rigorous mathematical language for describing the system and one which
is as physically natural as the language of Hilbert space is for Quantum
Mechanics.

The only aspect of the system that we have not discussed as yet is the
energy-momentum tensor. For lack of time, I shall not describe it here in
detail, but merely note that this approach suggests a rather remarkable
picture of the energy-momentum tensor as an infinitesimal version of our
generalised anharmonic ratio ! We can, moreover, show that the system has
central charge 1 (defining the central charge as in the paper of Belavin-
Polyakov-Zamolodchikov [15]). This is an algebro-geometric counterpart
on a compact Riemann surface of any genus of a well known result in the
theory of the Virasoro algebra (see case (i) of Remark 4.2 on page 46 of
[16]), viz. the anomaly formula. Further developments are under study.
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