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Determinant Line Bundles Revisited

Daw~ieErL S. FREED

Department of Mathematics

University of Texas at Austin

March 20, 1995

This note is an addendum to joint work with Xianzhe Dai [DF].! In that paper we investigate the
geometric theory of n-invariants of Dirac operators on manifolds with boundary. We summarize the
main results below. One key geometric observation is that the exponentiated n-invariant naturally
takes values in the determinant line of the boundary. As such it is intimately related to the
geometry of determinant line bundles for families of Dirac operators. The differential geometry of
determinant line bundles was developed first by Quillen [Q] in a special case, and then by Bismut
and Freed [BF1], [BF2] in general. (See [F1] for an exposition of these results.) In §5 of [DF]
the results on n-invariants are used to reprove the holonomy formula for determinant line bundles,
also known as Witten’s global anomaly formula {W]. However, the argument there is unnecessarily
complicated. The main purpose of this note, then, is to reprove both the curvature and holonomy
formulas for determinant line bundles using the results of [DF].

To avoid repetitious recitation of requirements, we set some conventions here which apply
throughout. We work with compact Riemannian manifolds. If the boundary is nonempty we
assume that the metric is a product near the boundary. Qur results hold for any Dirac operator
on a spin® manifold coupled to a vector bundle with connection, but for simplicity we state the
formulas only for the basic Dirac operator on a spin manifold. Thus all manifolds are assumed
spin. We use the L? metric on the spinor fields 5. A family of Riemannian manifolds is a smooth
fiber bundle 7: X — Z together with a metric on the relative (vertical) tangent bundle T(X/Z)
and a distribution of “horizontal” complements to T(X/Z) in TX. We assume that T(X/Z) is
endowed with a spin structure. Also, when working with families of manifolds with boundary, we

assume that the Riemannian metrics on the fibers are products near the boundary. There is an
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induced family dn: X — Z of closed manifolds. Finally, we will always use ‘X’ to denote an odd
dimensional manifold and 'Y 1o denote an even dimensional manifold.

As stated earlier this is a continuation of Jjoint work with Xianzhe Dai.

Eta Invariants on Manifolds with Boundary

First recall that on a closed odd dimensional manifold X the Dirac operator Dy is self-adjoint
and has a discrete spectrum spec(Dyx ) extending to +oc and —oc. The n-invariant of Atiyvah-

Patodi-Singer [APS] is defined by meromorphic continuation of the [unction

sign A
= 3
AFO

AEspec(Dx)

which by general estimates converges for Re{s) sufficiently large. In fact, for Dirac operators the

meromorphic continuation is analvtic for Re(s) > —2 [BF2, Theorem 2.6]. Tn any case ny is regular

at s = 0, and we set
(1) Ty = exp7i(7x(0) + dim Ker D) € C.

The general theory of 5-invariants shows that Tx varies smoothly in families, whereas the 1-
invariant nx(0) is discontinuous in general. Note that |ry|= 1.

On a manifold with boundary we need to specify elliptic boundary conditions to obtain an oper-
ator with discrete spectrum. We use the boundary conditions introduced by Atiyah-Patodi-Singer,
but adapted to odd dimensional manifolds X. This involves an additional piece of information
concerning Ker D5x. Recall that on an even dimensional manifold Y the spinor fields Sy split
as Sy = SF & 57, and the Dirac operator D,.: §F — §F interchanges the positive and negative
pieces. (In the sequel we use ‘D, to denote the operator Dy : & — S If Y = 3X is the bound-
ary of an odd dimensional manifold X', then dim Kert Dyx = dim Ker™ Dsx. The additional piece

of information we must choose as part of the boundary condition is an isometry
T: Ker?t Daxy — Ker™ Dayx.
‘Then the basic analytic properties of Dy with these boundary conditions are the same as those of

the Dirac operator on a closed manifold, and so the invariant (1) is defined. Its dependence on 7T

is simple, and factoring this out we observe that
(2) Ty € Detjk,
where Detyx is the determinant line of the Dirac operator Dax on the boundary:

(3) Det v = (Det Ker™ Dsx) @ (Det Ker* Dax)il.
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(Recall that DetV = A"V for an n dimensional vector space V. Also L=! = L* for a one
dimensional vector space L.} Properly normalized we have iTy| = lin the Quillen metric on Detg)l(.

Now suppose X — Z is a family of odd dimensional manifolds with boundary. Then 8X — Z
is a family of closed even dimensional manifolds. The determinant lines (3) patch together to form
a smooth determinant line bundle Detyy,z — Z. Furthermore, it carries the Quillen metric and

a canonical connection V. as defined in [BF1]. The exponentiated #-invariant is now a smooth

section
. -1
Tz L — DetaX’Z.
There are two basic results about this invariant: a variation formula and a gluing law. The

variation formula computes the derivative of Tx)z in a family.

Theorem 4 [DF, Theorem 1.9]. With respect to the canonical connection V on Det;,)lwz,

vr = 2mi f A(QX/Z -7 )
Xz lX/Z ( ) " x|z

Here QX/Z is the Riemannian curvature of X — Z and A is the usual A-polynomial. (For other
Dirac operators substitute the appropriate index polynomial in place of A.) The ‘(1) denotes the
1-form piece of the differential form. For a family of closed manifolds this is a result of Atiyah-
Patodi-Singer. The new point here is the relationship of & with the canonical connection V. This

plays a crucial role in the next section.

10 OO

FiGUrE 1. Cutting a closed manifold into two pieces.

The simplest case of the gluing law is for a closed manifold X split into two pieces X, X, along
a closed oriented codimension one submanifold ¥ — X. (See Figure 1.) Then 7, € Det}‘,l and

Ty € C



Theorem 5 [DF Theorem 2.20]. In this situation

Ty = (TX‘,TXZ)DN;I.

X aX

X xeut

Figure 2. Cutting a manifold along a submanifold.

The more general gluing formula, which we need in the next section, applies when X has bound-
ary. Then for ¥ — X a closed oriented codimension one submanifold we cut along ¥V to obtain a
new manifold X with 0X = 9X U Y U -Y. (See Figure 2.) Now

Ty € Det
(6) Tyew € Dety @ Dety! @ DetZ)
~ -1 . -1
=Detyy @ Ly @ Ly,

where [, = Det;-l. There is now a sign which enters the gluing formula, and it is nicely taken
care of by the following device. In general we view the determinant line Det V' of a vector space V
as a one dimensional graded vector space whose grading is given by dim V. Applied to (3) we sece
that Dety (and so also Det;l ) is graded by the inder of the Dirac operator Dy. Notice that in our

current situation Y does not necessarily bound a 3-manifold, and so its index may be nonzero. Let
(7) Try: Ly © Lyt — C

be the usual contraction times the grading; i.e., if index Dy is even it is the usual contraction and
if index Dy is odd it is minus the usual contraction. That understood, we state the general gluing

formula.



Theorem 8 [DF, Theorem 2.20}. In this situation
(9) 7y = Tre(Tycu )

One of the novel points of [DF] is the proof of the gluing law, which we do not discuss here.

Determinant Line Bundles and Adiabatic Limits

The application we discuss is to the geometry of the determinant line bundle. Supposer: Y — Z
is a family of closed even dimensional manifolds. Let L = Det;/lz be the inverse determinant line
bundle of the family. The results in the last section use the Quillen metric and the construction
of the canonical connection V. But they do not depend on the formulas for the curvature and
holonomy of V, which were proved in [BF1], [BF2]. Here we derive the curvature and holonomy
formulas from Theorem 4 and Theorem 8.2 The basic idea is to use the T-invariant (2) to define the
parallel transport of a new connection V' on 7. Thus suppose 7: [0, 1] — Z is a smooth path® in Z.
Denote I = [0,1]. Let ¥, = 4*(Z) — I be the pullback of the family 7: ¥ — Z by the path . Then
Y, is an odd dimensional manifold with 8Y, = Z,(1)U—2Z0)- The standard metric g; on I = [0, 1]
determines a metric on Y., since we already have a metric 9y, ;1 OB the fibers and a distribution of
horizontal planes. {The projection 7: ¥, — [ is then a Riemannian submersion.) The 7-invariant

of Y is a linear map

(10) Ty, Loy = Ly

exactly what we need to define parallel transport. However, (10) does not define paralle! transport
since it is not independent of the parametrization of the path y. To get a quantity independent of

parametrization we introduce the adiabatic limit as follows. For each ¢ # 0 consider the metric

g
(11) QEZ—QIFBQY/I

1

on Y, relative to the decomposition TY, = #*Tf @ T(Y,/I). Let 7y (¢} be the r-invariant for this

metric.

Lemma 12. The adiabatic limit

(13) 7, = alimry, = liII(l) Ty, (€)

?As was mentioned in the introduction, this was done in [DF,§5] in an unnecessarily complicated way. Also, there
we used the curvature formula instead of proving it. This section should be considered a rewrite of [DF §5].

3Since we need a cylindrical metric near the boundary of Y., defined below, we require that ¥{[0, 8]) and v([1-4, 1))
be constant for some §.



exists and is invariant under reparametrization of 5.

Notice that the adiabatic limit is introduced for a simple geometrical reason—to scale out the

dependence of 7 on the parametrization of ~.

Proof. Here we follow [DF §5].* As a preliminary we state without proof a simple result about the
Riemannian geometry of adiabatic limits. Let V¥ (¢) denote the Levi-Civita connection on Y, of
the metric (11)and Q¥ (¢} its curvature. The result we need, which follows from a straightforward

computation, is that a-lm V¥ = lEn(l}V}*(c) exists and is torsionfree. Furthermore, the curvature

£

of this limiting connection is the limit of the curvatures of V¥ (¢} and has the form
e Y Yo v (D 0
a-lim ' = EI-E%Q (¢) = (* ny/,)

It follows that

(14) a-lim A(Q7) = lim A(QY) =AYy,

We apply this result to arbitrary families of manifolds, where it also holds.
To prove that the adiabatic limit exists, consider the family of Riemannian manifolds Y, xR70 —

R7#°, where the metric on the fiber at € is (11). According to the variation formula Theorem 4 we

have

ﬁry (¢) = 2ri / A(Q(y’ ><]R;m)/wm) }
de °~ (¥, xB#0) /R#0 ()

Now (14) implies that

fim A QU <BT/ET A(QU BN/ (IxRTO)y pr(A@r/1Y),

e—0

where p: ¥, x R* — Y/, is the projection. In particular, this limit is independent of ¢, and so

{ L " . .
lin}) éTYﬁ(E) = hn}J 27i j p*A(Q)“'/[) =0,
E = (Y, xR#°) /R#0 (n

Therefore, a-lim ry, = lim 7, (€) exists.
i e—( ¥
A similar argument proves that 7 is invariant under reparametrization. Let D denote the space

of diffeomorphisms ¢: [0, 1} — [0,1] with ¢(0) = 0 and ¢{1) = 1. We pull back 7: ¥ — Z via the

map
0] xR*°x D — Z

{t.€,8) — y(a(1))

*And we correct a mistake in the exposition there.



to construct the family of manifolds
y —_ R¢0 X D,

where the metric on the fiber over {¢,¢) is (11). As in the previous argument we compute the

differential of Ty, (6 @) in the adiabatic limit:

(15) lim dr, ., = 2mi a"/ A@Y7)
£—0 ot }/Z (2)

where
o:[0,1]xD— Z

(t, @) — 1{8(t))

We conclude that {15) vanishes since the image of ¢ is one dimensional—the pullback of a 2-form

vanishes.
Lemma 16. The maps 7., are the parallel transport of a connection V' on L — Z.

Remark. Since 7. is a unitary transformation (I,] = 1), the connection V' is also unitary.

Proof. By a general result {F2, Appendix B] it suffices to show that the fiducial parallel transport
7., is invariant under reparametrization and composes under gluing. The first statement is contained
in the previous lemma. For the second, if 41,72 are paths with 72(0) = 71(1), then we can compose
to get a path ¥ = y2 o 7;. The gluing law Theorem 8 then implies 7, = 7, 0T, as required.
(Theorem 8 applies to a fixed metric and then we take the adiabatic limit.)

Remark. It is instructive to see in detail how the sign works in this application of the gluing law.

Here we cut Y, along Y = Y, ) = Y,,(1) to obtain YS¥* =Y, UY,,. So

T EHom{L’Yl{U)’Lﬂ(l))g Ly @ L7

T v (0}

7. € Hom(Loy0), L) = Loainy @ Ly

where we write Ly = L.y = L., (o). Thus
-1 -1
(17) Tygur = Ty @ Ty € Ly @ Ly @ Ly @ L g

The key point is that the factors are in a different order than in (6) and (7)—now the factor Ly
precedes the factor L. So the contraction is the usual trace. Put differently, to move (17) to
the standard form (6) we introduce a factor of (—1)indexDv and this is cancelled by the fac-
tor (—1)iPdexDv ip the supertrace (9). The upshot is that in this situation the right hand side
of (9)is 7., o7, as desired.

Tt is quite easy to prove from the variation formula Theorem 4 that this new connection agrees

with the canonical connection V.



Proposition 18. V' = V.

Proof. We must show that the parallel transports agree. Let v: (0,1} — Z be a path and fix an
element §, ¢ L) of unit norm. Then if v: [0,t] = Z, 0 <t < 1,is the restriction of ¥, and
¢t Loygo) = Loy the parallel transport of V', by definition the path &; = 7,(£y) is parallel for V'.

. D D ¢
I.t sufhcels to show that 7? = 0. where T V along the path y. For then D—Tgti) = 0 as well,
since {; is a constant.
Define T' = {{t,s) € [0,1] x [0, 1]: s < ¢} with projection

p: T —[0,1]=1

(t,S) — ¢

and a map
NtT-—2

(1, 5) — 7(s).

Then the pullback 7: I'*Y — T determines a family of manifolds pom: Y — [0,1] parametrized
by I = [0,1]. We use the flat metric on 7 and make 7: T*Y — T a Riemannian submersion. The

variation formula Theorem 4 implies

_ DT, ] . S AT VT
19 — = 271y a-lim |A(QV Y/ .

Even before taking the adiabatic limit, the fact that I' factors through the projection (¢,5) v s

implies that the right hand side of {19) vanishes.

In view of Proposition 18, to compute the curvature and holonomy of V it suffices to compute
the curvature and holonomy of ¥’. Notice that since [ = Det;/lz is the inverse determinant line
bundle our formulas here have opposite signs to those for Dety,z computed in [BF1], [BF2]. The
holonomy is computed from the parallel transport by a straightforward application of the gluing
law. We must only be careful about the spin structure. Recall that §! has two spin structures. The
nonbounding spin structure is the trivial double cover of the circle; the bounding spin structure is

the nontrivial douhble cover.

Theorem 20 [BF2,Theorem 3.18). Suppose : [0,1] — Z is a closed path.® There is an induced
manifold Y., - S! obtained by gluing the ends of Y.,. Then the holonomy of L around ¥ s

(—1)ndexDy 4 lim 7.

¢ o  nonbounding spin structure on S';
.

(21) hol, (v) = . . .
a-lim e s bounding spin structure on §'.
¥

SRecall that we require that ([0, 4]) and 7([1 — 4,1]) be constant for some 4.
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Here the spin structure on 5! combines with the spin structure on T(Y,/S") to give a spin structure

on Y, .

Proof. This follows directly from the definition (13) of parallel transport and the gluing law applied
to X = ¥, and X = Y,,. Take first the nonbounding spin structure on 51, lifted to a spin structure
on Y,. The induced spin structure on the cut manifold Y5 is the standard one, with the ends each

identified with Y.. where z = 7(0) = (1). Now for each ¢ the r-invariant of Y, is an element
Ty. (g € L:® Lt

Then Theorem 8 implies

T. — (_l)indenyTYv

Y, () {e)°

where on the right hand side we identify L, @ L;! with C using the usual coniraction. Now the first
equation in (21) follows from the definition of holonomy in terms of parallel transport. To obtain
the second equation, consider the identity map of Y, lifted to the nontrivial deck transformation on
the spin bundle of Y,. It induces multiplication by (—1)indexDy on the inverse determinant line L.
Apply this transformation to Y, before gluing in order to switch spin structures on f",y. Then the

second equation in (21) follows from the first.

Theorem 22 [BF2,Theorem 1.21]. The curvature QL of the inverse determinant line bundle L —
Z is

(23) 0f = —2r4 U{/z A(QY/Z)}
(2}

Proof. For any line bundle we can determine the curvature once we know the holonomy as follows.
Suppose I': D — Z is a map of a disk into Z with boundary map 7. Let Yr = 'Y — D be the
pullback manifold; then dYr = Y,. In the following calculation we use the bounding spin structure

on S! and the induced spin structure on Y,,.

] 0F = ~logholy(v),
D

= a-lim (- log T )5

o a-lim {—2m' /Yr A(er)} ,
[ =2y [ @),

:/ r ;27”{ A(QY/Z)}
D Y/Z

(2)



ANNEX to SMR847/9
Determinant Line Bundles Revisited

D.5. FREED

In the fourth line we apply (14). In the third line we apply the index theorem of Atiyah Patodi-
Singer {APS] which asserts that

A(QYF) 3 T]YF(O) + dim Ker DYF
- 2
¥r

is a certain index, so in particular is an integer. When T shrinks the disk to a point both sides
of (24) vanish, so we have chosen the correct logarithm on the right hand side of (24). Since (24)
holds for all I': D — Z, equation (23) follows.
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