

SMR.853 - 22

ANTONIO BORSELLINO COLLEGE ON NEUROPHYSICS

(15 May - 9 June 1995)

"The Structural Basis of Interhemispheric Interactions"

Giorgio M. Innocenti
Institute of Anatomy
University of Lausanne
1005 Lausanne
Switzerland

These are preliminary lecture notes, intended only for distribution to participants.

THE STRUCTURAL BASIS OF INTERHEMISPHERIC INTERACTIONS

Introduction

The brain conforms to the general, bilateral symmetry of body pattern.

Functional integration between the hemispheres uses: i) bilateral projections, ii) commissures. Some brains, notably the human brain deviate from perfect symmetry. In these brains commissures partially restore the functional equivalence of the hemispheres.

The two telencephalic commissures: corpus callosum and anterior commissure interconnect different territories of the two hemispheres; their degree of separation varied in evolution.

Size and shape of the corpus callosum differ across individuals. Differences may relate to genetic factors, sex and/or handedness. The cellular correlates of these differences are unclear.

Commissural connections provide a model for the study of cortical connectivity.

Systemic aspects of callosal connections

Callosal axons interconnect corresponding and non-corresponding locations in the two hemispheres.

Each area is interconnected with its own, characteristic set of areas in the contralateral hemisphere. Concepts of feed-forward and feed-back connectivity apply to the callosal connections.

Not all sensory areas are equally connected by the corpus callosum. Primary sensory areas are relatively devoid of callosal connections.

Callosal connections terminate, and less clearly originate in "columns" whose meaning varies across areas.

Cellular aspects of callosal connections

Callosal axons originate from neurons with cell body in the supragranular (mainly) or infragranular (some) layers. These neurons belong, with a few exceptions, to the pyramidal type.

The targets of callosal axons include other pyramidal neurons and probably non-pyramidal, inhibitory neurons.

Callosal axons perform two operations computational in nature: spatial mapping and, probably, control of activation delays between columns of the two hemispheres or of the same hemisphere.

G.M. Innocenti, May, 1995

3

EXUBERANCE IN CORTICAL DEVELOPMENT AND ITS RELATION TO DEVELOPMENTAL PLASTICITY

Regression of dendritic processes.

Loss of projections. Qualitative and quantitative aspects.

Early deprivations and lesions can alter the process of maintenance and elimination of cortical projections

Lyon's syndrome and the problem of molecular changes responsible for axonal stabilization

The development of axonal morphologies

Development of connections through progressively restricted exuberant growth

G.M. Innocenti, May 1995

Aggoun-Zouaoui, D. and Innocenti, G.M., Juvenile visual callosal axons in kittens display origin- and fate-related morphology and distribution of arbors. *Eur. J. Neurosci.* (1994) 6: 1846-1863.

Aggoun-Zouaoui, D., Kiper, D. and Innocenti, G.M., Growth of callosal terminal arbors in primary visual areas of the cat. *Eur. J. Neurosci.*, submitted.

Berbel, P., Guadaño-Ferraz, A., Martínez, M., Quiles, J.A., Balboa, R. and Innocenti, G.M., Organization of auditory callosal connections in hypothyroid adult rats. *Eur. J. Neurosci.* (1993) 5: 1465-1478.

Blakemore, C., *Mechanics of the Mind*. Cambridge University Press, Cambridge (1977) 208 pp.

Bruyn, G.W., The seat of the soul. In: *Historical Aspects of the Neurosciences*. F. Clifford Rose and Bynum, W.F. (Eds.), Raven Press, New York (1982) pp. 55-81.

Cajal, Ramón y, S., *Structure et connexions des neurones*. *Arch. Fisiol.* (1907) 5: 1-25.

Clarke, E. and Jacyna, L.S., *Nineteenth-Century Origins of Neuroscientific Concepts*. University of California Press, Berkeley, Los Angeles, London (1987) 593 pp.

Gerstein, G.L. and Perkel, D.H., Mutual temporal relationships among neuronal spike trains. Statistical techniques for display and analysis. *Biophys. J.* (1972) 12: 453-473.

Houzel, J.-C., Milleret, C. and Innocenti, G., Morphology of callosal axons interconnecting areas 17 and 18 of the cat. *Eur. J. Neurosci.* (1994) 6: 898-917.

Ingvar, D.H., Functional landscapes of the dominant hemisphere. *Brain Res.* (1976) 107: 181-197.

Innocenti, G.M., General organization of callosal connections in the cerebral cortex. In: *Cerebral Cortex*, vol. 5. E.G. Jones and Peters, A. (Eds.), Plenum Publishing Corporation (1986) pp. 291-353.

Innocenti, G.M., The development of projections from cerebral cortex. *Prog. Sens. Physiol.* (1991) 12: 65-114.

Innocenti, G.M., Cortical evolution and the development of cortical connections. *Trends in Neurosci.*, submitted.

5

Innocenti, G.M., Lehmann, P. and Houzel, J.-C., Computational structure of visual callosal axons. *Eur. J. Neurosci.* (1994) 6: 918-935.

Innocenti, G.M., Aggoun-Zouaoui, D. and Lehmann, P., Cellular aspects of callosal connections and their development. *Neuropsychol.*, in press.

Mountcastle, V.B., An organizing principle for cerebral function: the unit module and the distributed system. In: *The Mindful Brain. Cortical Organization and the Group-Selective Theory of Higher Brain Function.* G.M. Edelman and Mountcastle, V.B. (Eds.), MIT Press, Cambridge (1978) pp. 7-50.

Perkel, D.H., Gerstein, G.L. and Moore, G.P., Neuronal spike trains and stochastic point processes. I. The single spike train. *Biophys. J.* (1967) 7: 391-418.

Perkel, D.H., Gerstein, G.L. and Moore, G.P., Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. *Biophys. J.* (1967) 7: 419-440.