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General Organization of
Callosal Connections in the
Cerebral Cortex

GIORGIO M. INNOCENTI

1. Introduction

The necessity of interhemispheric connections, and the nature of this necessity,
are demonstrated by the following hypothetical event. An intelligent being from
outer space lands on earth and is asked to design the brain of a cat. The being
is intrigued to find that the body of a cat is bilaterally symmetric (he looks himself
rather like a multieyed and multiwhiskered octopus).

After some deliberation, the being produces the following solution: the cat
is given a bilaterally symmetric brain and different elements of each half brain
are connected in a discrete, and more or less direct manner to different sensory
and motor organs of the ipsilateral half body. For the integrated functioning of
 the whole, connections between different elements of the same hemisphere and

similar connections between elements of different hemispheres are created.

A teleological approach may be useful to organize the quickly expanding
knowledge on the organization of callosal connections of various mammals into
a coherent picture, to place this picture into a broader framework of brain
organization, and to generate hypotheses for future work. The teleological temp-
tations become strongest when we consider the development of callosal connec-
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tions and try to justify that seemingly extravagant wastefulness. To these t€mp-
tations 1 have succumbed consciously only once (Section 8),

This review is essentially restricted to aspects of callosal organization which
have emerged over the last 12 years, especially from the use of new techniques
for tracing connections. The excellent reviews of Berlucchi (1972, 1981), Doty
and Negrao (1973), Gazzaniga and Ledoux (1978), Elberger (1982), as well as
the papers on cerebral commissures, collected by Steele Russe!l et al. (1979), can
complement several aspects of this work.

2. The Callosal Neurons

It has been possible to positively identify neurons projecting into the corpus
callosum (callosal neurons) only since the introduction of retrograde transport
methods for tracing neural connections. Identification of callosal neurons was,
however, also tried, with modest results, by studying the consequences of tran-
secting their axons (Pines and Maiman, 1939). With this approach, the large
pyramids in layer III at the 17/18 border were recognized as a source of callosal
axons in the monkey (Glickstein and Whitteridge, 1976), because these neurons
seemed to disappear following callosal transection. They are also absent in hu-
man brains with agenesis of the corpus callosum (Shoumura et al., 1975). The
effect may, however, not be due to degeneration of the czllosal neurons, but to
shrinkage of their perikarya. Adult callosal neurons, or at least some of them,
seem not to degenerate following transection of their axons since Asanuma and
Okamoto (1959) and Clare et al. (1961) could record antidromic responses to
the stimulation of the proximal stump of callosal axons severed several weeks
earlier. And in normal development, and experimentally induced agenesis, many
juvenile callosal neurons lose their callosal axons without degenerating (see Sec-
tion 7).

Callosal neurons have now been studied with the retrograde tracer horse-
radish peroxidase (HRP), alone or bound o wheat-germ agglutinin (WGA), or
with fluorescent tracers, in several species and areas (Table I).

2.1. Radial Distribution

As a general rule, in the anatomical studies, the largest fraction of callosal
neurons has been found in layer I11 (Table I, Fig. 1). Callosal neurons, identified
electrophysiologically by antidromic activation in the visual areas of the cat (Toy-
ama et al., 1974; Innocenti, 1980; Harvey, 1980) or of the rabbit (Swadlow and
Weyand, 1981), and in somatosensory cortex of the cat (Miller, 1975), have also
been preferentially found in layer II1. Other layers also contribute to the corpus
callosum, but differently, depending on the species and the area. For example,
the second largest fraction of callosal neurons seems to be in layer V in rodents,
and in layer VI in cats. Infragranular callosal neurons have been inconsistently
found in the monkey, in either layer (Table I; see Jones, this volume). The

Table I. Radial Distribution and Morphology of Callosal Neurons
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reas 17 and 18 of the cat, labeled
.microscope chart of distribution
of callosal neurons {dots) in an 80-u-thick coronal section reacted with DAB. Thin dashed lines
mark bouoms of layers 1, 3, 4, 5, 6; arrow points to the boundary between areas 17 and 18. A and

Figure 1. Radial and tangential distribution of callosal neurons in a
by HRP injections filling most of the lateral gyrus. (Left) Computer

B refer to the strips of cortex drawn on the right. (Right) Camera lucida-drawn outlines of HRP-
positive (solid symbols) and HRP-negative (open symbols) neurons in areas 18 (A) and 17 (B}. Layers
and sublayers are indicated by numbers and letters, respectively. Qutlines of major blood vessels
are drawn with dashed contours. From Innocenti (1980).

relative contribution of the other layers is probabiy also a species-specific trait;
it is small in monkeys and cats, large in rodents.

Areal differences in the radial distribution of callosal neurons have only
recently been systematically explored (Jouandet et al, 1985) but they can be
exemplified by the relatively stronger contribution of infragranular layers to the
corpus callosum in areas 19 and PMLS in the cat, as compared to areas 17 and
18 (Shatz, 1977b; Keller and Innocenti, 1981; Segraves and Rosenquist, 1982a).
Infragranular callosal neurons seem to be relatively more frequent in motor
cortex than in somatosensory cortex of the monkey (Zant and Strick, 1978;
Killackey et al., 1983a) and mouse (cf. White and DeAmicis, 1977; Porter and
White, 1983). In the monkey, Van Essen et al. (1982) have reported a higher
incidence of deep callosal neurons in parietal cortex than in striate and peristriate
areas. These differences in the radial origin of callosal connections are interesting
because they seem to challenge the homology of cortical layers across areas and
species. ;

Each area projects callosal axons not only to homologous (homotopic) areas
in the contralateral hemisphere, but aiso to heterologous (heterotopic) areas (see

2o ol o e,
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p. 309). These projections can originate from different layers. For example, the
visual area PMLS of the cat projects to the contralateral homologue mainly from
layer 111, and o area 17/18 mainly from layer VI (Keller and Innocenti, 1981;
Seagraves and Rosenquist, 1982b; Fig. 2).

2.2. Morphology

The average size of cell bodies of callosal neurons is very similar in SI of
the monkey (259.5 pm? Jones and Wise, 1977) and several areas of the cat: SI
(279.2 wm?; Caminiti et al., 1979), VI/VII (256.0 pm?; Innocenti, 1980), AI (278.9
pwm?; Code and Winer, 1983). In cats and monkeys, the callosal neurons are, on
the average, larger than the other neurons in the same layer. This is not the
case in rodents (unpublished). The prominent size of callosal neurons is acquired
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Figure 2. Radial distribution of callosai neurons in area PMLS of the cat, labeled by HRP injections
into the homotopic cortex (left), areas 17 and 18 {middle), and application of HRP to the corpus
callosum (right). Camera lucida-drawn outlines of HRP-positive (solid symbols) and HRP-negative
(open symbols) neurons in 80-um-thick coronal sections reacted with DAB. Layers are indicated by
roman numerals. The choice of the regions shown in these drawings emphasizes the difference in
the laminar distributions of homotopic and heterotopic callosal neurons: occasionally, a few hom-
otopic callosal neurons can also be found in infragranular layers and a few heterotopic ones in
supragranular layers. Modified from Keller and Innocenti (1981).

29’

GENERA

ORGANIZATION O

CALLOSA|
CONNECTION:



HAPTER 9

IO RN

gl 1o S
SRRt ;
I e S

posmalally in the cat (Innocenti and Caminig, 1980) and u ‘"fnay reflect either
the progressive elongation of the callosal axons due to the volumetric increase

of the brain, or the elaboration of telodendria.

Only recently has the sensitivity of retrograde transport methods become
adequate to resolve the morphology of callosal neurons. Across areas and species,
pyramids are by far the commonest type of callosal neuron (Tabie 1, Fig. 3).
Polymorphic neurons (Table I) and, occasionally, inverted pyramids (Van der
Loos, 1965; Innocenti, 1980) in layer VI also contribute to the corpus callosum
in several areas and species.

The contribution of layer 111 and IV spiny stellate cells to the callosum was
demonstrated in areas 17 and 18 of the cat (Innocenti and Fiore, 1976; Shatz,
1977b:; Sanides and Donate-Oliver, 1978; Innocenti, 1980; Hornung and Garey,
1980, 1981; Figs. 3, 4). This was somewhat unexpected, since there has been 2
tendency to consider stellate neurons as the source of exclusively intracortical
axons, in spite of older evidence to the contrary from Golgi studies (Ramoén y
Cajal, 191 1; Sholl, 1955). The contribution of stellate cells to the corpus callosum
may be restricted to visual cortex and, possibly, to the cat (see Table 1), in which
species this cell type has now also been identified as the source of ipsilateral

projections from area 17 to area 18 (Meyer and Albus, 1981).
in visual cortex of the cat, the heterogeneity of morphological types cor-
responds to the heterogeneity in the receptive field properties of callosal neurons,
and fits the structure—function relationships discovered for this part of the brain.
Visual callosal neurons have “simple,” “complex,” and “hypercomplex” receptive
fields (Hubel and Wiesel, 1967; Berlucchi et al., 1967, Shatz, 1977a; Innocenti,
1980; Harvey, 1980) and, in layers {II and IV of area 17, “simple” receptive
felds correlate with the stellate morphology whereas cells with “complex” re-
ceptive fields are usually pyramids (Kelly and Van Essen, 1974; Gilbert and
Wiesel, 1979).
Callosal axons give rise o initial collaterals which either ascend toward the
ial surface or run tangentially for up to 500 pm and possibly farther (Innocenti,
1980). Other collaterals arise from more distal parts of the axons, probably
contributing to the projection from layer 111 to layer V (Lund and Boothe, 1975).
The possibility that callosal neurons may send axon collaterals to ipsilateral
cortical, or subcortical, targets (Ramon y Cajal, 1894) or to different contralateral
areas, has been tested electrophysiologically (Toyama et al., 1974; Miller, 1975;
Catsman-Berrevoets el al., 1980; Swadlow and Weyand, 1981), or by using double
retrograde tracer techniques {(Catsman-Berrevoets et al., 1980; Wong and Kelly,
1981; Schwartz and Goldman-Rakic, 1982; Graziosi et al., 1982; Segraves and
Innocenti, 1982; Weber et al., 1983; Herron and Miller, 1983). Few such neurons
have been found so far, on an average about 1% of the total callosal neurons
labeled in an area, but this igure can be expected to vary considerably depending
on the combination of injection sites, layer, area, and, possibly, species. For

-2
AL’

Figure 3. Phase-contrast photomicrograph (A) and camera lucida drawing (B) of callosal neurons
(one pyramid and two stellate cells) in area 18 of the cat, stained in a Golgi-like way by HRP injected
into the contralateral lateral gyrus. A horizontal bar in A and a dashed line in B mark the bottom
of layer 3. In B bottom of layer 1 is also indicated. The section was 80 wm thick, reacted with D AB.

From Innocent ( 1979).
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The terminal also contacts an unmarked spine

n continuity through its pedicle (p) with its parent dendrite (d2). Bar

Serge 3o PINIC UCIVIES w e marked dendrnite (d1).
nal (du) contacting the marked (sp1) and unmarked (sp2) spines. Scale as in C, From

this spine is i

A & A L

L

{sp2) from another cell;
section of the same termi

= 0.05 um. (1) Subsequent
Hornung and Garey (1980).

example, in area PMLS of the cat at least 15% of the callosal neurons projecting
to contralateral 17 and 18 also send an axon collateral to ipsilateral 17 and 18
and these neurons are most numerous in layer VI (Segraves and Innocenti,
1982, 1985). With these limitations, and even though the available techniques
may fail to visualize a fraction of the callosal neurons with bifurcating axons,
the picture emerging is that distinct neuronal sets project from supragranular
layers to different contralateral areas or to areas in the two hemispheres. In-
terestingly, this is not a general rule for all telencephalic commissural systems:
in the hippocampus, commussurally projecting neurons often have long ipsilat-
eral collaterals (Laurberg and Sérensen, 1981).

2.3. Synaptology

‘The response latency of somatosensory (Innocenti et al,, 1974) and visual
(Toyama et al., 1974; Harvey, 1980) callosal neurons in the cat has indicated
that at least some of them are monosynaptically excited by thalamic afferents.

Ultrastructural studies have confirmed that thalamic afferents synapse on
callosal neurons in areas 17/18 of the cat (Hornung and Garey, 1980, 1981) and
in somatosensory cortex of the monkey (Hendry and Jones, 1980, 1983; see F ig.
31 of Chapter 4). In both areas, the thalamic terminals form asymmetrical con-
tacts with spines and shafts of basal dendrites of callosal neurons in layers IT1I-1V
(Fig. 4). In visual cortex, both pyramidal and stellate callosal neurons receive
the thalamic afferents. Callosal neurons also receive symmetrical synapses on
their somata, proximal parts of the dendrites and initial axon segments. Inter-
neurons specialized in axoaxonic connections give rise to the symmetrical syn-
apses on the initial axon segment of callosal neurons in area 18a of the rat
(Somogyi et al., 1979).

3. The Callosal Tract

The adult corpus callosum consists of myelinated and unmyelinated axons
(Fig. 15). The former comprise 43—-69% of the total (a figure which represents
different authors, species, and methods; Table IT). There is a wide range of
axon diameters; some of the axons are as thin as 0.08 um while the thickest can
exceed 5 wm (Table II). However, electron microscopic studies in rabbits and
cats show that very few axons are thicker than ! pm (Fleischhauer and Warten-
berg, 1967, Waxman and Swadlow, 1976).

The wide range of axon diameters corresponds to a wide range of ‘con-
duction velocities. Naito et al. (1970) reported two classes of conduction velocities
for somatomotor callosal axons in the cat: slow axons (3.0—4.3 m/sec; mean 3.6
m/sec) and fast axons (6.4-15.8 m/sec; mean 10.3 m/sec). Axons of these two
classes synapse, respectively, with slow and fast pyramidal tract neurons. Miller
(1975) estimated conduction velocity of somatosensory callosal axons of the cat
to range from less than 1 m/sec to 16 m/sec, irrespective of the layer location of
the parent neuron. The conduction velocity of callosal axons from visual areas
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17 and 18 ranges between 0.5 and 8.25 m/sec (median: 2.8 m/sec) in rabbits
(Swadlow and Weyand, 1981) and between 1.4 and 30 m/sec (median: 14—15 m/
sec) in cats (pooled data from Toyama et al., 1974, and Harvey, 1980). Variations
in latency of antidromic responses of up to 22% of the control value can be
observed with paired stimulations, suggesting that activity can modify the con-
duction velocity of callosal axons (Swadlow and Waxman, 1976). Swadiow et al.
(1979) have discussed the implications of these figures for the assessment of
commissural transmission time in man.

There is but scanty information regarding the number of callosal axons.
Counts derived from light microscopic studies (for references see Doty and
Negrao, 1973; see also Table 1I) must be seriously questioned since they probably
missed many small unmyelinated caliosal axons. In an electron microscopic study,
we have recently counted an average of 23 million axons in the adult cat, i.e.,
- nearly 5 times more than the previous light microscopic figure (Koppel and
Innocenti, 1983; Fig. 18). Unfortunately, this seems to be the only estimate of
the numbser of callosal axons using a modern technique. [Note added in proof:
La Mantia and Rakic (1984) have counted 45 million axons in the adult rhesus.]

Which proportion of cortical neurons gives rise to callosal axons is also not
known with certainty. In earlier work with diaminobenzidine (DAB)-visualized
HRP, I estimated that 10-15% of the layer I11-IV neurons in the most heavily
Projecting parts of areas 17/18 of the cat send axons to contralateral 17/18 and
19 (unpublished). It is probable that, if callosal neurons projecting from 17/18
to the contralateral suprasylvian region were included and, especially, if more
sensitive substrates for HRP visualization were used, this figure would be con-
siderably augmented. ' ‘

Few studies have thus far tried to correlate the topography of the corpus
callosum with that of the hemispheres (Sunderland, 1940; Luttenberg and Mar-
sala, 1963; Pandya et al., 1971b; Innocenti, 1980; Seltzer and Pandya, 19883).
Sunderland (1940) concluded his Marchi study on the macaque with this state-
ment: “The localization in the corpus callosum is of a very general type. Not
only are the commissural fibres from some cortical areas diffusely spread over
the corpus callosum but there is also an overlap of fibres coming from different
areas in the same lobe, and aiso, apparently, from areas in different lobes.”

This statement is still appropriate. More precisely though, in cats and mon-
keys, the rostrocaudal axis of the corpus callosum corresponds roughly to that
of the hemisphere while the dorsoventral callosal axis does not seem to corre-
spond to a mediolateral trajectory on the hemisphere (Innocenti, 1980; Seltzer
and Pandya, 1983). The differences in the dorsoventral and rostrocaudal to-
pography of the callosum may be due to the existence of numerous heterotopic
connections between medial areas in one hemisphere and lateral areas in the
other. The elimination of at least 70% of the callosal axons in development
(Koppel and Innocenti, 1983) may contribute to blur the callosal topography.

The topography of axons in the corpus callosum is interesting for at least
two very different reasons. Sidtis et al. (1981) have demonstrated that different
parts of the corpus callosum transfer the sensory and semantic attributes of a
visual stimulus. It would be important to know which area-to-area connections
are responsible for these two performances. On the other hand, sex-related
differences in the shape of the corpus callosum have been found in human
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brains (De Lacoste-Utamsing and Holloway, .1982) and may also exist i the
monkey (De Lacoste and Woodward, 1983). Women seem to have amore bull?O}xs
and larger splenium than men, which may indicate differences in the connectivity
of specific cortical areas in the occipital, temporal, or parietal lobes. Along the
same lines, it is interesting that left-handers seem to have a larger corpus callosum
(at equal brain weight) than right-handers (Witelson, 1983).

4, The Termination of Callosal Axons

Table III combines the descriptions of the radial distribution of terminating
callosal axons in a selected group of recent papers which have devoted special
attention to it. Some precautions are necessary in interpreting Table 111. The
results derive from studies with different techniques. However, probably only
the few electron microscopic studies could distinguish, with certainty, terminals
from preterminal or “en passage” axons. In addition, some studies have involved
localized cortical lesions or tracer injections, and others transections of the corpus
callosum. These two approaches may not always lead to identical results. Finally,
in many areas callosal connections terminate in a “columnar” pattern (see Section
5.3). A “column” may assume different widths in different layers (see Jones et
al., 1979). It was not possible to include these details (which are not available in
all studies) in Table III.

In spite of these potentially confusing factors, comparisons of the radial
distribution of callosal terminals in different species and areas can be attempted.

Callosal terminals to corresponding areas seem to acquire a more strict radial
segregation from rodents to cats and monkeys. Concomitantly, the bulk of the
terminations assume a deeper position in the granular and supragranular layers.

Thus, near the area 17/18 border, the densest callosal termination was usually
found in rodents in layers I-1II but many terminations were also found in V

and VI, and a few in IV. In the same region, most callosal axons were found

in layers III-IV in the cat but also a few in other layers. In monkeys the dis- '
tribution is similar to that found in the cat, although callosal terminals seem to }

become less numerous in the upper part of III. _

In theory, the differences in the radial distribution of callosal connections
atthe 17/18 border of rodents, cats, and monkeys could be related to the different
organization of the visual pathways. However, similar differences also seem to
exist for other areas (Table III; see also Jacobson and Marcus, 1970).

Areal differences in the radial distribution of callosal terminais have been
noticed since the early studies of callosal connections (Heimer et al., 1967), but
remain incompletely described. One of the best documented areal difference is
at the transition between areas 17 and 18 in rat, cat, and monkey: callosal
terminals are in all layers in area 18 but in 17 they become restricted to supra-
and infragranular layers (Fisken et al., 1975; Shatz, 1977b; Cusick and Lund,
1981; Innocent et al., 1985).

With these limitations, the general rule seems to be that granular and su-
pragranular layers are the main, and most constant, recipient of callosal axons.
Exceptions to this rule seem to be areas 17 and 18 of Astus and Galago monkeys
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(Newsome and Allman, 1980) and the limbic area 29 of the rat (Vogt et al.,
1981), where granular-infragranular layers are the main callosal recipients.

Single callosal axons to parietal cortex of the mouse have been anterogradely
traced with HRP (Hartenstein and Innocenti, 1981; Fig. 5). These axons, which
may represent but a subclass of all callosal afferents to this area, were found to
form their terminal arborization in granular or supragranular layers, but they
often gave off short collaterals in deeper layers. The terminal arborization oc-
cupies, in the coronal plane, a triangular space with a 100 to 200-pm-wide base
toward the pial surface and a height not exceeding 200 pm. In SI of the monkey
a callosal axon with a more elaborate terminal arbor has been described (Hendry
and Jones, 1983; see Fig. 31 of Chapter 4). This axon, unlike in the mouse, does
not seem to give rise to infragranular collaterals but to two distinct terminal
arbors at the layer I11b/IV border and in 1ila. The widest of these arbors spans
100-150 pm, tangentially, just as in the mouse. Given the enormous difference
in the surface of neocortex in these two species, this possibly circumstantial
similarity is nevertheless striking, especially since the distribution of callosal
terminals may be the expression of a general modular pattern of neocortical
organization (see Section 5.3).

Callosal axons terminate with “boutons” containing round vesicles and form-
ing asymmetrical synapses mostly on spines (Jones and Powell, 1970; Lund and
Lund, 1970; Fisken et al., 1975; Sloper and Poweli, 1979, Hendry and Jones,
1983; Cipolloni and Peters, 1983) which, in auditory cortex of the rat, beiong
to apical or basal dendrites of pyramidal cells (Cipolloni and Peters, 1983). A
few callosal terminals contact dendritic shafts or celi bodies.

5. Corticotopic Organization of Callosal Connections

The two key concepts which underlie the present understanding of the
topographical (corticotopic) organization of callosal connections were established
in the 1940s, especially by the electrophysiological studies of compound poten-
tials evoked across the corpus callosum by electrical stimulation of the cortex or
topical application of strychnine (Curtis and Bard, 1939; Curtis, 1940; McCulloch
and Garol, 1941; Bailey et al., 1941, Garol, 1942).

These concepts are that (1) callosal axons connect most strongly correspond-
ing (homotopic) but also, less strongly, noncorresponding (heterotopic) cortical
points and (2) the density of callosal connections varies across the cortex. Parts
of some areas, most typically of the primary sensory areas, lack callosal connec-
tions.

The absence of callosal afferents in large parts of the visual, somatosensory,
and auditory fields was definitively established by Myers (1962) and Ebner and
Myers (1962, 1965) using the Nauta method in monkey, cat, and raccoon. The
essential points of their descriptions were confirmed by Jones and Powell (1968,
1969), Diamond et al. (1968), Garey et al. (1968), and Pandya and Vignolo (1968,
1969); the latter group also provided the first precise anatomical information
on the area-to-area relations established by the commissures.

These studies remain the foundations of current views on the corticotopic
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organization of callosal connections. Over the last 10-15 years, hﬁ:;‘i':rh:;c
portant progress has been made in the definition of (1) the inter ] ‘i .
interrelations of several cortical areas, (2) the relationships of the ca (})lé.‘»a o
nections with the functional maps of several areas, and (3) the fine architec

of callosal connections.

5.1. Area-to-Area Interrelations

The information on the transcaliosal interrelations of the various comc;.;l
areas is incomplete and requires a critical evaluation far beyond t}lle go#: of this
review. Indeed, although the classic cytoarchitectonic and mye o.’;m:f i ect(;mci
studies still provide an invaluable framework fo; the parcella.tlon (I;),l cerf(?l ra:i
cortex, recent electrophysiological mapping studies have considerably refine

the classic definition of several areas. On the other hand, the continuing, rapid

increase in the sensitivity and selectivity of pathway tracing techniques implies
a continuous revision of the connectional schemes.

Data on the transcallosal interrelations of the sensory-motor areas can be
found in other chapters in this volume and in a series of articles on prefrontal

supragran.

cor. call.

3 lucida drawing of three callosal axons from different sections and cortical l9cauons
(I;'ig:“: foec;i[fltlc ;arcas 40, 17118,g3) in a mouse injected with HRP iq the cont.ralatcm] hel.nuphcrf:-
The section (100 pm thick) was reacted with DAB and cobalt chioride. Shading schematically cor-
responds to regions containing diffuse distribution of amcrogradcly_ transported HRP T:vo of th
axons formed their terminal arborization in Iayers. I1 an_d II1, one in layer IV (wnl:un a columnd
of anterograde transport). Note the nearly tangential trajectory of one of r.!u: axons in layer Vlan
the collateral arborizations in this layer of all three axons. From Hartenstein and Innocenti (1981).
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or motor cortex of the monkey (Pandya et al., 1971a: Pandya and Vignolo, 197];
Jjacobson and Trojanowski, 1977; Kiinzle and Akert, 1977, Kiinzle, 1978: Max-
sumura and Kubota, 1979; Jenny, 1979), cat {Cavada and Reinoso-Susrez, 1981),

monkey, cat, and mouse (Jones and Powell, 1968, 1969; Pandya and Vignolo,
1968, 1969; Jones et al, 1975, 1979; White and DeAmicis, 1977; see Jones, this
volume), auditory cortex of the cat and monkey (Diamond et al., 1968; Pandya
etal., 1969; Fitzpatrick and Imig, 1980; Imig and Reale, 1980), and visual cortex
of the hedgehog (Gould and Ebner, 1978), cat (Hubel and Wiesel, 1965; Wilson,

In a combined anatomical and electrophysiological study with anterograde
and retrograde tracers, Segraves and Rosenquist (1982b) have analyzed the
callosal connections of 13 visyaj areas in the cat. From their study and from the
others mentioned above, some of the general features of the transcallosal in-

their density; the densest connections are usually between homotopic areas. (3)
Different neurons project from one area to different contralaseral areas, al-
though a few neurons project with bifurcating axons to more than one area
(Segraves and Innocent;, 1982). (4) The connections between two areas are
usually, but not always, reciprocal. For example, area 19 projects to several areas
from which it does not receive. S1 projects to contralatera] SII from which
however, it does not appear to receive, neijther in the cat (Jones and Powell

that of which organizing principles underlie the selective intra- or interhemis-
pheric connections of cortical areas, as will be further elaborated in refation to
the development of callosal connections.

Although the corpus callosum contains mainly corticocortical axons, some

* In rodents, callosal connections may link preferentially or exclusively homotopic points (Yorke
and Caviness, 1975), although some heterotopic connections have been described (Wise and Jones,
1976: White and DeAmicis, 1977- Beckstead, 1979: Porter and White, 1983: Markowitsch and
Guldin, 1983).
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" of its axons connect the cortex to subcortical structures

such as the claustrum

(Kiinzle, 1975; Squatrito et al., 1980; Berman and Payne, 1982; Minciacchr et
al., 1983; see Sherk, this volume) and the caudate nucleus (Ebner and Myers,}
1965; Carman et al., 1965; Garcia-Rill et al., 1979; Berman and Payne, 1982; see
Goldman-Rakic and Selemon, this volume). Not all crossed corticosubcortical .
connections go by way of the corpus callosum (for examples, see Berman and
Payne, 1982; Macchi and Bentivoglio, this volume).

5.2. Callosal Connections and Peripheral Representations:
Visual Areas 5

Three lines of evidence unequivocally demonstrate that, in the cat, the origin =~
and termination of visual callosal connections are focused to the proximity of
the representations of the vertical meridian of the visual field. Electrophysio- g
logical recordings from the corpus callosum have shown that the receptive fields 3
of visual callosal axons straddle the vertical meridian (Berlucchi et al., 1967;
Hubel and Wiesel, 1967; Shatz, 1977a). Transcallosally evoked visual responses
(Choudhury et al., 1965; Berlucchi and Rizzolatti, 1968; Lepore and Guillemot,
1982), or responses to electrical stimulation of the commissural pathways (Toy- &
ama et al.,, 1974; Harvey, 1980; Innocenti, 1980), can be recorded only from J4&
parts of areas 17 and 18, representing visual-field locations near the vertical
meridian. Finally, combined anatomical and electrophysiological studies have J
directly determined which portion of the visual field is represented in the regions §
which send or receive callosal axons (Innocenti, 1980; Sanides and Albus, 1980; 3
Segraves and Rosenquist, 1982a; Fig. 6). :

In the cat, the number of callosal neurons progressively increases from area
17 (VI) to the 17/18 border, where the vertical meridian is represented, and
then decreases again, progressing into area 18 (VIL; Innocenti, 1980; see Fig:§
6). The portion of visual field represented within the region containing callosal ]
neurons (callosal efferent zone) in 17 has an azimuthal width of 2-3° near area §
centralis and progressively increases to 8-9° at an elevation of 25° below area 38
centralis. A wider portion of visual field corresponds to the callosal efferent zone 3
in areas 18 and 19 (Innocenti, 1980; Segraves and Rosenquist, 1982a) and it T
increases further in area PMLS (Segraves and Rosenquist, 1982a). In each of
these areas, the region occupied by callosal terminals (callosal terminal territory)
is also centered on the vertical meridian representation, but is slightly narrower '.j,:
than the respective callosal efferent zones (Sanides, 1978). The strict association %
between callosal connections and the representation of the vertical meridian is LS
emphasized by the finding that bridges of callosal terminations spanning the
mediolateral extent of area 18 correspond to the exaggerated representations
of visual field locations near the vertical meridian characteristic of this area
(Sanides and Albus, 1980).

In area 17, the progressive increase with elevation in the azimuthal angle -
represented within the callosal zone may correspond te the eccentricity-depen-
dent increase in receptive field size (see Fig. 7). A similar relation to receptive . o
field size could explain the increase in the azimuthal angle of the callosal efferent -
zones and terminal territories across areas. In fact, there are strong indications ¢
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that the callosal neurons situated in parts of PMLS, representing the most pe-
ripheral parts of the visual field, have wide receptive fields extending as far as

the vertical meridian (Antonini e al., 1983).

Callosal connections originate and/or terminate setectively near the border
between areas 17 (VI) and 18 in cats (VII; 18a in rodents), hedgehogs (Gould
and Ebner, 1978), mice (Yorke and Caviness, 1975), hamsters (Rhoades and
Dellacroce, 1980a; but see Diirsteler et al., 1979), rats (Jacobson and Marcus,
1970; Lund and Lund, 1970; Cipolloni and Peters, 1979; Cusick and Lund,

41
~
[]
'
[
I
' 22
]
]
20-;
| 24
I
| 1
| —_—

- o~

Figure 6. Example of a combined anatomical and electrophysiological experiment in cat visual cortex.
Computcr—microscope chart of a coronal section (80 wm thick, reacted with DAB) showing the
distribution of callosal neurons (dots) labeled near the 17/18 border (triangle) by HRP injections in
the contralateral, Jateral, and postlateral gyri. Thin dashed lines mark the bottoms of layers I, IV,
V, and VL. The lines crossing the cortex correspond to the trajectories of the microelectrode pen-
etrations performed 24 hr after the HRP injections. The dashed portion of one of the penetrations
was traced from a neighboring section; the line denoting one of the penetrations was interrupted
in the region containing labeled neurons. Numbers along each penctration correspond to the re-
ceptive fields shown in the inset where the vertical meridian is indicated by a vertical, dashed line

and area centralis (determined ophthaimoscopically) by an asterisk. From work partially described
in Innocenti (1980).
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es and Wilson, 1969; Towns

d, 1981; Chow etal., 1981) X
Wong-Riley, 1974; Fisken}

1981; Zaborszky and Wolff, 1982), rabbits (Hugh
etal., 1977; Swadlow et al., 1978; Swadlow and Weyan
and monkeys (Zeki, 1970; Karol and Pandya, 1971; : =
et al., 1975; Newsome and Allman, 1980; Van Essen et al., 1982; .Cusm% ef al.,’

1983). Thus, in all of these species callosal connections between “primary” visual

areas are also selectively concerned with the vertical meridian representation, as
this seems to be invariably represented near the 17/18 border. The azimuthal

angle corresponding to the callosal connections can, however, vary in different
species. Rhoades and Dellacroce (1980a) have estimated that the callosal zone

at the 17/18a border in the hamster encompasses 30—45° of the visual field
representation. In the VI-VII region of the rabbit, Swadlow (1977) has found

callosal neurons within parts of cortex ranging over 93° from the line of de-

cussation of optic axons. o
In the macaque, unlike in the other species, callosal axons originate only

from 18 near the border with 17 but not from 17 itself (Lund et al., 1975; Van

Figure 7. Visual field coordinates of i}
the callosal zone in areas 17 and 18;
of the cat. The vertical meridian is
marked by 2 vertical line, area cen-3
tralis (determined ophthaimoscopi]
cally) by a cross. Receptive ficlds o3
neurons met along microelectrode}
penetrations within the callosal zone;
in area 17 are indicated by solid rec
tangles; those met in the callosal zone ;
in area 18 by hatched rectangles. Re-
ceptive fields of neurons outside the
callosal zone are drawn with dashed
contours. The haiched trapezoidal ¢
area extrapolates the data to indicate
the portion of visual field within the
callosal zone in area 17. Same ex-
periment as shown in Fig. 6; 12 pcn-"; i
ctrations were performed at four .
rostrocaudal levels within the lower -
hemifield representation along the
lateral and postlateral gyri. The re- 7.
ceptive fields were plotted on 2 tan- |
gent screen in front of the animal 7%
From work partially described in [n-:::-
nocenti (1980). Sy
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Essen et al., 1982), although they terminate on either side of the border (Fisken
et al., 1975; Van Essen and Zeki, 1978; Van Essen et al., 1982).

The association between the callosal terminal territory and the vertical me-
ridian representations can help to identify anatomically the borders between
some of the “secondary” retinal representations in monkeys and in rodents (Zeki
and Sandeman, 1976; Van Essen and Zeki, 1978; Newsome and Allman, 1980;
Cusick and Lund, 1981; Van Essen et al., 1982).

In spite of the work done thus far, it remains unclear whether callosal axons
relate most specifically to the geometrical midline of the binocular visual field
or to the border between nasal and temporal retinal moieties. It is this border
which receives callosal afferents in the sheep, where it falls at 10-15° in the
ipsilateral visual field, at the VI/VII boundary (Rao, 1979; Clarke et al., 1979).

R 5.2.1. Somatosensory Areas

It has been believed for some time that similar principles underlie the re-
lationships of callosal connections with visual and somatosensory maps. Studies
| with anterograde degeneration in the monkey, cat, raccoon, rat, and mouse
have, in fact, emphasized the absence of callosal connections in regions of SI
and of SII (Ebner and Myers, 1965; Jones and Powell, 1968, 1969; Pandya and
- Vignolo, 1968, 1969; Yorke and Caviness, 1975; Wise and Jones, 1976) repre-
senting distal segments of the limbs (but see Shanks ez al, 1975). Callosal ter-
. minals were, on the contrary, found within the representations of trunk and
b head, i.e., essentially in correspondence to the body midline. It should be stressed

ograde degeneration with electrophysiological maps (with evoked potentials),
which have now undergone profound revisions (see below).

) The notion that tactile information from the distal limb segments has no
j access to the corpus callosum is difficult to reconcile with the behavioral evidence
of transcallosal transfer of somatosensory information from the paws, and hands,
apparently involving SII (Teitelbaum et al., 1968). Furthermore, in the rostral
. part of the corpus callosum of the cat, focal potentials can be evoked by stim-
| ulation of distal fore- and hindlimb segments as well as of more proximally
located body regions, and single units with receptive fields restricted* to the distai
hmb segments can be found (Innocenti et al., 1974; Lepore et al,, 1983b). Size
and locations of receptive fields, latency, and modality specificity of the responses
suggest that they are generated by impulses traveling along the lemniscal pathway
and, atleast in part, relayed monosynaptically through the cortex. The responses,
including those evoked by stimulation of the distal limb segments, decrease in
amplitude after ablation of §I and disappear entirely when SII is also ablated.
Thus, both areas seem to relay input to the callosum from their representations
of the distal limb segments. In fact, Robinson (1973) could identify, in SII, callosal
neurons with contralateral receptive fields on the forepaws. Furthermore, ex-
periments combining the retrograde transport of HRP and microelectrode re-

* This is a crucial difference from what is observed in secondary visual areas, where receptive fields
transmitted across the corpus caliosum may extend into the periphery of the visual field, but they
always include the vertical meridian or the neighboring visual space {Antonini ef al., 1983},

that these interpretations were based on comparisons of the patterns of anter- -
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314 cordings have shouﬁx that in SI of the cat, 2 limited part of the forepaw rep-

resentir
resentation has access to contralateral SII (Caminiti ¢t al., 1979), but perhaps resenta
’ also to contralateral SI (McKenna et al., 1981). However, most callosal neurons S Fig. 1 i
projecting to contralateral SI seem to be restricted to two patches corresp(?ndmg ' (1968),
to the ventral and dorsal body midlines (Caminiti et al., 1979; Manzoni ¢ dl,, tralater
1980: McKenna et al., 1981), while most of the forepaw and hindlimb repre- EO
sentations are empty. ; monke:
The conclusiopnz that the paw representations in SII of Fhe cat lacked callosal cytoarc
connections appear to have been due to the lack of resolution of tfxe body maps midline
of this area constructed with evoked potentials. Single-unit studies (I?urton et the har
al., 1982; Clemo and Stein, 1983) have now indicated that SII contains th-rce Jones a
representations of the paws (Clemo and Stein, 1983). A combined anatomical represe
and electrophysiological investigation has shown unequivocally that regions rep- SI (Gou
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Figure 8. Relationship between the location of callosal neu-  lesion at the end. The rpicrocl_cctrodc entered the brain at 5.2.%.
rons and the somesthetic represcntations in SI1 of the cat. the positions indicated in the inset. Dashes along ‘l;hc clec-
Computer-microscope charts of coronal sections (80 um thick,  trode tracks correspond to the receptive fields, indicated by The
reacted with DAB) showing the distribution of HRP-labeled  the filled surfaces on the sketches of cat paws (and head) in the rc
neurons (dots) and the reconstruction of three microelec-  and ordered in the sequence found during microelectrode reei
trode penetrations performed 24 hr after injecting the HRP  advancement. In the scctions, thin dashed lines denote the eglons
into the contralateral homologous arca. Letters denote the bottomoflayersI, IV, V, and V1. From Caminiti et al. (1979)- difficult
beginning of each penetration, open circles the electrolytic cortical
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representations of the
SI (Gould and Kaas, 1981).

The barrel field, the Primary repres
of rodents, sends a relatively weak projection to the co
} Jection seems to terminate in the homoto

 The primary Fepresentation of the mystacial vibrissae in the rat js also relatively
acallosal (Wise and Jones, 1976; Akers an

gray squirrel receive caliosa) afferents in SII byt not in

entation of the mystacial vibrissae in SJ

rpus callosum; this pro-
pic area (White and DeAmicis, 1977).

d Killackey, 1978). In the rat, callosal
, terminations and callosa] R€urons surround indijvidy,

al barrels (each of which

. corresponds to one vibrissa) resulting in a tangential honeycomb pattern com-

| mon also to the Tepresentations of other facia] sinus hairs (Killackey et af,, 1983b).

''In the cat, several callosal axons w. i i

“whiskers (Innocenti et al,, 1974) and
can be transsynaptically activated through the corpus callosum (Fadiga et al,
1972). In the mouse, callosal neuron

s do not appear to hold preferentiai location
with respect to the barrels (White and DeAmicis, 1977).

5.2.2. Motor Cortex

or retrograde tracers have confirmed ¢
connections to, and from, the hand r
1979; Jenny, 1979. Gould ¢t 4
nections arise from the repres

he existence of homo- an

€presentation (Matsumura ang Kubota
{., 1988). Jenny’s work indicates th
entation of the thump.

52.3, Auditory Areas

The proposition that in auditory cortex callosal
in the regions of high-frequency representation and
regions of low-frequency (2-19 kHz) representation
difficult to substantiate with interanimal comparisons
cortical representations of the cochlea and they vary

less dense or absent in the
(Diamond ¢ al.,, 1968) is

since there are multiple
in their precise location

315

GENERAL
ORGANIZATION OF
CALLOSAL
CONNECTIONS

25,



316

CHAPTER 9

UV

(Merzenich et al.,- 1975; Reale and Imig, 1980). In a combined W‘O‘;ﬂ?‘ gy 19
electrophysiological study of the high-frequency part of Al, lmig an iy
(1978) have found that callosal connections are concentrated in the most dorsal i un
parts of each isofrequency line but, apparently, this distribution cannot yet be Ze
related to the tonotopic organization of Al sl:c[
5.3. The Fine Organization of Callosal Connections pe
im.
The first report of a discrete tangential organization of callosal connection tar
of the sort now usually referred to as “columnar” (but see Cipo_llom and Peters, tan
1979, for a discussion on terminology) was probably that of Heimer ¢ al. (1!_}67)
showing the terminal distribution of callosal axons in rats subjected to ablations . ha
of large portions of neocortex. of
A more detailed description of this pattern of termination came, however, bifi
from studies in somatosensory (Jones et al., 1975) and motor cortex of the .. Alc
monkey (Kiinzle, 1976). “Columnar” distribution of callosal terminals was also I:\ spa
described in sensory, motor, and association areas of monkeys, cats, and rats pat
(Shanks et al., 1975; Wise and Jones, 1976; Goldman and Nauta, 1977; Akers - dift

and Killackey, 1978; Imig and Brugge, 1978; Jenny, 1979; jone-_.i et al., 197.9;
Rockland and Pandya, 1979; Cipolloni and Peters, 1979; Fitzpatrick and Im.lg, .
1980; Hartenstein et af., 1980; Kelly and Wong, 1981; Segraves and Rosenqmst,_:,_}_:._-

E
S

Figur:
IabClCt
super)
surrou
Figure 9. “Columnar” distributions of axon terminations in 511 of the cat and of callosal neurons labele
labeled by HRP injections in the contralateral homologous area. TMB reacted, 80-wm-thick coronal of ant

section. Bar = 500 pm. : positic
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1982b; Zaborszky and Wolff, 1982; Caminiti and Sbriccoli, 1983). A discontin-
uous termination of callosal axons, parts of which could be described as “col-
umnar,” has been documented in the visual areas of monkeys (Van Essen and
Zeki, 1978; Newsome and Allman, 1980; Van Essen et al, 1982) and in the
somatosensory areas of the squirrel (Gould and Kaas, 1981) and monkey (Kil-
lackey et al., 1983a; see Fig. 30 of Chapter 4).

The callosal termination “columns” are 200 to 1000-pm-wide structures,
perpendicular to the cortical surface and separated by empty spaces of approx-
imately equal width (Figs. 9-11). When reconstructed from serial sections, or in
tangential sections (Fig. 10), they appear to constitute systems of “bands” running
tangentially through the cortex.

It should be emphasized that, in most of the cases where callosal connections
have been documented by extensive tangential reconstructions, the regularity
of the banding pattern shows great local variations. Individual “bands” can
bifurcate or merge, sometimes into regions of more widespread termination.
Along a “band,” the density of terminals, their laminar location and tangential
Span,can vary considerably. Consequently, it can become doubtful whether the
pattern can still be accurately described as “columnar” or “striped.” Indeed,

different studies emphasize very differently the “columnarity” of the pattern of

Figure 10. Tangential distributions of callosal neurons and of axon terminations in SII of the cat,
labeled by an HRP injection in the contralateral homologous area. Reconstruction from three,
superposed, tangential sections through layers 111 and 1V (TMB reacted, 80 pm thick) of the region
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callosal termination in thc same region (see Cipolloni and Peters,dl?gl?.:, z;‘n
Vaughan, 1983, for auditory cortex of the rat; Jones ¢t al, 1979, and Killackeyy

of the monkey). 2
et al., 1983a, for somatosensory cortex Y ion is whether the B

Beyond these semantic difficulties, the important ques

discontinuous distribution of callosal terminati
neocortical organization. Ipsilateral ¢

dency to terminate in “columns” or “bands” (e.g.,
and Nauta, 1977; Wong-Riley, 1979; Rockland and Pandya, 1979; see also Jones,

this volume). In somatosensory and motor areas of {he n‘lonkcx,_ bands” of
callosal and ipsilateral corticocortical terminations partially interdigitate (Jones

neurons/bin

61 B

2 mn

Figure 11. Relationship between callosal neurons (dots) and “columns™ of callosal terminations
(hatching) in SII of the cat, labeled by HRP injections in the contralateral homologous area. A and
B represent the same coronal section (80 pm thick; TMB) but in A all the labeled ncurons are
shown, while B shows only those which were intensely labeled. The histograms were obtained by
projecting the neurons onto a line running 400 pm deep and parallel to the pial surface and then
counting the neurons over small segments of this line. The locations corresponding to the beginning
and the end of the line are indicated by solid and open arrows, respectively. A higher proportion
of labeled neurons is found within the columns (solid columns in the histogram) than between the
“columns” and this is particularly striking when only the strongly labeled neurons are considered.
Counts from several sections from this brain showed that 80% of the strongly labeled ncurons were
found within the “columns” while only 60% of all the labeled neurons were in this position. From

Hartenstein ef al. (1980).
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etal., 1979). Interdigitation is also found in frontal cortex of the monkey, between
be stressed that in both systems, the interdigitation is not perfect, ie., some

caliosal and ipsilateral corticocortical “bands” overlap, or else the space between
“bands” of one system is not, or is only partially, filled by terminations of the

observed in visuaj cortex of the monkey (Zeki, 1978; Van Essen ¢ al., 1982).

In somatosensory cortex of the rat, callosal “columns” interdigitate with the

similarly discretely organized thalamocortical terminations (Wise and Jones, 1976;
Akers and Killackey, 1978). F urthermore, the thalamic and caliosal recipient
Zones are cytoarchitectonically different, i.e., the former are “granular” and the
latter “agranular,”

On the contrary, in visual cortex of the hedgehog (Gould and Ebner, 1978),
in visual (Cusick and Lund, 1981), auditory (Vaughan, 1983), and cingulate
(Vogt et al, 1981) cortices of the rat, and in auditory cortex of the monkey
(Pandya and Rosene, 1983), thalamic and callosal terminations both overlap and
interdigitate in the tangential plane. In the studies mentioned above, as well as
in visual (Lund ¢t al., 1981), Somatosensory and motor (Sloper and Powell, 1979)

cortex of the monkey, incomplete radial segregation of callosal and thalamic
terminais has also been observed.

In auditory cortex of the cat, the “bands" of callosal terminations run roughly
- perpendicular to the isofrequency lines and correspond to aural dominance

Probably the “bands” of callosal terminations in SII of the cat are related
o representations of the ipsilateral body (Hartenstein ¢ al., 1980). In S1I, callosal
afferents Impinge on neurons with bilateral receptive fields while neurons driven
exclusively by contralateral receptive fields are not activated by the corpus cal-
losum (Innocenti ¢ al.,, 1972, Robinson, 1973). Callosa} afferents carry, almost
exclusively, information from the side of the body ipsilateral to the site of ter-

While, as discussed above, the notion of 2 “columnar” distribution of callosal
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rons or of “columns” of callosal terminals. Callosal neurons have a nearly corg
tinuous distribution in auditory cortex of the cat, but become more num_tltg; !
in correspondence with the termination “columns” (Imig and ’Brugge, 978
Imig et al., 1982; but see Kelly and Wong, 1981, for a different interpretation),
We have found a more widespread distribution of callosal neurons than of

callosal terminals in SII of the cat (Hartenstein et al., 1980; Figs. 10, I11)and a

similar distribution exists in parietal cortex of the monkey (Caminiti and Sbric
coli, 1983, 1985). Interestingly, through, we found a better match between cal-
losal neurons and terminals when we considered only the most stror‘l‘gly labcleé
callosal neurons (Figs. 10, 11). Finally, the discontinuous and loqally columnzfr
distribution of callosal terminals in visual cortex of the monkey 1s mat_chefi, “flth
some exceptions, by a similar, although considerably more blurred, distribution
of callosal neurons (Van Essen et al., 1982). o ]

In conclusion, the discrete organization of callosal terminations in most areas
is not matched by an equally precise, discrete distribution of ‘callosal neurons.
This seems to imply that callosal connections are organized in a fine-grained
convergent manner, a view which is strengthened by -the clear-cut conver-
gence—divergence exhibited by callosal connections during development (In-
nocentl and Clarke, 1984b). _ L

There are some indications that, in rodents, cailosal connf:cuons ongm:aung
from supragranular and infragranular layers prefer to terminate, respectively,
superficially and deep in the cortex (Jacobson and Trojanowski, 1974; Yorke

and Caviness, 1975; Ribak, 1977; Vogt et al., 1981). However, callosal axons

which form their main terminal arbor in supragranular layers can give. rise to
a few collaterals in the deep layers (Hartenstein and Innocenti, 1981; Fig. 5).

5.4. Some Electrophysiological Correlates of Callosal Connections: - -

Callosal Connections at the Cellular Level

The close correspondence between the distribution of callosal neurons and
terminals has generated the hypothesis that callosal axons may ongina.c and

terminate on the same neurons (Wise and Jones, 1976; Jones etal., 1979). C‘flllosal
axons have indeed been found to form synapses on callosal neurons in the .

primary motor representation of the vibrissae in the mouse (Porter et al., 1983)

but were not found in somatosensory cortex of the monkey (Hendry and jones, -

1983).

')['hree, not mutually exclusive models of the cellular organization of callosal
connections are conceivable. I will call them the reciprocal, the homologous, and
the heterologous models (Fig. 12). Which of these models may z!ctually be the
case is of paramount importance to the understanding of information processing
between the hemispheres. '

Presently, only the anatomical resuits of Porter et al. (1983) support cither
the reciprocal or the homologous model. Most electrophysiological results sup-
port the heterologous model. ' N _

In particular, inhibitory responses (Hossmann, 1969) are elicited dls.ynapt-
ically across the corpus callosum (Toyama et al., 1969, 1974; Innocenu & al.,
1972) in different areas of the cat. In agreement with the observation that callosal
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axons terminate exclusively with asymmetrical, hence probably excitatory, syn-
apses (see Section 4), it was proposed that they generate inhibitory responses by
synapsing with local inhibitory interneurons (Toyama ef al.,, 1969; Innocenti et
al, 1972; Toyama and Matsunami, 1976; Innocenti, 1980). It has also been
proposed that in visual cortex of the cat such interneurons may be stellate cells
with smooth dendrites (Innocenti, 1980). Indeed, it was recently found that the
layer I11-IV “basket cell,” a neuron type forming symmetrical, hence probably
inhibitory synapses with pyramidal cells, can be monosynaptically activated by
transcallosal stimulation (Somogyi et al., 1983). Inhibitory neurons, however, are
probably not the only target of callosal axons. Callosal transection modifies re-
sponses of neurons in the superior colliculus probably because it interrupts a
calloso-cortico-collicular pathway (Antonini et al., 1979). In fact, neurons pro-
Jecting from visual cortex to superior colliculus are excited by electrical stimu-
lation of the callosal pathway (Toyama et al., 1974; Singer et al., 1975).

The reciprocal and homologous models are incompatible with the finding
that, at least in the 17/18 region of the cat (Toyama et al., 1974; Harvey, 1980;
Innocenti, 1980) and of the rabbit (Swadlow, 1974), very few, if any, callosal
neurons, identified by antidromic invasion, can also be transsynaptically activated
by electrical stimulation of the callosal pathway. Furthermore, these neurons
might be activated by the antidromically invaded local collaterals of callosal axons
rather than by callosal afferents (Feeney and Orem, 1971; Innocenti, 1980). The
transsynaptic, excitatory responses of callosal neurons to callosal stimulation
observed in vitro in cingulate cortex of the rat (Vogt and Gorman, 1982) could
also be explained in this way. Obviously, similar objections can be extended to
many of the studies where excitatory transsynaptic responses were obtained by

' electrical stimulation of cerebral cortex or of the callosum itself: for example,

the early findings of transcallosal activation of the pyramidal tract (Asanuma
and Okamoto, 1959), or the recent report of transcallosal activation of corti-
cothalamic neurorns (Diadori et al., 1983).

‘Two other arguments support the heterologous model. First, neurons trans-

- synaptically activated through the corpus callosum are found through all cortical

Figure 12. Three models of callosal 1 - A . 1
connectivity. Neurons in the two 4 N o 4’
. - - ’
hemispheres are represented by two 5 Z < > 2 5’

groups of numbers; 1-3 and1'-3’ are 3 e > 3’

callosal neurons; 4 and 5, and 4’ and
5’ do not project into the corpus cal-
losum. (A) The reciprocal model: cal-

r
[ losal neurons are reciprocally inter- 4 1 \ 1 4’
connected; (B) the homologous

model: callosal neurons are intercon- 5 / 5'
nected, but not reciprocally; (C) the

heterologous model: callosal neu- \

rons project to the noncallosal neu- '

rons. Connections between the two

hemispheres are probably symmet- c

r
rical, but in B only half of the con- , a |1 ——\Q. 4’ —n

nections are drawn, and in C one set 2 N
of connections is denoted by inter- +— § & $ 5 —

rupted arrows. 3
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g3

layers (Harvey, 1980; Innocenti, 1980), consistent with the laminar distributi'(;
of callosal afferents and differently
both somatosensory and visual callosal neuro

fields than the neurons activated transsynaptical g
(Innocenti et al., 1972; Robinson, 1973; Harvey, 1980; Innocenti, 1980); fur-

thermore, in visual cortex, the latter neurons have, as a rule, “complex” receptive
fields while some callosal neurons have “simple” receptive fields (Hubel and
Wiesel, 1967; Shatz, 1977a; Innocenti, 1980; Lepore and Guillemot, 1982). In
the rabbit, neurons transsynaptically activated through the corpus callosum,
unlike callosal neurons, can be activated by diffuse illumination (Swadlow, 1974).

6. Function of Callosal Connections

The role of callosal connections in behavior and some of the underlying
electrophysiological events have been excellently reviewed (Bremer et al,, 1956;
Berlucchi, 1972, 1981; Doty and Negrao, 1973; Gazzaniga and Ledoux, 1978;
Sperry, 1982; Elberger, 1982; Berlucchi and Antonini, 1986), and need no
reiteration here. Briefly, interruption of the corpus callosum in man and animals
has demonstrated that this structure integrates sensory and motor performances
of the two hemispheres. These integrative functions have an electrophysiological
correlate in neurons whose response properties depend on callosal input. Such
neurons have, thus far, been best documented in the visual and somatosensory
areas (see below).

The question I want to consider here is whether a single theoretical construct
can accommodate the structural and functional aspects of callosal organization
in different areas and species.

The leading view of the morphofunctional organization of callosal connec-
tions is, what I will call, modifying the terminology of Blakemore et al. (1983):
the hypothesis of peripherally homeomorphic integration. This hypothesis, which
disposed of the so-called Fleschig rule (see Berlucchi, 1972), derives from studies
on the visual system (Choudhury et al., 1965; Hubel and Wiesel, 1967; Berlucchi
et al., 1967), and was later extended to the somatosensory sysiem (Jones and
Powell, 1968). I will divide the hypothesis into three independent elements: (1)
callosal connections integrate the hemirepresentations of the periphery in the
two hemispheres; (2) the integration conforms to rules of homeomorphism be-
tween the peripheries and their central representations. Thus, callosal connec-
tions reestablish continuity along the lines which split the peripheries into two
halves, each connected exclusively, or preferentially, with a different hemi-
sphere. This aspect of callosal organization is usually known as the “midline
rule.” (3) The callosal input provides cortical neurons with information they do
not (or do not fully) receive from the thalamus.

All elements of the hypothesis apply perfectly well to the findings that visual
and primary somatosensory (and probably motor) (Section 5.2) callosal connec-
tions run exclusively (or preferentially) between regions representing the “mid-
lines” of the respective peripheries. Furthermore, neurons in the primary visual
areas of the cat (Berlucchi and Rizzolatti, 1968; Lepore and Guillemot, 1982},

from callosal neurons. Second, in the cat, f_
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as well as in higher-order areas of cat (Antonini et al., 1983) and monkey (Gross
et al., 1977), have bilateral receptive fields whose ipsilateral halves depend on
the callosal input.

At first glance, the hypothesis of peripherally homeomorphic integration
seems to emphasize the reconstruction, by callosal connections, of the spatial
continuum of the periphery, while disregarding other functions of callosal con-
nections. However, the hypothesis implicitly predicts that the input from the
callosum may be responsible not only for a portion of a neuron’s receptive field,
but also for other response properties of neurons. In fact: “[Callosal fibers] might
be expected to serve the same functions as intracortical fibers linking cells with
receptive fields clustered in other, more outlying parts of the visual fields” {(Hubel
and Wiesel, 1967). Callosal connections play a role in coarse stereopsis (Blake-
more, 1969), and this suggests that they should also be, to some extent, respon-
sible for the binocularity of cortical neurons. The binocularity of cortical neurons
does indeed depend on callosal input in areas 17 and 18a of the albino rat (Diao
et al., 1983) and in lateral suprasylvian visual areas of the Siamese cat (Marzi et
al., 1980, 1982; Zeki and Fries, 1980). In the same areas of normal cats, however,
binocularity is not modified by callosal transection (Marzi et al., 1980, 1982, Zeki

| and Fries, 1980). And the direct (Payne et al., 1980; Blakemore ¢t al., 1983)

evidence for a callosum-dependent binocularity of neurons in the 17/18 region
of the cat, although indirectly supported by the results of Dreher and Cottee
(1975) and Lepore et al. (1983a), is highly controversial (Elberger and Smith,
1983; Berlucchi and Antonini, 1986).

The second element of the hypothesis of peripherally homeomorphic in-
tegration seems, however, too restrictive, It is unclear whether the “midline rule”
can be extended to the auditory callosal connections because auditory cortex
seems organized according to frequency of sound and side of the receptor
organs, rather than in terms of auditory space. Furthermore, the organization
of several areas, most typically the “associative” areas, probably does not have a
direct counterpart in the spatial organization of the periphery. But, more im-
portant, the periphery is not represented in a homeomorphic manner every-
where in the cortex, since in certain areas neurons can have discontinuous or
muitimodal receptive fields (e.g., Rizzolatti et al., 1981a,b; see also below). There
is no reason why callosal connections should, in these areas, conform to rules
of peripheral homeomorphism and, in fact, they do not. One of these areas is
the complex of somesthetic representations traditionally called SII where dis-
continuous receptive fields, often symmetrical on the two body halves, were

' found in cats and monkeys (Whitsel et al., 1969; Robinson, 1973; Clemo and

Stein, 1983). The callosal connections of these areas in the cat clearly violate the
“mudline rule.”* On the other hand, callosal connections obey organizing prin-
ciples which are not obviously or directly imposed on an area by the spatial

* The distal extremities seem to violate the principle of homecomorphism between the periphery
and their central representations by virtue of (1) their callosal connections and (2) the fact that
many of the discontinuous receptive fields found in various areas include the distal part of the
extremities. These violations may be imposed by the great motility of the extremities (Caminiti et
al., 1979) and may provide the conditions for a stimulus equivalence across somatosensory pe-
riphery translations analogously to what seems to occur in the visual system (see below).
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324 properties of the periphery it represents. For example, in the v.isual areas of the} o W};
cat, callosal afferents match their targets not only for position, buf also forg% ey
: R3 orientation and direction specificity of the receptive fields (Berlucchi and Riz-** opme
zolatt, 1968; Lepore and Guillemot, 1982; Antonini et al., 1983). L
A way to circumvent the difficulties raised by the second element of the
hypothesis of peripherally homeomorphic integration may come from tryingto  § 7. -
understand the organization of callosal connections within the broader frame- '
work of corticocortical connectivity, as prompted by Hubel and Wiesel's state-
ment quoted above. There seem to be profound similarities in the anatomical - 1
and functional organization of callosal connections and of the intrahemispheric ~~ nesis
corticocortical connections (see, e.g., Gross and Mishkin, 1977; Innocenti, 1980; . Hewn
Van Essen et al., 1982). And one would expect that both types of connections see al
should similarly obey, or violate, the strict peripheral homeomorphism. the cc
The functional similarity of callosal and intrahemispheric connections has and V
been emphasized by the following statement of Gross and Mishkin (1977) . ando
“.. . interhemispheric transfer of visual habits is a special case of stimulus equiv- - 1944:
alence across retinal translation . . .” This statement was based on the observation - Durin
that, in inferotemporal cortex of the monkey, neurons which receive callosal callos:
afferents have large receptive fields and, although extraordinarily selective for devel:
certain aspects of stimulus organization, are equally responsive to the stimulus senso!
throughout their receptive fields. These neurons receive the ipsilateral half of nectic
their receptive fields from visual areas in the other hemisphere via the corpus A
callosum, and the contralateral half of their receptive fields from the convergence comp
of intrahemispheric corticocortical afferents (Gross et al., 1977; Gross and Mish- qualit
kin, 1977). study
" The “complex” receptive fields of neurons within areas 17 and 18 of the elega:
cat, although much smaller than those ‘ourd in inferotemporal cortex of the devel:
monkey, seem similarly capable of detecting a stimulus iriespectuve of its precise  neuro
position (Hubel and Wiesel, 1962). Neurons with this type of receptive field have unde)
long been suspected to be the target of intracortical projections, and they are ~  devel
also the main target of callosal afferents (Innocenti, 1980; Lepore and Guillemot, presst
1982), as Hubel and Wiesel (1967) predicted. In the somatosensory areas of the N
cat, neurons receiving callosal input also have large, usually bilateral receptive thus f
fields (Innocenti et al., 1972), and the responses to the ipsilateral part of the at lea
receptive field largely depend on the callosal input (Innocenti et al., 1973). The
same type of cell also receives association afferents from ipsilateral SI (Manzoni
et al., 1979).
While, in the examples mentioned above, callosal connections seem to be 7.1
involved in generalizing stimulus detection across the sensory midlines, this may
not be their only function. Callosally mediated inhibition has been demonstrated
in VIV of the macaque (Moran et al., 1983). This mechanism may be similar to 1
the “surround inhibition” generated by intrahemispheric connections, possibly atrek
in order to improve stimulus detection (Mountcastle and Powell, 1959). days.\
In conclusion, the aspects of callosal organization discussed in this section hemi:
justify the metaphore used in the Introduction by pointing to a general inte- ) A
grative role for interhemispheric connections. Inter- and intrahemispheric con- radial
nections probably perform similar tasks and obey similar organizing principles, 1980;

but these may be different in different areas, depending upon the rules according Howe
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7. The Development of Callosal Connections

The macroscopic development of the corpus callosum in early embryoge-
nesis has been a classic theme of neuroembryology (see, e.g., Zuckerkandl, 1909;
Hewitt, 1962; Auroux, 1964; Rakic and Yakovlev, 1968; for other references
see also Silver et al,, 1982). Attention has also been focused on myelination of
| the corpus callosum (Grafstein, 1964; Yakovlev and Lecours, 1967, Fleischhauer

1s has and Wartenberg, 1967; Seggie and Berry, 1972; Looney and Elberger, 1983)
1977) and on some electrophysiological aspects of callosal development (Ulett et al.,
‘quiv- 1944; Meyerson, 1968; Shofer and Purpura, 1972; Seggie and Berry, 1972).
-ation During the last few years, though, attention has shifted to the development of
losal callosal connections as a model for studying the mechanisms underlying the
re for

development of interneuronal connections (as opposed to connections with the
Sensory or motor periphery) in mammals and, in particular, of neocortical con-
nections.
As outlined in the preceding sections, the callosal connections constitute a
| complex network whose organization is only partially known. These are not the
 qualities one usually requires in an experimental model. Nevertheless, while the
study of “simple” models of neuronal connections is undoubtedly unveiling
elegant developmental mechanisms, the crucial question for understanding the
development of the mammalian brain is to what extent the complexity of a
 neuronal network imposes different developmental mechanisms from those which
' underlie the development of simpler neuronal connections. Alternatively, the
development of a “complex” network may exaggerate mechanisms aiready ex-
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- :mot, pressed in “simpler” systems; these mechanisms thus become easier to study.
f the Needless to say, the work on the development of callosal connections has
 ptive thus far generated more questions than it has answered. In some cases, however,
| th:C at least some of the possible answers to these questions can be ruled out.

. The

" 1zoni

‘o be 7.1. What Causes Cortical Neurons to Send an Axon through the
: may Corpus Callosum?

. ated
(Arto

Thus far, callosal neurons have been identified by retrograde tracers only
 sibly

at relatively late stages of development, i.e., usually during the first few postnatal
days when their axons have already reached the white matter of the contralateral
hemisphere. ‘

At these stages, callosal neurons are found at roughly the same restricted
radial positions as in the adult (Innocenti et al., 1977; Innocenti and Caminiti,
1980; Chow ¢t al, 1981; Ivy and Killackey, 1981; Feng and Brugge, 1983).
However, the relative contribution of the different layers of a given area to the
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326 corpus callosum is not necessarily the same as in the adult ([nnocegu ‘:l “fé 1377 (Jacol
Ivy and Killackey, 1981). Young callosal neurons have immature eg Ej llc: kees instez
’ (Jacobson and Trojanowski, 1975; Innocenti & al, 1977; Ivy an " ac ?.’ lacke:
1981); they are also smaller than in the adult and furthermore, at least in the .. ; subpl
cat, the important size difference between callosal and noncallosal neurons, i forer
which is characteristic of the adult, has not yet been expressed (Inni‘lceﬂu and 1
Caminiti, 1980). Nevertheless, the same types of neurons which send an axon is pro
across the corpus callosum in the adult do so In newborn kittens (Innocenti et of cal
al., 1977; Innocenti and Caminiti, 1980). cortic
One important question is which neurons are the first to §end an axon . al, 1
through the corpus callosum, because these early axons may function as a guide and/o
for later growing ones. In parietal cortex of the rat, the first callosal neurons throu
become labeled after contralateral injections on postnatal day (pd) 2-3; these 1976
are at
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Figure 13. Computer-microscope charts showing the distribution of callosal neurons (dots) labeled
by homotopic HRP injections in two normal kittens (D18 and D21}, respectively 8 and 90 days ‘;ld Figure
at the time of injection. Thin dashed lines mark the bottoms of layers 1, IV, v, :'md VL. Triangles bution
point to the borders between areas 17 and 18. The hatched portion of the white matter n D18 injectio
contains a high density of neurons. The sections were 80 pm thick, at the levels indicated in the (SD I a

brain insets. From Innocenti and Frost (1979).




neurons are in two separated laminae which were identified as layers 111 and V
(Jacobson and Trojanowski, 1975; Wise and Jones, 1976). A later study has,
instead, suggested that these laminae are layers Va and Vc-Vla (Ivy and Kil-
lackey, 1981). Because these early labeled callosal neurons lie in the cortical
subplate, this interpretation is consistent with the notion that the subplate is the
forerunner of layers V and VI (Rice, 1975; Rice and Van der Loos, 1977).

Unlike the radial distribution, the tangential distribution of callosal neurons
is profoundly different in newborn and adult animals. The wide regions devoid
of callosal efferents, which are characteristic of primary visual and somatosensory
cortices in adult cats, contain callosal neurons in newborn kittens (Innocenti et
al., 1977; Innocenti and Caminiti, 1980; Figs. 13, 14). Indeed, in all other areas
and/or species studied, callosal neurons are, at birth, distributed continuously
through the cortex instead of discontinuously as in the adult (Wise and Jones,
1976; Ivy et al., 1979; Ivy and Killackey, 1981; Feng and Brugge, 1983), or they
are at least more widely distributed than in the adult (Rao, 1979; Chow et al.,
1981).

The transitory callosal projections are eliminated in the early postnatal pe-
riod. In both rats and cats, the main part of the elimination immediately precedes
the myelination of the corpus callosum and it is simultaneous with a quick phase
of cortical synaptogenesis (see Fig. 15). There is probably more than a casual
correlation between these three events, which may allow the prediction of the
period of more active elimination of callosal connections in man (Innocenti,
1981a; Fig. 15).

The property of some retrograde fluorescent tracers of remaining in the
neurons for a long period of time was used to determine that the loss of callosal

[ (SD 1 and SD 11), respectively 2 and 30 days old a1 the ime  Innocenti and Caminiti (1980).
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Figure 14. Computer-microscope charts showing the distri-  of injection. Thin dashed lines mark the bottoms of layers
bution of callosal neurons (dots) labeled by a large HRP L IV, V, and VL The sections were 80 pm thick, reacted
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Figure 15. Time relationship between callosal reshaping, changes in synaptic density in visual area
17, and myelination of the corpus callosum. The data on myelination are from Grafstein (1963),
Fleischhauer and Wartenberg (1967), Yakoviev and Lecours (1967), and Seggie and Berry (1972).
Preliminary data by Looney and Elberger (1983) indicate that myelination of the corpus callosum
in the cat may begin a few days earlier than indicated here. The data on synaptic density are from
Cragg (1975), Huttenlocher et al. (1982), and Blue and Parnavelas (1983). The slopes of the synaptic
density diagrams to the right of the last plotted points were determined according to experimental
points falling off the scale. The period of the most intense loss of juvenile callosal connections in
cat (Innocenti and Caminiti, 1980) and rat (Ivy and Killackey, 1981) is marked by a hatched bar;
in cat visual cortex, this period is followed by a less massive elimination whose end was not precisely
timed {(dashed lines); in both rat and cat, some elimination may actually have begun earlier than
thus far detected {dashed lines). The period of callosal reshaping indicated for man is hypothetical
and is based on the assumption that it bears similar relationship to callosal myelination and fast
synaptogenesis as in the two other species.

afferents from specific portions of cortex consists of elimination of axons without
(or with negligible) neuronal death. Neurons labeled in the medial bank of area
17 by neonatal injections of Fast Blue in the contralateral hemisphere are still
visible several weeks after this part of the cortex has lost access to the corpus
callosum (Innocenti, 1981a; Fig. 16). Similar experiments and results have led
to identical conclusions for the elimination of callosal axons from parietal cortex
of the rat (O’'Leary et al., 1981; Ivy and Killackey, 1982).

Thus, it appears that some cortical neurons send a transitory axon through
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the corpus callosum and that they will then eliminate this axon and form per-
manent connections within the ipsilateral hemisphere, probably in cortical areas
(see Ivy and Killackey, 1982). It is so far unclear whether these neurons send,
from the beginning, an axon collateral to the area where they will form thei‘r
permanent connections or whether they will grow a new axon following elimi-
nation of the callosal one. The transitory callosal axons may be phagocytosed
by macrophages (Innocenti et al., 1983a,b).

Neocortical neurons seem to decide at an early stage whether to send an
axon through the corpus callosum or to the ipsilateral hemisphere. Retrograde
transport studies using simultaneous injections of different retrograde tracers
in the two hemispheres of newborn cats and fetal monkeys have so far indicated
that in any given area, different neurons project inter- or intrahemispherically
(Schwartz and Goldman-Rakic, 1982; Innocenti and Clarke, 1983) although, as
in adults, a few neurons send bifurcating axons to both hemispheres. Most
importantly, different neurons project to corresponding areas in the two hemi-
spheres or to different areas in the contralateral hemisphere (Innocenti and
Clarke, 1983), which suggests that the factors which induce an axon to cross the
corpus callosum may be different from those determining its choice of an area.

The findings discussed above suggest that what causes some axons to grow
through the corpus callosum must be a common character of a set of cortical
neurons or, most probably, a factor from the neuronal “milieu” acting selectively
on a set of neurons with a common character. This factor, or character, acts
independently of whatever will determine which neurons form permanent cal-
losal connections, although it is obviously a necessary condition for the latter
event to occur.

oL 7 oL 7
FAST BLUE [NJECTED FPD 3 NUCLERR YELLON INJECTED PO 27
SRCRIFICED PD 30 SACRIFICED PD 30

Figure 16. Elimination of callosal axons in the course of normal development. Computer charts of
the distribution of labeled neurons in the lateral gyrus (areas 17, 18, 19) of a 30-day-old kitten by
a Fast Blue injection on postnatal day 3 and by a Nuclear Yellow injection on postniatal day 27; both
injections were placed in the contralateral areas 17 and 18. Note that neurons labeled by the first
injection have a widespread distribution while neurons labeled by the second injection have a re-
stricted distribution, indicating that many of the neurons labeled by the first injection have eliminated
their callosally directed axon. Modified from Innocenti (1981a).
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A

What could such a factor or character be? As mentioned above, both trin.

sitory and permanent cailosal neurons occupy a specific and, in general, sup:)c%_”ﬁ_,;
ficial radial location in the cortex. This probably means that callosal neurons are
generated over a restricted, and late, period of gestation (Angevine and Sidman,™

1961; Rakic, 1974). The fact that in rats prenatal X-ray irradiation, which de-
stroys selectively supragranular layers, also eliminates the callosal projection from
the otherwise nearly intact infragranular layers, may suggest (but other inter-
pretations are possible) that late generation is an important characteristic of the
callosal neurons, including those in the deep layers (Jensen and Altman, 1982).
That a neuron’s choice of the callosal pathway may depend on its time of gen-
eration, rather than its radial position, is more strongly suggested by the finding
that in reeler mice the callosal neurons are radially malpositioned, but their date
of birth is probably similar to that of callosal neurons in normal mice (Caviness
and Yorke, 1976; Caviness, 1982). Interestingly, the receptive field properties
of the callosal neurons in reeler mice are also similar to those in normal mice
(Simmons and Pearlman, 1983), which suggests that callosal neurons in the reeler
may also receive normal afferents.

An answer to the question of which factor induces a cortical neuron to send
an axon into the corpus callosum, may come from studying the interaction of
growing callosal axons with elements along the pathway between the hemi-
spheres. Interest in this aspect of callosal development arose as a consequence
of the attention given to the possible role of glial elements in directing axonal
growth (Singer et al., 1979). A bridge of glial elements (a “sling”) seems to form,
rostral to the lamina terminalis, before callosal axons cross the midline (Silver et
al., 1982). The hypothesis that the formation of a cellular bridge at the midline
precedes and conditions that of the corpus callosum is not new (for reterences
see Auroux, 1964). However, this hypothesis is now supported by the following
observations: (1) surgical interruption of the “sling” leads to callosal agenesis in
mice (Silver et al., 1982) and hamsters (Lent, 1983); (2) the sling does not form
in the acallosal mutant mouse (BALB/cCF; Wahlsten, 1974) or in the opossum
(Silver et al., 1982); and (3) a glia-covered scaffold, placed between the hemi-
spheres after the sling has been sectioned, allows at least some callosal axons to
cross the midline (Silver and Ogawa, 1983).

The question arising is, in my opinion, whether the “sling” directs callosal
axons across the midline in the manner that induces axons, possibly specifically
certain axons, to cross and maybe even profoundly influences their future tra-
jectory. Alternatively, the sling may just be a permissive pathway condition. The
electron microscopic (Valentino and Jones, 1982) and immunohistochemical
(Valentino et al., 1983) visualizations of astrocytic processes seem to support the
second interpretation. The astrocytic processes seem to lack the orderly orien-
tation which would be expected if they were to direct the trajectory of growing
callosal axons.

7.2. What Directs Callosal Axons to a Given Area?

Retrograde transport studies using simultaneous injections of different re-
trograde tracers, in different visual areas of the same hemisphere, have indicated
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that in newborn Kkittens, different callosal neurons project to different areas
(Innocenti and Clarke, 1983, 1984b) although, as in adults (Segraves and In-
nocenti, 1982), a few neurons send bifurcating axons to more than one area.
This early differentiation of the cortical output to the callosum is found also in
those parts of visual areas which will normally lose access to the corpus callosum
(Innocenti and Clarke, 1983). Thus, neurons which have sent an axon to the
corpus callosum, seem also to choose, early and specifically, a certain target area.
It should be emphasized that the interpretation that different factors determine
(1} which brain side and (2) which areas a neuron will project to, rests on the
observation that, in newborn animals, different neurons project from a given
area to corresponding areas in the two hemispheres, and on the assumption that
these areas are identical in all respects but for their laterality in the brain.

Do these results imply that the pattern of area-to-area connections, typical
of the adult, is established from the beginning even though parts of the con-
nectuons between certain areas will be eliminated?

Indications that this may not be the case came from an electron microscopic
study (Fig. 17) where we estimated the loss of callosal axons in development.
The postnatal loss of callosal axons in the cat is at least 70% (Koppel and In-
nocenti, 1983; Fig. 18). While this loss is probably a low estimate of the real one
(for discussion see Koppel and Innocenti, 1983), it seems much too large to be
accounted for simply by the creation of acallosal portions of neocortex. Since
the retrograde transport studies mentioned above speak against an excessive,
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Figure 17. Electron micrographs of parasagittal sections of
the cat corpus callosum (rostrumy). (A) Adult animal, showing
myelinated and unmyelinated axons; (B) newborn animal,
showing large numbers of small axons interspersed with a
few larger axons. Glial processes are clearly distinguishable
from axons, both on account of their profiles (which are

irregular, tortuous, and often extensive) and their cyto-
plasm: astrocytes (arrows) contain clear cytoplasm and prom-
inent glycogen granules. Sections (50—10¢ nm) mounted on
Pioloform-coated slot grids and stained with lead citrate.
Bars = 0.5 um. From Koppel and Innocenti (1983).
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i , Lateral view photographs of two kitten brains showing the distribution of necurons
f;tg::;ral(igclylﬁbelcd by ngt Bhi:a (solid dots) or I?iamidino Yellow (ol?en dots). A and B_arF frotz
the same animal (DL 39; injected on day 24, samﬁfzc.d on d.?y 9). A is the hemisphere ipsilate
and B the hemisphere contralateral to a Fast Blue injection in the caudal part of areas 17/18 (;l;c
center of injection was 6.6 mm rostral from the occipital Pole); C is from another ammal ('DL ;ﬂ
injected on day 2, sacrificed on day 9) and shows the hemisphere comta}a‘ten}l to two injections (o
different dyes) spaced rostrocaudally in areas 17/18. The centers of ‘tl*gc Diamidino Yellow and Fast
Blue injections are, respectively, 4.8 and 8.4 mm rostral from thf: occipital pole. In each photograph,
arrows mark rostral and caudal limits of the reconstructed region. Dots are arrayed parallel to the
plane of sectioning; their density along an array gives a rough indication of the dCl:lSlly of lal.)elcd-
neurons. In A and B, the distance between arrays corresponds to that between the sections cxa_rmncd.
in C, symbols for Fast Blue- and Diamidino Yellow-labeled neurons fr.om the same secuon are
staggered. s, Lateral sulcus; mss, middle suprasylvian sulcus; pes, post'enor ectosylvian su]cu.s,. acs,
anterior ectosylvian sulcus. The cortex dorsal and rostral to pes contains the Al and All auditory
areas. Calibration is in millimeters (small divisions). From Innocentt and Clarke (1984a).




Figure 19. (continued)
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transitory, collateralization of callosal axons, an explanation for the magnitnide”

. . . . - ST
of callosal axon loss may be that, in addition to connecting portions of cortex "

destined to become acallosal, transitory axons may also connect “wrong” areas,

Unequivocal support for this interpretation came from the discovery of
transitory callosal projections from primary and secondary auditory areas to the
visual areas 17 and 18 (Innocenti and Clarke, 1984a,b; Fig. 19). Auditory areas
in the two hemispheres are callosally connected in the aduli, although their
juvenile callosal connections undergo a partial postnatal elimination (Feng and
Brugge, 1983). However, the auditory areas in normal adult cats do not project
to contralateral visual cortices. Elimination of the transitory auditory-to-visual
projection takes place mainly during the first postnatal month, apparently through
axon elimination rather than neuronal death.

Auditory areas also send a transitory projection to ispilateral visual areas,
which strongly suggests that similar developmental mechanisms underlie the
formation of callosal and ipsilateral corticocortical connections (Innocenti and
Clarke, 1984a; Fig. 19).

Again, one can postulate that neurons going to a given ipsilateral or con-
tralateral areas may share an unknown character or respond similarly to a factor
in their “milieu.” In auditory cortex, neurons projecting to tpsilateral areas 17/
18, contralateral areas 17/18, and contralateral auditory areas occupy, in this
order, increasingly deeper cortical locations (Innocenti and Clarke, 1984a). Thus,
not only the choice of the brain side but also that of area may be related to a
neuron'’s birthdate.

7.3. Factors Involved in the Elimination/Stabilization of Juvenile
Callosal Connections

In newborn Kkittens, the diffuse distribution of cailosal neurons contrasts
with the presence of terminating callosal axons in restricted portions of the gray
matter (Fig. 20). The tangential distribution of these projections establishes, in
the visual areas, an overall pattern very similar to that of the adult (Innocenti,
1981a; Innocenti and Clarke, 1984b). In addition, many cailosal axons have not
entered the gray matter to any great extent, if at all. These axons are more
widely distributed than those which enter the gray matter and reach cortical
regions, such as medial area 17, destined to become acallosal (Innocenti, 1981a;
Innocenti and Clarke, 1984b).

A similar picture (widespread distribution of callosal neurons, restricted
intracortical termination of callosal axons, and presence of transitory axons in
the deepest portions of the gray matter) has been reported for auditory cortex
of the newborn kitten (Feng and Brugge, 1983). In visual cortex of the rabbit,
on the contrary, a diffuse distribution of terminating axons in the cortex seems
to parallel that of callosal neurons {Chow et al., 1981).

In somatosensory cortex of the rat, callosal axons grow into the gray matter
postnatally (on day 4-11) and selectively, in the “columnar” pattern typical of
the adult, while the callosal neurons are diffusely distributed (Wise and Jones,
1976; Ivy et al., 1979). Finally, a similar restricted “columnar” growth of callosal
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ude axons into the cortex occurs between embryonic days E123 and E155 (Goldman
rtex - and Nauta, 1977; Goldman-Rakic, 1981) in prefrontal cortex of the monkey.
eas. In the cat, the great majority of the axons which have entered the gray
¢ of matter come from regions which will maintain their projection into the corpus
the callosum. On the contrary, most of the axons which are confined to the bottom
reas of the gray matter come from regions destined to become acallosal (Innocenti
heir and Clarke, 1983, 1984b; Fig. 21).

and Therefore, it appears that the incoming callosal axons may undergo a pro-
ject cess of selection near their target and that this may be a crucial mechanism,

although not necessarily the final one (see below), deciding of their fate. The

]

ugh selection seems to occur while callosal axons wait in the white matter (Wise and

Jones, 1976). Therefore, it may not involve contact between callosal axons and
eas, their targets. This interpretation must be qualified since (1) small processes of
the transitory axons entering the gray matter may have thus far escaped light mi-

ind croscopic visualization and (2) transitory callosal axons may contact the dendrites
| of layer VI neurons or neurons in the white matter.
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Figure 20. Polarized light photomicrograph showing distribution of anterogradely labeled caliosal
- neurons in the lateral gyrus of a kitten injected with WGA-HRP in the homotopic contralateral
region on pd 1 and sacrificed on pd 2. Callosal axons have a widespread distribution in the white
matter but they enter the cortex selectively at the 17/18 border (solid triangle) and in a small part

of arca 19 (open triangle). The continuous band of neuronal labeling corresponds to layer II1. Bar
500 pm.
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Which factor(s) may be responsible for the maturation of callosal conineg

has so far been explored by two experimental approaches: manipulation of th
sensory experience and early lesions of the nervous system. N

Strabismus induced by early (on pd 0-36) section of the extraocu e

muscles (Innocenti and Frost, 1978, 1979; Berman and Payne, 1983) or I month
of binocular eyelid suture (Innocenti et al., 1985; Fig. 22) enlarges the efferent
callosal zone in area 17, apparently by stabilizing transitory callosal projections.
The same result is obtained by short periods of visual experience followed by
binocular deprivation (Innocenti et al., 1985; Fig. 22} and by monocular de
rivation (Innocenti and Frost, 1979). Strabismus also increases the width of the
callosal terminal territory near the 17/18 border (Lund et al., 1978) although
inconstantly (Berman and Payne, 1983). The claim that unilateral strabismus
induces unilateral enlargement (contralateral to the deviated eye) of the callosal
terminal territory (Lund and Mitchell, 1979b) was not confirmed in a recent
study (Berman and Payne, 1983).
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Figure 21. Origin of the callosal axons which enter the gray matter and of those which do not. (Top)
Distribution of retrogradely labeled neurons after a small Fast Blue injection centered near the
17/18 border (inset} in a kitten injected on pd 3 and sacrificed on pd 8. (Bottom) Distribution of
retrogradely labeled neurons after a small Fast Bluc injection extending into the white matter
underneath area 17 (inset) in a kitten injected on day 1 and sacrificed on day 6. Bars = 1 mm. The
bottom part is redrawn from Innocenti and Clarke (1983) but mirror reversed in order to facilitate
the comparison with the upper part of the figure.
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338 Continuous binocular deprivation by bilateral eyehd suture dunng 30 split-c
months following natural eye opening decreases by about 50%, and i lrrcY iy, AXO0Ms
"9 the number of callosal neurons which can be labeled in areas 17/18 (Inn e 'ﬁ‘ of ol
and Frost, 1979, 1980; Innocenti et al., 1985; Fig. 23) and the density of canoga] (
terminal labeling in the same area (Innocenu et al., 1985). Ten days of normal ~ and «
vision following natural eye opening is sufficient to prevent this effect of bi- - durin
nocular deprivation (Innocenti et al., 1985). Dark rearing decreases the density 1979,
of callosal terminations at the 17/18 border as visualized by anterograde degen- pd 14
eration (Lund and Mitchell, 1979a). sectio
The experience-dependent effects thus far observed in visual cortex of the is, hc
cat can be explained by assuming that vision plays an active role in the stabilization ¢alios
and elimination of part of the transitory callosal projections. It seems reasonable I
to assume that vision should affect axons which have already entered the cortex conne
although it cannot be excluded that the growth into the cortex may also be vision tectal
dependent. In animals with normal visual experience, the initial (first postnatal (Keat
month) effect of vision is to stabilize callosal connections originating from a eye a
wider region than in the normal adult, but much narrower than in the neonate. rewir
During the second and possibly third postnatal month, this initial projection is devel
progressively restricted. The condition necessary for this restriction to occur N
seems to be normal binocular vision (for further discussion on the effects of tion
vision, see Innocenti et al.,, 1985). The mechanism underlying normal and ex- 1982;
perience-dependent maturation of callosal connections may be competition for at the
terminal space between callosal axons and other axons. In monocularly deprived, callos
chang
specit
and u
400+ losal
numt
c in rat
2 309 but tf
® 17/18
@ y
~ 2004
c enuc
° be the
=2
2 1004 cats. }
mornc
simil:
0 o or to
o 3 6 3 12 15 enuc)
«————— (Caudal Rostrai ————» have
not b
Figure 23. Effects of binocular deprivation on the development of visual callosal connections. Each the n
dot represents the number of HRP-labeled callosal neurons in layers II-IV of areas 17 and 18 of -
the cat, in one coronal section at a given distance from the occipital pole of the hemisphere. Solid :
dots are counts from three normal adult animals, open dots are counts from two animals deprived provi
of vision by binocular eyelid suture maintained during their entire postnatal life (respectively 173 juver
and 253 days). Continuous and dashed lines fit (by eye) the two sets of data. The sections were 8¢ indej
wm thick reacted with TMB. From Innocenti (1981b). effer
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3 or more split-chiasm kittens, callosal axons seem, in fact, to compete with thalamocortical

reversibly, axons or at least with neurons driven by them, as proven by the modifications
Innocenda of ocular dominance in visual cortex (Cynader e! al., 1981).

of callosal One fascinating aspect of the relationship between normal binocular vision
of normal and callosal maturation is that kittens whose corpus callosum was sectioned
‘ect of bi- during the first postnatal month fail to acquire normal eye alignment (Elberger,
1e density 1979, 1982; Elberger and Hirsch, 1982). Callosal transection performed before

de degen- pd 19 also decreases the binocularity of neurons in area 17, while callosal tran-

section performed later does not (Elberger and Smith, 1983). The last finding

is, however, in conflict with the loss of binocularity observed by others after

callosal transection in adults (Payne et al., 1980; Blakemore et al., 1983).
Elberger’s findings and ours tend to suggest that eye alignment and callosal

tex of the
ibilization
easonable

he cortex connections may influence each other in development; the maturation of inter-
' be vision tectal commissures seems similarly linked to that of eye alignment in Xenopus
postnatal (Keating, 1977). However, it cannot yet be excluded that the modifications in
g from a eye alignment observed after early callosotomy may be due to a hypothetical

neonate. rewiring induced by the lesion rather than to the lack of callosal connections in
jecuon is development.

1o occur Neonatal monocular enucleation in rats and hamsters widens the distribu-
:ffects of tion of callosal neurons (Rhoades and Dellacroce, 1980b; Rothblat and Hayes,
I and ex- 1982) and of terminals (Rhoades and Dellacroce, 1980b; Cusick and Lund, 1982)
ution for at the area 17/18a border ipsilaterally to the remaining eye. Distributions of
leprived, callosal neurons and terminals contralaterally to the remaining eye are un-
changed. Monocular enucleation also widens the caliosal zone in cats, but in this
- species the effects are observed in both hemispheres (Innocenti and Frost, 1979,
and unpublished). Binocular enucleation widens slightly the distribution of cal-
losal neurons in cats (Innocenti and Frost, 1980), although it decreases their
number, and it also enlarges the callosal terminal territory in both hemispheres
in rats {Cusick and Lund, 1982). Neonatal unilateral optic tract lesion decreases,
but thalamic lesion increases, the width of the callosal terminal territory at the
17/18a border in rats (Cusick and Lund, 1982).

At the moment, it seems impossible to explain all of the effects of eye
enucleation by a single mechanism, although the loss of binocular vision could
be the cause for the enlarged callosal zone, at least in the monocularly enucleated
cats. Furthermore, important species differences begin to emerge, mainly in the
monocular enucleation experiments. These differences may be due to the dis-
similarities in the organization of the visual pathways in rodents and cats and/
or to the different maturation of the brain in the two species at the time of
enucleation. Finally, in rodents, mainly modifications of the terminal territories
have been studied and the enlargement of the callosal terminal territories may

not be due to stabilization of transitory callosal connections but to sprouting of
- ons. Each th al tions.
' and 18 of e normal connections

. ere. Solid Taken together, these results agree with those of selective visual rearing in
proving that the transitory callosal projections can provide the potential for the
tively 173 juvenile plasticity of callosal connections. It also appears certain that factors

' § were 80 independent of visual experience can play a role in focusing both the callosal

efferent zone and the callosal terminal territory to near the 17/18 border. These
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340 factors may depend on the topographical organization of the visual ‘pathw a
which at birth, in both rodents and cats, may have already determined the fut o
¢ s development of the callosal connections. Consistently with this inter}')‘r'e#t;% h-" o
the most profound departure from the normal topographical distribution“of = © T
callosal neurons and terminals is found in the Siamese cat (Shatz, 1977b) and tv
the anophthalmic mouse (Rhoades et al., 1983), i.e,, in two conditions in which
profound modifications in the organization of the visual pathways occur during - h
embryonic life. Unfortunately, in neither case can the possibility of a more direct re
action of the genetic mutation on callosal development be ruled out. es
Only a few studies have investigated the plasticity of callosal connections in it
sensory systems other than the visual. Preliminary results indicate that unilateral «
or bilateral cochlear destruction in newborn cats does not prevent callosal neu- as
rons from assuming their discontinuous “columnar” distribution (Brugge et al.,
1983). Unlike visual cortex, in somatosensory cortex of the rat callosal connec- wi
tions are apparently not modified by neconatal thalamic lesions (Wise and jones, sit
1978). In the same study, those authors also failed to observe modifications of 80
the thalamocortical input following neonatal callosotomy. On the contrary, Vaughan to
and Foundas (1982) reported sprouting of thalamic terminals into the callosal
territory, in auditory cortex of the rat following callosotomy at 30 days. Le
In the cat, neonatal lesioning of SI stabilizes some of the transitory callosal Tt
projections from the remaining SI to the SII area on the lesioned side (Caminiti ne
and Innocent, 1981). These effects are not modified by the lesioning of con- ory
tralateral SII, which is by itself ineffective. These experiments in the cat were pn
aimed at testing the possibility that the fate of transitory callosal projections may Sti
be determined by competition between different sets of callosal axons or between cer
callosal axons and ipsilateral corticocortical axons. The results seem to support se1
the secc nd alter.u - However, the .. .. otha Yifcit o I callosal ho
connections may be secondary to modifications of thalamocortical connections
to SII, induced by the ipsilateral lesion of SI, cannot be ruled out. ‘ tur

In frontal cortex of the monkey early unilateral lesions of the dorsal bank era
of the sulcus principalis are followed by growth of callosal axons from regions Th
homotopic to the lesion into more dorsal regions (Goldman-Rakic, 1981). The (In
mechanisms of this effect are unknown. org

cor
8. Conclusions | clox
of |
wel

While waiting for our knowledge of the normal organization and devel-
opment of callosal connections to become more complete, we can go back to the Act
“creationistic” metaphor in the Introduction and ask which minimal, theoretical E. 3
conditions should interhemispheric connections fulfill in order to establish, be- his
tween the two hemispheres, the structural continuity necessary to unify brain 3.4¢
function.

1. Most areas, irrespective of whether they contain simple or complex maps .
either of the sensory or motor peripheries, or of higher-order “associative” 3.';
functions, seem to be essentially mosaics. They are mosaics because of the discrete (Be
input they receive (perhaps the best example of this is the barrel field; Woolsey spe
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and Van der Loos, 1970) and because of their discrete ("
organization (see Jones, this volume; White, this volume). Thus, if horizontal

mosaic, some identical connectj
two hemispheres.

- It is easy to conceive conditions in which callosa]
may be unnecessary, or else redundant, with their

In reality, both types of interhemispheric connections do exist. They bear
with intracortical or association connections some of the structural and functionai
sinilarities that the theoretical considerations above would predict. The fact that
Some transitory callosal neurons end up forming ipsilaterai connections serves
to stress the similarity bet

3. Inter- and intrahemispheric connections mu
ie., the Peripherotopic or functionotopic*

This organization differs, for different peripheries and for different areas con-
nected with the same periphery. This explains the failure to understand the
organization of all callosa) connections on the grounds of a unique organizing
principle such as, for example, the selective connectivity of the sensory midlines.
Sdill, this Principle remains essential to understand callosal connections in a
certain number of visual and

Somatosensory areas, Le., in those areas where the
Sensory periphery is represented with high resolution and according to simple
homeomorphic principles.

st obey a major constraint,
organization of the receiving cortex.

pment. That is why the stabi

modulated by environmental manipulations, as
well as by genetic €xtravagancies.
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