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1 Introduction

The intriguing and fascinating complexity of biological structures probably refiects
constraints imposed by three processes: phylogenesis, development and function.
The latter provides the strongest justification for the existence of development
neurobiology as a distinct discipline, within the broader field of developmentai
biology.

The specific function of nerve cells is communication with other nerve cells and/or
the physical world around them. Nerve cells communicate with each other mainly,
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66 G.M. Innocenti

although not necessarily uniquely, through connections established by, in general

long, arborescent processes. The network established by these connections is’

essential to what the nervous system does: an “adaptive structuration” of the sur-
rounding “world”. Indeed, within limits compatible with survival and re-
production, the structure of the world an animal perceives probably reflects that of
its brain networks.

In some fundamental way these networks must be genetically constrained in a

precise manner; species differences in brain structure, and hence, according to the
above assumption, in the structure of the perceived world, provide convincing
evidence for this. However, there must be limits to genetic determination. One could
be that the amount of information in the genome may be insufficient to specify all the
details of nervous system organization, including individual synapses (Changeux
and Danchin 1976). Another is that each individual is an unpredictable genetic
mosaic - the consequence both of sexual reproduction and evolution. Although
evolution probably eliminated disastrous incompatibilities between genes, no
inbuilt harmony among genes can be expected either. The product of one gene, say
any protein crucial for cell generation, migration, differentiation, recognition etc.,
may not match qualitatively, quantitatively or temporally that of other genes. One
would expect coordination of gene actions to be a requisite for the construction of a
functional brain. How is coordination achieved? Genes capable of regulating other
genes’ action do exist. However, coordination seems also to be achieved through
adjusting interaction between the products of genetic expression, i.e. neurons or
parts of neurons.

Two of these adjusting mechanisms are in the developing nervous system: (a)
neurons, dendrites, axons and synapses are first produced in excess and then some
are maintained while others are eliminated out of interactions with other neuronal
and/or non-neuronal elements; (b) the activity of a neural network can back-regulate
the structure of the network which generates it.

This paper will try to track some of these concepts in the analysis of the development
of cortical projections. Cortical projections were studied light-microscopically
with the anterograde and retrograde anatomical tracer techniques which have
become available during the last 10~15 years. Extracellular injections of axonally
transported tracers do not visualize single axonal arbors or neurons but populations
of retrogradely labeled neurons or anterogradely labeled axons. The light-
microscopic analysis of these preparations does not reveal synaptic connections.
Instead it delineates the gross pattern of interrelations among brain structures,
which underlies connectivity. How these interrelations emerge in development is
relevant for the old and difficult problem of the development of neural connections.
Although the phenomenon of massive neuronal death occurring at around the time
of the establishment of connections was well known (Hamburger and Levi-
Montalcini 1949; Cowan 1973), it was only in the second haif of the 1970s that
doubts began to emerge as to whether the model of a precisely and “ab initio”
correctly target-oriented axonal growth, which appeared well grounded for the
development of retinotectal projections in the fish (Sperry 1963), could be
generalized to the whole nervous system, and in particular to the cerebral cortex of
mammals. Evidence against such a generalization stemmed from the work of Hubel
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The Development of Projections from Cerebral Cortex 67

and Wiesel (Hubel et al. 1977) and of Rakic (1976} indicating initial overlap of
geniculocortical projections in the developing area 17 and lateral geniculate body of
the monkey. In the same years, Changeux and Danchin (1976), mostly on the
evidence of transient multiple innervation in the development of the neuromuscular
synapse, proposed the selective stabilization of synapses as a general mechanism in
the development of neural connections.In their model, selection for stabilization was
based on activity. This was compatible with the well-demonstrated role of visual
experience in the segregation of geniculocortical projections as well as with the role
of visual experience in the development of other response properties of cortical
neurons (reviewed by Blakemore 1978; Wiesel 1982; Frégnac and Imbert 1984). The
studies on the visual system, particularly those on ocular dominance were a
gargantuan step beyond the classic embryology of the nervous system, derived from
development biology. By focussing on the development of connections of neuronal
ensembiles, characterized by common functional properties, these studies validated
the notion that building blocks larger than the neuron exist in the basic organization
of the central nervous system (Mountcastie 1978). On the other hand they
demonstrated how detailed knowledge about the function of a neuronal ensemble
provides the crucial theoretical framework for the analysis of its development.
Nevertheless, in those years, the implications of the above studies, for a general
theory of the formation of neural connections were probably not fully appreciated.
The chemoaffinity hypothesis was phrased in sufficiently general and occasionally
unclear terms (see discussion in Innocenti 1988) to accommeodate the existence of a
few exceptions, some of which could be interpreted as development errors (reviewed
in Clarke 1981). Developmental “errors” were known at least since Cajal but did not
prevent that author from proposing one of the first theories of neural development
based on chemotropism (Cajal 1909). .

However, the studies mentioned above were but the tip of the iceberg. It was found
that the emergence of neural networks, at least at the cortical level — although the
same turned out to apply to several other systems — had little to do with the precisely
target-aimed growth of one axon to its postsynaptic partner which would have been
expected on the basis of a literal interpretation of chemoaffinity theory. Long
corticocortical projections are generated in excess in the course of neural
development and reach structures from which they will be subsequently eliminated
(Innocenti et al. 1977; Distel and Hollinder 1980; Ivy and Killackey 1981). The
magnitude of the projections eliminated in development and their reliable
occurrence in different species and individuals precludes them from being
considered as developmental errors. The very concept of developmental error suffers
from intrinsic semantic difficulties (see Innocenti 1988 for discussion).

As previously discussed (Innocenti and Clarke 1984b; Innocenti 1987) no single,
monotonic process seems adequate to explain the development of cortical con-
nections’. Rather, an architectonic analogy seems to apply. Cortical connectivity is

! Throughout this paper the term “connection™ will imply that synapses have been formed
between neurons; “connectivity” will not. The second term will often designate juvenile
conditions in which the existence of synapses was not proven. “Projection™ was operation-
ally defined above.
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68 G.M. Tnnocenti

originally organized according to a juvenile Bauplan? as different from the adult
Bauplan as romanesque architecture is to gothic. A number of well-characterized
events mark the transition from the juvenile to the adult Bauplan. How these events
are regulated is the object of active investigations, since this knowledge may open
the way to controlling a crucial step in cortical development and possibly the

evolution of neocortex (for discussions on development and evolution see Katz and
Lasek 1978; Innocenti 1988).

2 The Adult Organization of Cortical Connectivity

While the existence of structural anisotropies in the cortex along a dimension
perpendicular to its surface has been recognized at least since Gennari (1782; quoted
by Glickstein and Rizzolatti 1984), the identification of boundaries between layers
and sublayers has been notoriously difficuit even in areas such as visual 17 in the
monkey, where the lamination is especially clear cut (Billings-Gagliardi et al. 1974).
The fact that neocortex is commonly divided into six layers reflects the acceptance of
a conventional frame of reference rather than an objective feature of cortical
structure.

Nevertheless, the analysis of cortical connectivity with neuroanatomical tracers
demonstrated that, in general different cortical afferents reach different cortical
laminae (Lund et al. 1979; Gilbert and Wiesel 1981; inter alios). Moreover, the
different corticofugal projections have different and characteristic laminar origins,
although within a given layer distinct neuronal populations can give rise to different
projections and the projections to a given target can originate from more than one
layer (Gilbert and Kelly 1975; Catsman-Berrevoets and Kuypers 1978; Innocenti
1980; Swadlow 1983; Innocenti et al. 1986; inter alios). As a rule of thumb, the
supragranular layers (II and 11I) are the main source of projections to other cortical
sites. The infragranular layers (V and VI) project to subcortical structures. Layer IV,
the main thalamic recipient layer, sends short radial connections. In addition,
probably all neurons, with corticofugal axons, also establish local connections
through axon collaterals and these connections have both radial and tangential
specificity (Gilbert and Wiesel 1981). Each cortical layer also contains neurons with
exclusively local axons (Golgi type II neurons: Cajal 1911; Peters and Jones
1984).

A tangential trajectory across the cortex reveals different types of anisotropy, all in
some way related to the radial anisotropy. Neocortex can be parcellated in distinct
cytoarchitectonic areas basically according to thickness of layers and their cell
composition, but the details of this parcellation evoked different degrees of

% The term Bauplan (construction plan) has obvious anthropological undertones. This may
be justified by the view that evolution could be considered the engineer of the brain (for a
similar belief see Glassman 1987). The term was chosen because it implies architectural

purposefulness. It is not necessarily related to the usage by 159th century comparative
anatomists (see Alberch 1984). :
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The Development of Projections from Cerebral Cortex 69

consensus. Some areas are easily identified by objective criteria, while the
identification of others requires art and skill. Other criteria for parcellation can be
used; for example, an area can contain a sensory representation distinct from those
of surrounding areas. But these criteria do not always match the cytoarchitectonic
parcellation (for a discussion, see Van Essen, 1985).

In the adult brain, probably each area is the preferential site of termination of a
characteristic set of thalamic nuclei (Caviness and Frost 1980; Graybiel and Berson
1981; inter alios). Each area establishes connections with a characteristic subset of
other cortical areas and these connections define lines of processing within the
cortex (Mishkin et al. 1983; Livingstone and Hubel 1987a, b; Hubel and Livingstone
1987). In general, reciprocal connections exist between two areas but the radial
locations of the neurons of origin both of the connections and of their terminations
define the reciprocal hierarchical position of two areas alonga processing line (Van
Essen and Maunsell 1983; Van Essen 1985). Connections between areas obey largely
unexplored mapping rules. At least in one case, that of the interhemispheric
connections of visual and to some extent, primary somatosensory areas, the rules
seem clear. These connections link in an exclusive manner parts of the primary
sensory representations corresponding to sensory territories near the midline
(Berlucchi 1972; Innocenti 1986), i.e. the line which divides the sensory worlds of the
two hemispheres. In another case, that of the connections between areas 17 and 18 of
the monkey, the mapping seems to achieve separation of processing lines with
different retinal origins and thalamic relays (Hubel and Livingstone 1987; Living-
stone and Hubel 1987a, b).

In addition, each area receives from and projects to a characteristic set of subcortical
structures.

A different type of tangential cortical anisotropy derives from the fact that most,
probably all cortical areas appear to be organized in radially oriented “modules” or
“columns”. Columns have been recognized both on functional (Mountcastie 1978;
Hubel 1982) and anatomical grounds (Heimer et al. 1967, Hubel and Wiesel 1969;
Jones et al. 1975; Goldman-Rakic and Schwartz 1982). The anatomical columns
consist of discrete accumulations of thalamocortical terminals (Hubel and Wiesel
1969), sometimes associated with cytoarchitectonic specializations (Woolsey and
Van der Loos 1970), or of discrete accumulations of corticocortical terminals
(Heimer et al. 1967; Jones et al. 1975; Imig and Brugge 1978; Goldman-Rakic and
Schwartz 1982; inter alios). Occasionally, corticocortically projecting neurons are
organized in radial columns (Jones et al. 1975; but see Caminiti et al. 1985; see
Innocenti 1986; for discussion and references). Cortical columns can appear as
tangentially oriented bands or “blobs”. The functional meaning of geniculo-cortical
columns is known (Hubel 1982), that of corticocortical projection columns usually
not, with two notable exceptions: (1) callosal termination columns in Al are related
to “ear dominance” bands (Imig and Brugge 1978); (2) origin and termination of
projections from 17 to 18 in the monkey are related to afferent connectivity and
functional properties of visual cortical neurons (Hubel and Livingstone 1987,
Livingstone and Hubel 1987a,b).

Thus it appears that all the main principles of cortical organization recognized
hitherto have their counterpart in some aspect of cortical connectivity.



o Te R RAALA W WwiwiAia

3 The Juvenile Organization of Cortical Connectivity

Four features characterize juvenile cortical connectivity: (1} the existence of
numerous transient projections; (2) radial specificity in the origin of the various
projections; (3) some degree of topographical order in the tangential organization of
the projections; (4) axons take specific routes in the white matter and cortex and
exhibit a characteristic behavior at their site of termination.

A recent review by Payne et al. (1988b) complements this section in many respects.

3.1 The Transient Projections

Hubel et al. (1977) and Rakic (1976) provided the first evidence of transient overlap,
in the visual cortex, of geniculocortical axons carrying information from the two
eyes. This overlap is probably due to transient short branches of thalamocortical
axons(Le Vay and Stryker 1979; Wiesel 1982) and therefore resembles the transient
hypercollateralization of Purkinje cell axons and of climbing fibers (Cajal 1911) and
the multiple innervation of the muscles (for references see Purves and Lichtman
1985),

A different type of exuberance, characterized by the production of long transient
projections, was discovered in area 17 of the cat (Innocenti et al. 1977). It was found
that while in the adult only the region near the border between areas 17 and 18
projects into the corpus callosum, the whole of areas 17 and 18 do so in the young
kitten. Similarly, exuberant callosal projections were later found in somatosensory
areas of the cat, where most of SI is devoid of callosal projections in the adult but not
in the neonate (Innocenti and Caminiti 1980}, as well as in the visual areas of the
hamster, rat (Mooney et al. 1984; Olavarria and Van Sluyters, 1985) and rabbit
(Chow et al. 1981), and in area 18 (Dehay et al. 1988b) and the somatosensory areas
(Killackey and Chalupa 1986) of the monkey. Work in the somatosensory cortex of
the rat (Ivy et al. 1979; Ivy and Killackey 1981) and in the auditory cortex of the cat
(Feng and Brugge 1983) showed that in areas where callosal projections originate
from more or less discrete cortical “columns”, a continuous distribution of callosally
projecting neurons is found in development. Apparently, in all areas and species
where the development of callosal connections was studied, transient projections
could be demonstrated. One interesting exception to this rule may be area 17 of the
monkey, which either never projects into the corpus callosum (Dehay et al. 1988b)
or does so but not as much as do the other areas (Chalupa et al. 1989), aithough the
callosal projections from area 18 undergo the usual phase of exuberance.
Unfortunately, at the moment, this negative finding is supported by the study of only
three age points, embryonic days (E) 112, 114 and 133. The development of callosal
connections has not yet been studied between E 133 and E 165, when exuberant
callosal connections can be expected. Projections from area 17 seems to be missing at
the time when the adjacent area 18 has already established them, but nearby cortical
areas can establish callosal projections with remarkable time lags (Floeter and Jones
1985). In addition, the possibility that the transient callosal projections from area 17
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may either fail to extend far beyond the midline or reach areas other than 17 and/or
18 was not explored. Neither possibility is unlikely, since the same transient
projections can grow different distances in different species (O’Leary and Stanfield
1986), and exuberant callosal projections to heterotopic areas have been demon-
strated (Innocenti and Caminiti 1980; Innocenti and Clarke 1984a, b).

Transient intrahemispheric projections were also discovered in the cat (Innocenti
and Clarke 1984a; Dehay et al. 1984; Price and Blakemore 1985a, b; Clarke and
Innocenti 1986; Price and Zumbroich 1989). Two of these projections have been
particularly well characterized. One runs from the auditory to the visual cortex
(Innocenti and Clarke 1984a,b; Innocenti et al. 1988; Dehay et al. 1988a), i.e. two
areas between which only weak projections (Innocenti et al. 1988) exist in the adult.
The other one is from area 17 to area 18 (Price and Blakemore 1985a,b). Like the
auditory callosal projections mentioned above, this projection originates from
discrete, vertically oriented modules in the adult, and from a tangentially continuous
neuronal zone in the neonate. Shorter-range intra-areal or inter-areal transient
projections have also been described in areas 17 (Luhmann et al. 1986; Katz and
Wiesel 1987) and 18 (Price 1986) of the cat.

Transient corticosubcortical, and not only transient corticocortical projections, are
formed in development (Distel and Hollander 1980). They inciude projections to the
spinal cord (D’Amato and Hicks 1978; Distel and Hollander 1980; Stanfield et al.
1982; Bates and Killackey 1984; O’Leary and Stanfield 1986; Joosten and Van Eden
1989), the superior colliculus {Tsumoto et al. 1983; Thong and Dreher 1986), the
cerebellum (Distel and Hollander 1980; Tolbert and Panneton 1983), the pons
(Adams et al. 1983; Mihailoff et al. 1984), the nucleus ruber (Leonard and Goldberg
1987), the trigeminal nuclei (Tolbert et al. 1984) and other structures in the medulla
(Iriki et al. 1988). .

In summary, the selective connectivity between one area, or part of one area, and
other cortical or subcortical centers, as well as the mapping rules of the projection,
including their columnar origin, differ in the juvenile and adult brain.

Till recently, the extravagance of exuberant projections established by cortical
neurons contrasted with the seemingly parsimonious development of thalamo-
cortical connectivity (Payne et al. 1988a, b). In addition to the lack of segregation of
geniculocortical afferents, mentioned above, only a moderate degree of laminar
exuberance, a transient projection to layer I, was described (Kato et al. 1984; 1986).
Lately, however, long transient thalamocortical projections have also been found
(Bruce and Stein 1988; Minciacchi and Granato 1989). Indeed, the number of
transient projections discovered in the developing brain increases at a fast rate and
their comprehensive list is bound soon to become obsolete.

One may ask if the fact that a projection is visualized by pathway tracing
experiments in the young animal, but not in the adult, provides sufficient evidence
that the projection is eliminated in development. Given that a tracer may not have
the same uptake and transport efficiency in the young and in the adult, the
elimination should preferentially be corroborated by: (a) multiple tracers or
experimental approaches other than axonal transport, for example, estimates of
number of axons and (b) the stabilization of the transient projection into adulthood
by experimental manipulation, but under conditions in which “de novo” growth of
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projections induced by the manipulation can be excluded. Only a few of the transient
projections reported thus far pass both criteria, namely the callosal and intra-
hemispheric projections to areas 17 and 18, the corticospinal projection from the
visual cortex and the corticocerebellar projection from the frontal and somato-
sensory cortex (see Sects. 5 and 6), although other projections pass the first
criterion.

Conversely, the failure to demonstrate transient projections in the development of a
given structure does not necessarily preclude its existence. Some of the factors which
can lead to false negative results were discussed elsewhere (Berbel and Innocenti

1988).

3.2 The Radial Origin of Juvenile Cortical Projections

By and large, juvenile cortical projections originate from layers which will also give
rise to the same kind of projection in the adult. Thus, in kittens, as in adult cats, the
bulk of callosal projections from areas 17 and 18 originates from layers IIT and upper
IV, with a few from layer VL. Layers [l and V do not contribute substantial amounts
of callosal projections, neither in the adult nor in kittens (Innocenti 1980; Caminiti
and Innocenti 1980; Segraves and Innocenti 1985). Even more striking is the
differential radial distribution of supragranular neurons with different targets in the
auditory areas, including neurons with different transitory targets (Innocenti and
Clarke 1984a; Dehay et al. 1988a). Similarly, the transient projections to the

cerebellum (Tolbert and Panneton 1983), spinal cord (Stanfield and O’Leary 1985b)
and tectum (Tsumoto et al. 1983) originate from layer V, which is also the main

source of cortico-mesencephalic and cortico-pontine projections in the aduit.
This is not to say that no changes occur in the relative contributions of different
layers to a given projection in development. On the contrary, the interhemispheric
projection from the posteromedial lateral suprasylvian cortex to areas 17 and 18
originates nearly exclusively from layer VI in adults (Segraves and Innocenti 1985)
but also from layer III in the kitten (Innocenti and Clarke 1984b). Similarly, in the
rat parietal cortex, the earliest callosal neurons are in layers Va and Vc-VlIa. Later,
the projection from layer III appears and the density of callosally projecting neurons
greatly decreases in V¢ and VIa (Ivy and Killackey 1981). Selective loss of
projections from supragranular layers, but maintenance of the projection from
infragranular layers was described in area 17 of the rat (Olavarria and Van Sluyters
1985).

The radial changes described above could just be another facet of the type of
exuberance described in the preceding section. In the cat, subsets of layer IIT and
layer VI neurons distributed throughout the cortex appear to be determined to send
an axon through the corpus callosum. At a later stage, in certain areas, for example
in most of area 17, neurons of both layers eliminate their callosal axon; in other areas
and projections, e.g. the projection from suprasylvian areas to area 17, only neurons
mn layer I1I do so, and this shifts the origin of the projection to infragranular layers
(Innocentt and Clarke 1984b). In addition, changes in the radial origin of a
projection may be due to the fact that some neurons send an axon through the

8.
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The Development of Projections from Cerebral Cortex 73

corpus callosum before they have reached their final radial position (Schwartz and
Goldman-Rakic 1986), and that different layers establish projections at different
times (Ivy and Killackey 1981).

As we discussed elsewhere (Innocenti and Clarke 1984b; for similar concepts see
Rakic 1988) it appears that where a neuron sends its axon is determined rather early
in development and is related to a neuron’s radial position in the cortex.

This initial determination may condition pathway choice rather than target choice;
the fact that axons reach a given target may be the consequence of having chosen a
given pathway. The cortical white matter is organized in compartments related to
the origin and termination of cortical projections, and individual tracts are
topographically organized (Innocenti et al. 1983b; Nelson and Le Vay 1985;
Nieuwenhuys et al. 1988; inter alios). There is also evidence that juvenile axons,
including those which will be eliminated, travel in specific compartments in the
white or gray matter (Distel and Holldnder 1980; Katz andWiesel 1987; Innocenti
et al. 1988).

It1s well known to general embryologists that a cell position within the embryo can
determine aspects of its differentiation, which may indicate that a cell’s fate depends
on “positional information” (Wolpert 1969). It appears improbable that positional
information determines a neuron in a certain layer to send an axon to a given
target/pathway. Firstly, neurons with identical radial position in the cortex are
found in the adult to project to different targets, and neurons in different layers can
project to the same target (Segraves and Innocenti 1985; Innocenti et al. 1986; inter
alios). Secondly, neurons in the frontal cortex of the monkey appear to send an axon
into a given pathway, namely the corpus callosum, before they have acquired their
final radial position (Schwartz and Goldman-Rakic 1986). Thirdly, in the reeler
mouse (Caviness 1977), and after X-irradiation or treatment with cytotoxic drugs
(Jones et al. 1982; Jensen and Killackey 1984: Innocenti and Berbel 1989a,b) a
neuron’s radial position, but not its target/pathway choice, can be profoundly
altered, although the usual relation seems to exist between the latter and the
neuron’s birthdate. Experiments aimed at testing directly the hypothesis that a
neuron’s birthdate also determines its pathway/target choice by etherochronic
transplantation have given results compatible with this notion (McConnell 1988).
Nevertheless, birthdate does not fully predict where a neuron sends its axon. The
projection to a given structure can originate from several layers and the same
layers also give rise to projections to other structures. For example, callosal neurons
in the cat originate from layers VI, Il and IV (Innocenti 1986) and these layers are
generated at different times (Luskin and Shatz 1985). The callosally projecting
Neurons are a minority among neurons in each layer (Innocenti 1986).

Possibly, a neuron’s clonal origin or serial position in a clone, rather than its
birthdate is the crucial element in the initial pathway choice. Indeed; work in
invertebrates has demonstrated that the serial position of a neuron in a clone
determines or restricts its phenotype (Sulston and Horvitz 1977). On the other hand,
neurons which are near each other in a cortical layer do not necessarily derive
from the same germinal cell (Walsh and Cepko 1988; but see Luskin et al. 1988) but
may owe their proximity to sideways displacement during migration along the
fasciculating and defasciculating adjacent glial channels shown by Gadisseux
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et al. (1987). 1t is possible that clonal heterogeneity and intermixing plays a major
role in determining the differential axonal growth of adjacent neurons in the
cortex.

3.3 The Tangential Organization of the Juvenile Projections

A third characteristic feature of the juvenile projections is that they are neither
totally diffuse nor random. One aspect of this is that although each area projects to
and receives from a broader territory than in the adult, certain projections fail to
form. A surprising absence is that of a projection from visual to auditory areas in
kittens at ages when the auditory to visual projection and other transient projections
are well developed (Innocenti and Clarke 1984a,b). Equaily surprising is the
apparent absence of transient projections from area 17 in the newborn monkey
{Dehay et al. 1988b) already discussed above.

A second aspect of the tangential, juvenile organization is that in young kittens, an
injection in areas 17 and 18 and involving the subcortical white matter in order to
reach transient corticocortical axons, labels a characteristically shaped territory in
the contralateral hemisphere (Innocenti and Clarke 1984a,b; Figs. 1,2). This
territory includes regions which project to areas 17 and 18 in the adult, as well as
regions which lose this projection during maturation. The labeled territory is
elongated, its greater extension running roughly mediolaterally. Its anteroposterior
location changes systematically with the position of the injection site. The shape and
location of this territory may reflect principles of axonal order in the callosal
pathway and the direction of axonal growth. The anteroposterior cortical axis is

Fig. 1. Flat reconstructions of the occipital portion of the left hemisphere of a kitten injected
on postnatal day 3.5 (P 3.5) and killed on P 9.5, showing distribution of layers II-VI callosal
neurons retrogradely labeled by diamidino yellow (DY, rop) or by fast blue {FB, bottom).
Injection sites are shown on the section drawing. In each coronal section the labeled neurons
were plotted with a computer microscope and projected onto a line running 400 um below the
pial surface. The line was divided into 100-um segments and the number of neurons per
segment represented by vertical lines whose lengths are proportional to the number of
neurons (shortest line, one neuron). Filled and empty triangles denote the axis along which
coronal sections were aligned. Arrows point to coronal levels through the caudal end of the
lateral geniculate nucleus (LGN}, splenium of the corpus callosum (SPL) and coronal end of
the claustrum (CL). Dots, sulci: mss, middle suprasylvian sulcus; Is, lateral sulcus; ssp,
suprasplenial sulcus; sp, splenial sulcus. Calibrations are 2 mm, R, rostral; M, medial; DL60,
code number; dd, age in days. Note that the DY injection was restricted to the gray matter near
the 17/18 border and labeled neurons almost exclusively in a cluster near Is, corresponding to
the contralateral 17/18 border which projects into the corpus callosum in the adult; only a few
neurons were labeled in medial area 17 (between ssp and sp) or in the auditory cortex (lateral
to mss), which do not project to contralateral areas 17 and 18 in the adult. In contrast, the FB
injection extended into the white matter under area 17 and labeled neurons at the 17/18
border, but also in the two regions which do not project to contralateral areas 17 and 18 in the
adult. (From Innocenti and Clarke 1984hb)
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DL 76 dd 2-11

DL 74 dd 2-9

DL 89 dd 2-9
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~ Fig. 2. Flat reconstructions of the occipital portion of the left hemisphere of three kittens
(identified by code number and by age at injection and at death), showing regions containing
layers II-VI callosal neurons retrogradely labeled by DY (hatching) or by FB (shading). The
region reconstructed is that between bars on brain insets. Unlike in Fig, 1, these reconstruc-
tions are based on hand-drawn sketches of cell distributions. This procedure is less precise.
Therefore, only two arbitrary levels in density of labeled neurons are indicated, ie. high
density (dark shading or hatching) and low density (light shading or hatching). Locations of
injection sites are marked on brain insets. Dors, sulci: aes, anterior ectosylvian sulcus; pes,
posterior ectosylvian suicus; R, rostral; M, medial. Calibration bars are 2 mm. Notice that the
labeled territories progressively separate, proportionally to the distance between injection
sites. (From Innocenti and Clarke 1984b)
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Fig. 3A,B. Left, lateral view photographs of two kitten brains showing the distributions of
neurons retrogradely labeled by FB (filled dots) or DY (open dots), from injections in
contralateral areas 16 and 18 and the underlying white matter. Above, kitten DL 39, injected
on P 2.5, killed on P 9.5; below, kitten DL 74, also shown in Fig. 2, injected on P2 killed on P9.
In each photograph, arrows mark the rostral and caudal limits of the reconstructed regions.
Dots are arrayed parallel to the plane of sectioning; their density along an array gives a rough
indication of the density of labeled neurons. In the lower example, symbols for FB and DY
labeled neurons from the same section are staggered. Sulci are abbreviated as in Figs. 1 and 2.
{From Innocenti and Clarke 1984a). Right, reconstructions showing the distributions of
neurons retrogradely labeled from applications (in black) of horseradish peroxidase to the
presplenial part of the body of the corpus callosum (CC) of an adult cat. The bottom drawing
shows a lateral view of the hemisphere, the top drawing an inverted, medial view; some sulci
are open. DHC, dorsal hippocampal commissure; SS, sylvian sulcus. (From Nakamura and
Kanaseki 1989). Notice the similarity in the shape and location of the labeled territories in the
two types of experiments. However, no projections from medial area 17 (arrow) are labeled in
the adult

mapped anteroposteriorly in the adult corpus callosum (Innocenti 1980; Pandya
and Seltzer 1986), and such a topographical order seems to appear early in
development (Olavarria and Van Sluyters 1986). In a recent study in which the
topographic origin of callosal axons was investigated by discrete applications of
HRP to the corpus callosum in adult cats (Nakamura and Kanaseki 1989),
applications of the tracer to the presplenium retrogradely labeled a territory whose
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DL 74 (dd 2 - 9)

Fig. 4. Flat reconstructions of the occipital portions of the right hemispheres of two kittens,
showing regions containing layers II-VI association neurons retrogradely labeled by DY
(hatching} or FB (shading). The region reconstructed is that between bars in brain insets. All
conventions as in Fig. 2, where the distribution of retrogradely labeled callosal neurons in
these two kittens are also shown. Note (compare with Fig. 2) the broader rostrocaudal

distribution of labeled association neurons than of callosal neurons. (From Clarke and
Innocenti 1986)

location and extent were amazingly similar to that labeled by area 17 and 18
Injections in the kitten (Fig. 3). As discussed earlier (Clarke and Innocenti 1986), the
fact that intrahemispheric Juvenile projections are less clearly topographically

organized (Fig. 4) could reflect the lack of a preferential axis of growth of intra-
hemispheric projections.
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To what extent order in the pathway is critical for the establishment of the projection
is unclear. As in the case of the retinotectal projection, errors due to disordered
growth may be corrected to some extent by redirection of axonal growth near the
target (Thanos and Bonhoeffer 1986). Evidence that in partially “acallosal” mice the
topography of caliosal connections is close to normal but the trajectory of the axons
may be abnormal and the projection is reduced (Olavarria et al. 1988b) does not
clarify the issue in the absence of more detailed knowledge of the development of the
agenesis, and the nature of the postulated disorder in axonal growth.

Some degree of topographical order, correspending to the mediolateral cortical
direction, was documented for the transient corticocerebellar projection (Tolbert
1989). The interpretation given was that this order matches the somatotopy of SI,
from where part of the projection originates, to that of the vermis and paramedian
lobule where part of the projection terminates. Nevertheless, the order found in this
transient projection may also reflect the influence of factors ordering cortico-
cerebellar axons along their pathway.

What may be responsible for the order along the pathway is unknown. In principie,
axoaxonal interaction may suffice, although the growth of the first axons in the
pathway and the subsequent addition of axons may not be unconstrained. Ceil
adhesion molecules may be involved (Edelman 1987), since in other systems the
antibodies against these molecules cause loss of axoaxonal contacts and disorderly
growth (Thanos et al. 1984).

3.4 Relations Between Juvenile Cortical Axons and Their Targets

Studies on several systems including neocortex suggest that “in vivo™ axonal growth
is not a continuous phenomenon but that it rather proceeds in spurts separated by
pauses. :

In the development of corticopetal afferents, one of the last pauses occurs at the
bottom of the gray matter, where ingrowing axons appear to “rest” in a special
compartment, usually referred to as the “subpiate” (Rakic 1977; Lund and Mustari
1977, Wise et al. 1977; Wise and Jones 1978; Killackey and Bedford 1979: Shatz and
Luskin 1986). This compartment contains transient neurons (Marin-Padilla 1978;
Kostovic and Rakic 1980; Chun et al. 1987), descending dendrites of layer VI
neurons (Marin-Padilla 1971, 1978), and astrocytes (Innocenti and Berbel 1990a)
and is traversed by radial glia and migrating neurons. Whether any of these
components causes or allows ingrowing axons to stop is presently unknown, al-

though the transient neurons appear to receive transient synapses (Chun et al.1987).
The pause of the geniculocortical axons in the subplate may be terminated by the
positioning and possibly maturation of layer IV neurons, the main recipient of
thalamocortical projections (Shatz and Luskin 1986). Thus, the waiting may be
caused by the fact that the arrival of axons and the maturation of their target are not
synchronous. In truth, what axons do during this waiting phase is unknown and one
can think of additional or alternative roles for it.

Corticocortical axons, in particular callosal axons, were also found to pause in the
subplate (Wise and Jones 1976; Goldman-Rakic 1982; Price and Zumbroich 1989),
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Fig. 5. Photomicrograph of a tetramethylbenzidine reacted section from the hemisphere
contralateral to a wheat germ—horseradish peroxidase injection in a kitten injected on P1.5,
killed on P2.5. Notice the continuous distribution of labeled neurons and the bundle of
axons (from the corpus callosum), fanning out in the white matter. In the upper right portion
of the section, faintly labeled axons have entered the gray matter in the region of the area
17/18 border. Other axons are directed to the gray matter of area 17 but without entering
it. High-power photomicrographs of two of these axons from an adjacent section reacted
with a modification of Hanker—Yates’ technique are shown in the inset, oriented as in the
full section. Calibration bars are 0.5 mm for the low-power and 10 mm for the high-power
photomicrographs. D, dorsal: M, medial. (From Innocenti and Clarke 1984b)

although the significance of this pause is even less clear. Characteristically, the
waiting phase of corticocortical axons is terminated by growth into specific
“columnar” patterns resembling those of the adult (Wise and Jones 1976; Ivyetal.
1979; Innocenti 1981a; Goldman-Rakic 1982; Feng and Brugge 1983; Miller and
Vogt 1984; Innocenti and Clarke 1984b; Olavarria and Van Sluyters 1985). Axons
appear to enter at specific tangential locations, while they avoid others (Figs. 5, 6).
This is clear in the case of callosal projections to the visual areas whose termination
bears characteristic, fixed relations to the cytoarchitectonic borders (Innocenti
1981a; Innocenti and Clarke 1984b; Olavarria and Van Sluyters 1985).
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Fig. 6. Flat reconstruction of the occipital portion of the brain of a kitten injected on P2,
killed on P4, showing the tangential distribution within the gray matter of terminating
callosal axons. The region reconstructed corresponds to the shaded portion of the brain inset
but it also comprises the cortex within the interhemispheric fissure. Heavy lines, heavy
labeling; light lines, medium labeling; dots, light labeling. Outlines of coronal sections show
the spread of horseradish peroxidase (hatched) at three rostrocaudal levels, in the injected
hemisphere. Calibrations are 1 mm. R, rostral; M, medial. Note, in comparison with Figs. 1

and 2, the selective tangential distribution of terminating callosal axons. (From Innocenti and
Clarke 1984b)

Juvenile callosal axons also reach other parts of the visual areas, notably most of
area 17 and 18, where they do not terminate in the adult (Innocenti 1981a). At these
locations, however, the overwhelming majority of callosal axons remains confined
to the subplate or to the bottom of the gray matter (Innocenti 1981a; Innocenti and
Clarke 1984b; Olavarria and Van Sluyters 1985),

Most of the callosal axons which enter the gray matter at the sites of adult
termination originate from tangential sites destined to maintain the callosai
projection (Innocenti and Clarke 1984b; Fig. 1). Most of the axons which remain
confined to the white matter come from tangential sites from where callosal
projections will be eliminated (Innocenti and Clarke 1984b). A few axons, however,
possibly those whose fate depends on visual experience (Lund et al. 1978; Innocenti
and Frost 1978, 1979; Cynader et al. 1981; see also Sect. 6.1) may enter the visual
cortex and establish synapses.

Thus, callosal projections appear to acquire their adult pattern at their site of
termination first and this may involve selection based on mutual recognition
between the juvenile axons and some aspects of their targets.

Although the model above is based on the development of callosal projections, its
general features may apply to the development of other corticocortical and
corticosubcortical projections. Transient projections from auditory to visual areas
enter only occasionally the gray matter and when they do, they do not appear to
develop terminal arbors in it (Clarke and Innocenti 1986; Innocenti et al. 1988;

7.
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FL 1 (dd 0-5)
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Fig. 7A, B. Computer-aided charts of coronal sections through areas 17 and 18 of the right
hemisphere of a kitten, identified by code number and age at injection and sacrifice, showing
the distribution of axons (lines) and neurons (crosses) labeled by a deposit of rhodamine-B-
isothiocyanate (RITC)in ipsilateral Al and AIl. Growth-cone-like endings are represented by
dots on one end of the corresponding axon segment. The levels of the charted sections are
indicated in the brain inset, together with the locations of the RITC deposits, which are also
shown in the section drawing. Note that only a few of the transient axons from auditory cortex
enter the visual cortex. (From Clarke and Innocenti 1986)

Fig. 7). Transient intrahemispheric projections between visual areas also fail to grow
into the cortex (Price and Zumbroich 1989), and the analysis of axons from
intracellularly filled single neurons in area 17 indicated that although these axons
may extend tangentially over longer distances than in the adult, their radial growth
takes, from the beginning, adult-like patterns (Katz and Wiesel 1987). Thus,
transient intrahemispheric projections seem to lack some feature which aliows
target colonization. The fact that some transient axons do enter the cortex was
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stressed by Dehay et al. (1988a). Unfortunately, in their study of the transient
auditory to visual projection, large injections of wheat germ agglutinin —
horseradish peroxidase involved not only the auditory cortex but also the lateral
suprasylvian cortex which is known to send projections to areas 17 and 18 in the
adult (Symonds and Rosenquist 1984). The transient corticosubcortical projections
do also not appear to enter regions of neurons to any significant extent and/or
develop terminal fields in them (Distel and Hollander 1980; Stanfield and O’Leary
1985b). A few transient corticocerebellar axons may enter the deep cerebellar nuclei
(Tolbert and Panneton 1983).

It should be stressed that at least in the case of the corticocortical projections, the
fact that transient axons do not enter the cortex does not exclude the possibility that
they may form synapses, since the subplate contains dendrites and interstitial
neurons and the latter bear synapses (Chun et al. 1987).

4 Hypotheses on the Genesis of the Juvenile Organization:
Cellular Specificities, Temporal Mismatches, Target-Directed Vs
Pathway-Directed Axonal Growth

The evidence discussed above suggests that three factors (or groups of factors) may
be crucial in organizing the juvenile projections.

The first factor appears to direct axonal growth into one of the several pathways
available to the neuron. This pathway “choice” is probably conditioned by some
kind of cellular specificity whose most probable determinant, by exclusion of others,
seems to be either the clonal origin of a neuron or its serial position whithin a clone.
The nature of the pathways and how they differ from each other cannot be specified.
The hypothesis is compatible with the well-demonstrated selective nature of axonal
growth, under the control of local cues (reviewed by Weiss 1955; Letourneau 1983;
Purves and Lichtman 19853).

The second factor appears to be the topographical order of axons within the
pathway. This has been long suspected to be a crucial factor in the establishment of
orderly retinotectal projections (Cook and Horder 1977; Rager 1980), although it
may not reflect with absolute precision the topological relations between the parent
neurons, since individual axons change neighborhood relations along their course
(Williams and Rakic 1985).

The third factor seems to be a mismatch between the time axons begin to grow or
even arrive at the target and the maturation of either the target itself or of the
competence of axons in recognizing the target. This can have two consequences: (a)
axons pause near the target before entering it or (b) axons grow past the target and
then either retract or grow an axon collateral into it. The first may occur when axons
grow perpendicularly with respect to the cortex, the second when they grow
tangentially. The second condition may be the cause of much of the exuberance
observed in the developing nervous system (exuberance in the “elongation mode”
according to Schneider et al. 1987).

This model has a certain number of implications, raises several questions and needs
qualifications.

?.
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One implication is that that the Juvenile connectivity is organized by axon-pathway
and possibly ax-axonal interactions, while the adult connectivity is determined by
axon-target interactions. As will be discussed below (see Sect. 7), the latter may
include specific mechanisms for axon-target recognition as well as axo-axonal
interactions and neural activity. These mechanisms do not prevent the occurrence
of exuberance of axonal branches and synapses near the sites of axonal termina-
tion (exuberance in the “arborization mode” according to Schneider et al.
1987).

Although they may appear superfluous, arguments exist which refuse the possibil-
ity that the organization of the Juvenile connectivity is directed from distant (i.e.
several mm) signals released from the target, as earlier theories suggested (Cajal
1909). The first argument is development exuberance itself, i.e. the fact that axons
grow towards brain sites which they will later abandon. Second, as mentioned
above, several corticofugal or corticopetal axons begin to grow towards a target
often before the target has been generated, has matured or reached its adult
position.
The strongest arguments suggesting that axon-target interactions become decisive
only after axons have reached their cortica] targets, however, come from the fact that
the adult organization appears first at the target and seems determined by
the selective growth of axons into it. These interactions could be mediated by
target-released factors (Heffner et al. 1990).
The main difficuity with this “dualistic” interpretation of the formation of con-
nections is that one needs to postulate an additional mechanism relating pathways
to targets in order to explain why axons, by choosing a certain pathway, reach an
appropriate target, and, on the other hand, why many do not. Perhaps, an
explanation could be sought in phylogenesis. Possibly, up to a certain level of
complexity, target structures and pathways leading to them appeared in a one-to-
one ratio. They may have carried similar markers, as Sperry proposed ( 1963). In such
an “ideally primitive” brain, axons which chose a certain pathway reached one
target only. In evolution, new structures may have appeared in excess to the
available pathways. Consequently, a pathway gave access to several targets. In other
words, in more evoluted brains, pathway-directed axonal growth uses more general
cues than target-directed axonal growth. In evolution, pathway, pathway identific-
ation rules and rules for axonal ordering along the pathway may be relatively
conserved while the neuronal groups which send into a pathway or receive from it
are modified.
The model predicts that both exuberance and the waiting of axons near the target
may become more conspicuous in structures which have undergone more drastic
evolution. Such a model supports the relative importance that both phenomena
seem to have acquired in the development of cerebra] cortex, a structure which has
undoubtedly undergone massive evolution.
The model neither implies nor excludes the formation of transient synapses.
Furthermore, the fact that axonal “waiting” near the target and exuberance may
have the same cause does not imply that they also have the same function. In
addition to compensating for a time gap between developmental events which
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probably proceed independent of each other, axonal exuberance seems to have other
“adjusting” functions in neural development (see Sect. 6) and is possibly involved in
transient behavior (Iriki et al. 1988). The possibility that both axonal “waiting” and
exuberance may have yet other functions must remain an open question.

5 Transition from the Juvenile to the Adult Organization

Two different mechanisms could be responsible for the partial elimination of
juvenile projections characteristic of the transition from the juvenile to the aduit
corticocortical connectivity: neuronal death and selective axonal elimination. The
first mechanism cannot be ruled out and indeed cell death seems to occur in the
development of cerebral cortex, (Heumann and Leuba 1983; Finlay and Slattery
1983; Ferrer et al. 1989), including death of well-identified neuronal populations
(Kostovic and Rakic 1980; Price and Blakemore 1985a; Chun et al. 1987). Neuronal
death may be responsible for the elimination of the transient projection from deep
layers in area 17 to area 18 (Price and Blakemore 1985a).

Nevertheless, the majority of the transient cortical projections appear to be lost by
axonal elimination, in the absence of neuronal death. The experiment on which this
concept is based involved labeling the neurons of origin of a juvenile projection
which would be partially eliminated with a long-lasting retrograde tracer. The
animal was allowed to survive until the projection was partially eliminated and then
a different tracer was injected at the same location as the first tracer, or elsewhere. In
the first experiment, differential distribution of the neurons labeled by the early and
late injection indicated that the juvenile projection had been eliminated but the
neurons from which it originated were still alive. After injection of the second tracer
some of the neurons which had eliminated the juvenile projection could be double-
labeled and this identified the location of their final target (Innocenti 1981a; O’Leary
et al. 1981; Ivy and Killackey 1982 Tolbert and Panneton 1984; Price and
Blakemore 1985a; see also below).

A second experiment was used to investigate whether a systematic relation exists
between the site to which a neuron sends its transient axon and the target of its
permanent axon. In this respect, supragranular and infragranular neurons seem to
behave differently.

In the cat, supragranular neurons in visual area 17, which send a transient axon to
contralateral areas 17 and 18 (Innocenti et al. 1986), and neurons in the auditory
cortex which send a transient axon to areas 17 and/or 18 in the same or in the
contralateral hemisphere (Clarke and Innocenti 1990) were investigated. In each of
these populations, neurons were found with late, presumably permanent projections
within the area where their cell body is Jocated or to areas nearby, butnone appeared
to establish permanent projections io more distal areas (Fig. 8). Neurons with
transient callosal axon in area SI of the rat and monkey also establish short
permanent projections (Ivy and Killackey 1982; Chalupa and Killackey 1989).
In contrast, neurons with transient corticospinal axons from the visual cortex of the
rat to the spinal cord, a population of layer V neurons, establish permanent

20
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Fig. 8. Top, schematic representation of four types of neurons (filled triangles), characterized
by different locations and site of transient projection. Two of these neurons are in the medial
partofarea 17 and their axons respectively reach the white matter under contralateral area 17
and the lateral suprasylvian areas (LS). Two other neurons are in areas Al and A2 and their
axons respectively reach the white matter under ipsi- and contralateral areas 17~18. Bottom,
schematic representation of the presumed final projection of the same neurons shown above,
after elimination of the transient projections. Notice that they all form relatively short
projections. Percent values refer to the fraction of areas 17 and Al, A2 neurons with transient
projections for which the local, final projection could be documented

projections to the superior colliculus or to the pons (O’Leary and Stanfield 1985). In
the cat, neurons in the frontoparietal cortex with transient projection to the
cerebellum, also layer V neurons, establish permanent projections to the spinal cord
or brainstem (Tolbert and Panneton 1984),

Thus, the initial overproduction of axoplasm which will subsequently be eliminated
seems to be greater for Supragranular than infragranular neurons. Interestingly,
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though, the total axoplasmic production is probably similar in the two cases, and, in
both, the connection to the final target may be through a modest collateral of the
transient axon. More important, in all cases the initial transient projection seems to
overshoot the final target, although to different degrees for different neuronal
populations. Studies with retrogradely transported tracers suggested that at some
stage, neurons in supra- and infragranular layers have axonal branches directed to
their permanent target, in addition to their transient axon (Ivy and Killackey 1982;
O’Leary and Stanfield 1985; Innocenti et al. 1986). Anterograde filling of the axons
of both supragranular and infragranular neurons showed that, in both, the
permanent axon forms as a side branch of the transient axon and the part distal to it
will be deleted (Katz and Wiesel 1987; O’Leary and Terashima 1988). Therefore, the
apparent lack of unique relations between sites reached by transient and permanent
projections of supragranular and infragranular layer neurons may however be
dictated by identical constraints on axonal growth and maintenance.,

The emergence of the adult Bauplan of cortical connectivity, outlined above, seems
to imply axonal loss in the pathways involved. Indeed, in the cat, during the first
postnatal month, precisely at the time when transient callosal projections are being
eliminated, the corpus caliosum loses at least 70%; of its axons (Berbel and Innocenti
1988). Similarly, the pyramidal tract of the rat eliminates in development at least
507; of its axons (Reh and Kalil 1982); this elimination coincides with that of
corticospinal projections as shown with retrograde transport ((’Leary and
Stanfield 1986). The decrease in the number of axons in the corpus callosum and in
the pyramidal tract directly reflects the elimination of the transient projections and
may be caused by the latter. In the monkey, however, the number of callosal axons
decreases postnatally (La Mantia and Rakic 1984), while transient callosal
projections from somatosensory areas and visual area 18, the only two transient
projections thus far studied, are etiminated prenatally (Killackey and Chalupa 1986;
Dehay et al. 1988b). The reason for this cross-species difference is not known (for
discussion see Berbel and Innocenti 1988). Basically more complete and detailed
information on the development of cortical connections in the monkey is needed.
In the cat, the axonal loss in the corpus callosum is so massive that it provokes a
decrease in its cross-sectional callosal area (Berbel and Innocenti 1988), already
noticed {Innocenti and Caminiti 1980) in a study by Fleischhauer and Schiiiter
(1970) (Fig. 9). Maximal axonal elimination and the associated decrease in the Cross-
section of the callosum occur before the onset of myelination and during the fast
phase of synaptogenesis in the visual cortex (Fig. 9). These temporal relations
between morphogenetic events are interesting because they suggest that the fate of a
Juvenile callosal axon is decided before its myelination and that it may actually be
influenced by the synaptogenesis in its target territory or by the signal(s) which
trigger the latter.

The cross-sectional callosal area decreases in man during the last 2 gestational
months and the first 2 postnatal months (Clarke et al. 1989). This decrease bears
temporal relations to myelination of the corpus callosum (as determined by
Yakovlev and Lecours 1967) and to the fast synaptogenesis in the cortex (as
determined by Huttenlocher et al. 1982) similar to those observed in the cat (Fig. 10).
It is therefore probably also an indicator of the occurrence of axonaj elimination.
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Fig. 9. Temporal relations of different aspects of cortical and callosal development in the cat,
i.e., number of axons in the corpus callosum (dots), midsagittal cross-sectional callosal area
(CCA, crosses), myelination of caflosal axons (squares), density of synapses in the visual cortex
(X's, Cragg 1975). The horizontal rectangle represents the period of elimination of callosal
projections from area 17, demonstrated with retrograde transport by Innocenti and Caminiti
(1980). Each vertical line in the rectangle indicates the age of one kitten at the time of
horseradish peroxidase injection. Stippling indicates the period of elimination of the
projection, considered to extend from the age of the oldest kitten in which the projection was
still fully exuberant to that of the youngest kitten in which the projection seemed to be as in
the adult. Two phases are distinguished: the first (heavy stippling) corresponds to the bulk of
the elimination, from most of area 17; the second (light stippling), corresponds to the
elimination of projections close to the 17/18 border. Notice that most of the callosal axons
and projections are eliminated before the onset of myelination. This massive elimination
coincides with a pause in the growth of CCA and occurs during the fast increase in synaptic
density. The peak in synaptic density is probably reached around P70, not around P37 as
indicated here (Winfield 1981). Thus, the elimination of callosal axons and projections is most
conspicuous during the initial 1 third to 1 fourth of synaptogenesis in area 17. (Modified from
Berbel and Innocenti 1988)

Biochemical and immunohistochemical analysis of callosal axons during the
postnatal period indicated that the three subunits of neurofilaments progressively
increase during the first month (Figlewicz et al. 1988). In particular, 2 monoclonal
antibody which recognizes a phosphorylated epitope of the heavy (approx. 200K)
subunit shows that only between P11 and P18 have significant numbers of callosal
axons acquired this protein, although possibly, until P29, in smaller amounts than in
the aduit (Figlewicz et al. 1988; Guadano-Ferraz 1990; Fig. 11). Even more
interestingly, a second monoclonal antibody, which in the rat recognizes an
unphosphorylated epitope of the heavy subunit of neurofilaments, begins to show
significant axonal labeling only around P39 (Guadano-Ferraz et al. 1990; Fig. 11).
The transition between the juvenile and the adult forms of the microtubule-
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Fig. 10. Temporal relations of different aspects of cortical and callosal development in man,
i.e. midsagittal cross-sectional callosal area (CCA, Clarke et al. 1989), synaptogenesis in area
17 (dots, curve fitted by eye; Huttenlocher et al. 1982} and in frontal cortex (crosses, curve
fitted by eye; Huttenlocher 1979), and myelination of callosal axons (light microscopic
observation of Yakovlev and Lecours 1969). Notice that CCA appears to decrease between
the end of gestation and the first postnatal month. This period may correspond to the massive
elimination of transient callosal projections and axons in man: as in the cat, most of the
suspected elimination occurs before myelination and during the initial phase of fast
synaptogenesis in the cortex

associated proteins Tau also occurs between P19 and P28 (Riederer and Innocenti,
unpublished; Fig. 11).

These changes in the cytoskeletal proteins of callosal axons occur simultaneously to
ultrastructural changes (Berbel et al. 1989). The number of microtubules and
neurofilaments per axon increases, although at different rates. The increase in the
number of microtubules precedes that in the number of neurofilaments and also
slightly precedes the increase in axon diameter to which the number of neurofila-
ments and/or microtubules is correlated. Changes in the minimal distance between
microtubules or neurofilaments are temporally correlated with the changes in
microtuble associated proteins and the appearance of the phosphorylated and
partially dephosphorylated variants of the heavy subunit.

Thus, the time of axonal elimination, in the corpus callosum, coincides with
profound modifications of the cytoskeleton of the remaining callosal axons. It is
tempting to speculate that these modifications may correspond to their transition
from a juvenile-labile state into an adult-stable state (for a similar concept in the case
of synaptogenesis see Changeux and Danchin 1976). This hypothesis requires
evidence that the fate of a juvenile callosal axon is not already decided before the
elimination begins and also, that the fate of an axon and its cytoskeletal
modifications are regulated by the same factors. This evidence exists (see below)
since the period of elimination of callosal axons coincides with a “sensitive period”
during which various manipulations can either stabilize axons which would

25%.



90 G.M. Innocenti

100 “Ul jmo

K200 K200
80 - w P P 4 a0

60 +

40

Total axons {millions)
Synapses { x10'% / cm?) x-x
Myelinated axons ( % of total ) + -+

20 4 20
o 2 ! : s 1 ) s L ” L
45 55 E 20 40 60 80 100 120 140 ADULT
Edays I P days

Fig. 11. Temporal relations of morphological and biochemical aspects of cortical and
callosal development in the cat. The curves of number and myelination of callosal axons and
synaptic density are the same as shown in Fig. 9. Arrows point to the first unequivocal
appearance of three cytoskeletal proteins in callosa] axons: the phosphorylated heavy subunit
of neurofilaments (K200 P: Figlewicz et al. 1988), the adult forms of the juvenile microtubule
associated proteins Tau (Riederer and Innocenti, unpublished) and a partially dephos-
phorylated form of the heavy neurofilament subunit (K200-P Guadano-Ferraz et al. 1990)

normally be eliminated or eliminate axons which would normally be maintained. At
least one condition, hypothyroidism, appears to interfere both with the elimination
of callosal axons and the maturation of their cytoskeleton, in particular the
appearance of the heavy neurofilament subunit (Gravel and Hawkes 1990).

Less is known about ceilular events underlying the elimination of transient cortical
axons. Although often referred to’as “axonal retraction”, the phenomenon most
probably involves axonal degeneration followed by phagocytosis of the degenerat-

ing elements. Indeed, at the time of axonal elimination, macrophages appear in the -

white matter at sites traversed by transient axons of cortical origin. Electron-
microscopically, some of these macrophages appear in the process of phagocytosing
axons (Innocenti et al. 1983a, b; Berbel and Innocenti 1988). However, no clear
instances of electron opaque degeneration of callosal axons were noticed in a study
where they were specifically sought (Berbel and Innocenti 1988). The degeneration
may take more subtle forms as suggested by the appearance of vacuoles and swollen
mitochondria in some cailosal axons at the time of their elimination (Berbel and

Innocenti 1988). Alternatively, the degenerating debris may be cieared before they
acquire distinctive ultrastructural features.
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6 The Regulation of Axonal Survival in the Developing Cortex

Probably, much of the interest evoked by the discovery of the existence of transient
projections in the developing cortex derived from the fact that they appeared to
reveal an enormous potential for developmental plasticity in this structure. This
view, if justified, could provide new tools for understanding brain development
as well as the relations between structure and function in the cerebral
cortex.

Alternatively, however, the transient projections could be inexorably doomed to
elimination, either because they subserve a transient function or because they
represent a phylogenetic relict.

This alternative has implications for the difficult question of the teleology of
developmental exuberance (Changeux and Danchin 1976; Katz and Lasek 1978;
Innocenti 1981b, 1988; Katz 1983; Ebbesson 1984; Cowan et al. 1984 inter alios). If
transient projections are inexorably eliminated, then the possibility that transient
structures “may allow developmental decisions to be made when the necessary
information is not available or not usable in the system” (Innocenti and Clarke
1984b) or, differently phrased, may play the role of an “ontogenetic buffer
mechanism” (Katz 1983) could be rejected. Indeed, developmental exuberance may
have no function. Its widespread occurrence across species could just indicate that
evolution preserved this mode of development as an extravagant but not detri-
mental way of putting a brain together.

The available evidence is clear-cut. Neither the fate of transient projections, nor that
of the projections which are normally stabilized is rigidly predetermined in
ontogenesis. Nevertheless, in spite of nearly 10 years of efforts we seem far from
understanding what determines this fate and how.

A posteriori, the theoretical basis for most of the work may have been naive in the
sense that we searched for “the” factor responsible for the elimination/stabilization
of juveniie projections. The more or less explicit assumptions were that, by
appropriate perturbation experiments, as in the case of the formation of ocular
dominance columns, one or few factors would be identified and that they would be
the same across systems and species. The studies reviewed below weaken both
assumptions.

First, the same perturbation experiment has occasionally had different outcomes in
different species and systems. Second, we appear to be dealing with several, possibly
interacting factors. A more realistic view may be that which juvenile axons are
maintained and which are eliminated “emerges” as a property of a network of causal
interactions (for the roots of this concept see Weiss 1955), to a large extent
determined by the neural network the axons are embedded in, but also by more
general signals, for exampie hormones. Key properties of this network, are that
(a) the effects of local perturbations may spread through the network and thus
affect distant brain sites and (b) activity may regulate the development of its
structure.

This hypothesis does not exclude the possibility that one crucial step, for example, a
biochemical modification of cytoskeletal components, may control the transition
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from the juvenile to the adult connectivity. But this hypothetical step appears to be
regulated by multiple, possibly interdependent factors, some of which at least have

been identified. These are:

1. Sensory experience o .
2. Integrity of the sensory periphery and of the pathways originating from it
3. Factors dependent on the target and/or the afferents it receives.

6.1 Sensory Experience

The first experiments aimed at testing the role of visual experience on the
development of corticocortical connectivity were inspired by the fact that callosal
connections between the area 17/18 borders in the two hemispheres appear to be
involved in establishing anatomical and functional continuity across the vertical
meridian of the visual field (Choudhury et al. 1965; Berlucchi et al. 1967; Berlucchi
and Rizzolatti 1968; Hubel and Wiesel 1967). In normal vision, the line of
decussation of the ipsi and contralateral retinofugal projection, i.e. the line which
divides the visual world of the two hemispheres and the geometrical midline of the
binocular visual field (the vertical meridian) coincide and are superposed in visual
space. The effects of horizontal strabismus were studied, since it shifts the
geometrical midline of the binocular visual field onto the nasal or temporal
hemiretina, depending on whether the eyes diverge or converge. This new vertical
meridian is separated from the decussation line proportionally to the degree of
squint. The underlying hypothesis was that synchronous activation of cortical loci in
the two hemispheres may be necessary for the stabilization of the Juvenile callosal
connections and that strabismus allowed synchronous stimulation, although
through different eyes, of cortical sites whose callosal connections would normally
be eliminated because they “viewed” different parts of the visual field.

These experiments produced moderately enlarged callosally projecting zones in area
17 of the cat (Innocenti and Frost 1978, 1979), and the finding was confirmed
(Bermann and Payne 1983; Elberger et al. 1983). Expansion of the callosal terminal
territory in the same area was also observed (Lund et al. 1978). However, no
systematic relation was found between the degree of expansion of the callosally
projecting zone in area 17 and the angle of strabismus induced in the animal. The
enlargement of the callosal zone was modest when compared with the wealth of
callosal projections at birth, and most of the projection still originated at the 17/18
border. Finally, similar expansion of the callosal zone near the 17/18 border was
produced by other rearing conditions such as monocular deprivation or enucle-
ation, binocular enucleation (Innocenti and Frost 1979, 1980) and short periods of
normal vision followed by binocular deprivation (Innocenti et al. 1985). Rearing
conditions which induce expansion of the callosally projecting zone seem to have in
common that they interfere with the normal binocular vision during the 2nd
postnatal month (see Innocenti et al. 1985 for discussion). One tentative explanation
for these results is that the stabilization of callosal connections requires synchronous
activation of the callosal axon and of its target neuron and that this is achieved by
proximity or overlap, as well as similar orientation and direction specificity of the
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The Development of Projections from Cerebral Cortex 93

be receptive fields of the callosally projecting neurons and of the neurons which receive
ve from them. This mechanism is similar to that proposed for the maturation of
: binocular properties of cortical neurons (Wiesel 1982). As discussed previously
4 (Innocentiet al. 1985), during the 1st and 2nd postnatal months this mechanism may
refine callosal connections by stabilizing certain connections and eliminating others.
4 Abnormal binocular vision interferes with this refinement either because normal
F binocular vision is required or because it results, at the cortical level, in broader and
3 less sharply orientation tuned receptive fields (Chino et al. 1983). Modifications
of callosal connections, broadly related to those described in kittens, nay occur in
humans. John and Timney (1986) described increased interhemispheric trans-
he mission times for targets within 5° of the fixation point, i.e. within a part of the visual
sal : field whose cortical representation is callosally connected in most animals thus
be i probably in man.
-al A decrease in the number of retrogradely labeled callosally projecting neurons in
shi area 17 was obtained in the cat by binocular eyelid suture (Innocenti and Frost 1980;
of Innocenti et al. 1985; Fig. 12) and by dark rearing (Frost and Moy 1989). This
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. { Fig. 12. Computer-microscope charts of the distributions of horseradish-peroxidase (HRP)-
of labeled callosal neurons in coronal sections at corresponding rostrocaudal levels of the
(g postlateral gyri of a normal ad.ult cat (PX 22), a cat (BD 1) raised with bilaterally sutured
: n eyelids and a cat (BEE_13) which had been bilaterally enucleated on postnatal day 2. All
d F sections were reacted with DAB. Each HRP-labeled neuron is represented by one dot. The
4‘ drawings at the top are enlargements of the regions denoted in the corresponding low-power
( 0 drawings. The rostrocaudal levels are indicated on drawings made from dorsal view
18 photographs of the corresponding brains. In each section, thinner lines mark the lower
Y boundaries of layers LIH, IV, V; a filled arrow points to the cytoarchitectonic boundary
« i€ between areas 17 and 18. (From Innocenti and Frost 1980)
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confirmed the role of vision in regulating maintenance or elimination of juvenile
projections. However, there were limits to the influence of visual experience: (a) a
non-negligible complement of callosally projecting neurons was stabilized in
primary and secondary visual areas even under the severest conditions of visual
deprivation; (b) these neurons remained centered around the 17/18 border; (c) in
some of the experiments, different effects were obtained in supragranular and
infragranular layers, the latter being, for example, more resistant to bilateral eyelid
suture (Innocenti et al. 1985),

This unequivocally points to the existence of control mechanisms independent of
vision, and this conclusion agrees with the recent finding that maturation of callosal
connections in primary visual areas may be a largely prenatal event in monkey
(Dehay et al. 1988b) and probably man (Clarke et al. 1589).

These control mechanisms are not necessarily independent of activity. Spontaneous
activity of retinal or central origin may provide the necessary synchronization in the
activity of cortical sites which become callosally connected. Spontaneous retinal
activity appears early enough in development for this to be possible (Galli and
Maffei 1988).

Visual experience may have a more general role in the development of cortical
connections, since binocular deprivation was found to disrupt the pattern of
intrinsic connections in area 17 (Luhmann et al. 1986) and may decrease the
number of neurons which maintain intrinsic connections in area 18 {Price 1986).

6.2 The Afferent Periphery

Other experiments on the visual system in cats and rodents tested the role of the
sensory periphery in the development of callosal and other cortical connections.
That the periphery may play a role in organizing callosal connections was strongly
suggested by Shatz’s observations (1977) that the callosally projecting and receiving
zones in area 17 of Siamese cats were expanded compared to normal cats (for a
different result, see Tremblay et al. 1987). A systematic relation was found between
the abnormality in the cortical mapping due to the abnormal crossing of retinal
axons at the chiasm, and the rearrangement of visual callosal connections. At that
time, the developmental exuberance of callosal connections was not known and
therefore the phenomena leading to the reorganization could not be interpreted.
Furthermore, since the Siamese cats are aiso strabismic, the possibility that the
reorganization of their visual callosal connections may be due to visual experience,
rather than to the structural changes in the retino-geniculocortical projection,
cannot be excluded. Finally, although the results in the Siamese cats clearly pointed
to a role of either the periphery or of vision in the organization of callosal
connections, the possibility that the same genetic defect which is responsible
for abnormal crossing at the chiasm may, independent of the latter, induce ab-
normalities in either the visual cortex or the corpus callosum could not be ruled
out.

The role of afferents from the sensory periphery in the regulation of the selection of
juvenile callosal axons could be deduced from experiments on binocularly or
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monocularly enucleated kittens (Innocenti and Frost 1979; 1980), mouse, rat and
hamster pups (Rhoades and Dellacroce 1980; Rothblat and Hayes 1982; Rhoades
and Fish 1983; Olavarria and Van Sluyters 1984) and monkey embryos (Dehay et al.
1989) as well as on anophthalmic mice and rats (Olavarria and Van Sluyters 1984;
Olavarria etal. 1988a; Rhoades etal. 1984). All these conditions produced
enlargement of the callosally projecting zone (Fig. 13), usually interpreted as
stabilization of callosal projections which would otherwise be eliminated, but also
more subtie changes in the distribution of callosally projecting neurons (Olavarria
et al. 1987). The results of the various experiments differed in certain details.
Binocular enucleation in the cat also caused a decrease in the number of
retrogradely labeled neurons projecting into the corpus callosum (Innocenti and
Frost 1980). This is apparently not the case in rodents and monkey, where, however,
no quantification was attempted. In rodents, but probably not in cats (Innocenti and
Frost 1979 and unpublished}, the callosally projecting zone and the callosal terminal
territory increase on the side of the remaining eye but remain normal on the other
side (Rhoades and Dellacroce 1980; Rothblat and Hayes 1982; Cusick and
Lund 1982; Olavarria et al. 1987). In the monkey, the increase seems to be due
exclusively to stabilization of projections coming from area 18, while in the cat
projections coming from area 17 were stabilized; they were, however, the only ones
studied.
To some extent, these differences may reflect the particular emphasis of the different
studies. However, they may also be related to differences in the organization of the
visual system of monkeys, cats and rodents and in particular to the different degree
of crossing of the optic pathways in these three species. In addition, in rodents but
not in cats, the callosal connections contribute significantly to the binocularity of
cortical neurons (see Innocenti 1986 for references). Differences in the function of
callosal connections and in their mode of development, in particular for the monkey
(see Sect. 3.1), could also account for differences in the results of peripheral
lesions.
To what extent the concept of a role for the periphery and/or sensory experience in
callosal maturation can be generalized is unclear. Auditory callosal connections
appear not to be modified by neonatal bilateral destruction of the cochlea (Brugge
etal. 1983). Similarly, the development of the transient auditory to visual
connections is not significantly modified by bilateral enucleation of the eyes
(Innocenti et al. 1988).
In rodents, callosal connections develop before eye opening suggesting that the
changes after peripheral lesion may not be due to altered visual experience (see for
discussion Rhoades and Fish 1983; Olavarria et al. 1987). In the cat, however,
binocular visual deprivation by eyelid suture, a condition which prevents form
vision but not the detection of changes in diffuse illumination (Innocenti and Frost
1980; Innocenti et al. 1985), dark rearing {(Frost and Moy 1989) and binocular eye
enucleation (Innocenti and Frost 1980) led to qualitatively and quantitatively
distinguishable abnormalities in the callosal connections, suggesting that integrity
of the periphery and vision may play distinct roles. As discussed above these results
do not exclude activity of retinal origin as a mechanism.
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Fig. 13. Computer reconstructions showing labeled callosal neurons in layers II-1V in a cat
(BD 1) raised with bilaterally sutured eyelids, and in another (BEE 13), which had been
binocularly enucleated on P2. Brains processed with DAB. Flattened representations of
postlateral and lateral gyri (corresponding to stippled area in the inset). Dotted lines indicate,
from left to right, fundi of the lateral, postlateral and suprasplenial sulci. The asterisks mark
the boundary between areas 17 (medially) and 18 (laterally).
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As in the visual deprivation experiments, peripheral lesions resulted in minor
changes of callosal connections, compared to their wealth at birth. Since most of the
enucleations were performed at birth, one possibility is that callosal connections are
too mature to be modified further, ie. that by birth the fate of most juvenile
projections is irreversibly determined. This possibility seems to be ruled out by the
finding that the stabilization is no greater in congenitally anophthalmic than in
neonatally enucleated mice and rats (Olavarria and Van Sluyters 1984; Olavarria
et al. 1988a).

Thus, even higher controls of the developmental selection of juvenile corticocortical
axons probably exist. Activity-based controls cannot “a priori” be ruled out. In
particular, the synchronization of EEG activity between the hemispheres in the
adult appears to be, at least to some extent, independent of caliosal connections
(Berlucchi 1966; Singer and Creutzfeldt 1969; Susic and Kovacevic 1974). If this is
the case in development, 2 “diffuse” cortical activator located below the cortex could
provide sufficient synchronous input to the hemispheres to stabilize a somewhat
normal compiement of callosal connections. A condition which presumably reduces
or eliminates this hypothetical activator as well as other possible controls of
thalamic origin is the transection of the thalamic radiation.

This experiment produced different resuits in different species and systems. In the
somatosensory system of the rat the callosal termination to SI was studied on the
side of a large thalamic lesion including the ventrobasal complex and was found to
be unaffected (Wise and Jones 1978). In contrast, a comparable study in the visual
system reported tangential expansion of the callosal terminal territory in 17/18
(Cusick and Lund 1982). In the hamster, transection of the optic radiation also
resulted, in the deafferented hemisphere, in expansion of the territory of callosal
termination, loss of the callosal projection from supragranular layers and mainten-
ance of the projection from the infragranular layers (Rhoades et al. 1987), This
finding seems to rule out the hypothesis that the expansion of the callosal terminal
territory found on the side of the remaining eye in the case of monocular enucleation
may be due to “abnormal instructions emanating from the thalamus ipsilateral to
the remaining eye” (Olavarria et al. 1987). Alternatively, the expansion of the
callosal terminal territory in both types of lesion may indicate that the intact
thalamus normally sharpens the tangential distribution of callosal axons, either
through a competitive interaction or through synchronous firing as proposed above.
On the other hand, the suggestion that the “initial development of callosal axon” by
supragranular callosal neurons, “may depend on thalamic input” (Rhoades et al.
1987) seems based on a somewhat implausible developmental mechanism whose
demonstration requires analysis of the callosal projections at short survival after the
lesion in order to rule out the alternative mechanism, i.e. that the callosal projections
from the 17/18 border are formed, but not maintained, in the absence of thalamic

< Fig. 13(continued). The neurons were projected onto a line running parallel to the pial

surface and 400 um deep; the line was divided into bins of 50 um and the number of neurons
in each bin represented by a corresponding number of vertical line segments. Each horizontal
row of line segments represents one section. Sites of injection are represented by dots on
the inset. (From Innocenti and Frost 1980)

33,



98 G.M. Innocenti

input. Contrary to what was found in the harster, similar experiments in the cat led
to maintenance of the projection from the deafferented to the intact hemisphere, but
striking reduction of the projection from the intact to the deafferented hemisphere
(Melzer et al. 1987).

Taken at face value, these differences may indicate that the stabilization of a juvenile
callosal axon depends in cats more on the thalamic input at the target and in rodents
more on the thalamic input at the origin of callosal axons. Unfortunately, the results
of neither experiment are easy to interpret since the transection of the optic radiation
interrupts not only the geniculocortical projection but also other subcortical
afferents to the visual cortex, and it also transects the axons of corticosubcortically
projecting neurons. The consequences of these lesions are unknown but may
differentially affect the development of callosal connections in the two species.

6.3 The Target

Although the role of the afferent periphery and/or visual experience on the
maturation of visual callosal connections appears well established, the mechanism
of action is far from being clear. One uncertainty is whether the afferents affect
callosal neurons and axons, or their target, or both. The recent work of Stanfield and
O’Leary (1985a) showed that occipital cortical neurons, presumably the same which
normally establish transient projections to the spinal cord, maintain this projection
if grafted in the somatomotor region from where the normal projection to the spinal
cord originates. If it couid be convincingly shown that the neurons which establish
maintained projections to the spinal cord are the same that would have established
the transient projection had they remained in the occipital cortex, these experiments
would strongly support the hypothesis that the tangential position rather than some
other “innate” quality of a cortical neuron may be critical in determining whether its
axon will be maintained or eliminated.

A number of experiments tested the possibility that the fate of a juvenile axon may
depend on events at its target and in particular on competition with other axons.
The task is difficult, since the fact that one projection is maintained when another is
experimentally eliminated is probably not sufficiently rigorous evidence that
competition occurs in normal development between the two projections (Guillery
1988). A modest stabilization of normally transient callosal axons from the forepaw
representation in SI to contralateral SII was obtained when the SI on the same side
was neonatally lesioned. Lesion of the remaining SII did not provoke a similar effect
nor did it increase the effects of the SI lesion {Caminiti and Innocenti 1981). These
experiments suggested that competition between callosal and ipsilateral axons from
SI to SII may affect survival of the former. Unfortunately, the possibility that the SI
lesion may also have modified the thalamic input to SII and that this might have
caused the abnormal stabilization of the callosal projection could not be
ruled out.

Stabilization of the transient cortical projection to the deep cerebelar nuclei was
obtained by neonatal lesions of the cerebellar cortex (Panneton 1986), suggesting
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The Development of Projections from Cerebral Cortex 99

that competition with the axons of the Purkinje cells may normally be involved in
the elimination. Unfortunately, as in the case of SI lesion, the possibility of more
indirect effects secondary to modifications of other inputs to the cerebellar nuclei or
even unspecific trophic effects of the lesion (see below) could not be ruled out. The

" fact that crossed corticothalamic and corticorubral projections are maintained into

adulthood in cats with neonatal unilateral cortical lesion (Leonard and Goldberg
1987) may also be interpreted as evidence that competition plays a role in the normal
elimination of this transient projection.

Intriguing evidence of activity-driven competition between visual callosal pro-
jections and thalamocortical projections or the neurons on which the latter impinge
was reported by Cynader et al. (1981), who raised monocularly deprived, split
chiasm kittens and reported loss of callosal inputs and probably of projections
originating in the hemisphere receiving from the deprived eye.

The studies above illustrate the characteristic difficuity of interpreting perturbation
experiments in complex systems with a network structure. Because it cannot be
excluded a priori that the local disturbance may have remote and cascading effects
elsewhere in the network, the network must be fully characterized both in its final
structure and in its development. Furthermore, since the function of the network can
condition its structure information about the latter is also necessary.

An attempt in this direction was made in a recent series of experiments (Innocenti
et al. 1987; Innocenti and Berbel 1989a, b; Assal et al. 1989) whose initial motiva-
tion was to study whether trophic dependence of transient axons on their transient
target existed, by means of the early destruction of the latter. Areas 17 and 18 of
newborn kittens were injected with ibotenic acid, an “axon-sparing” excitotoxin
which binds to aspartate receptors. Unexpectedly, these neonatal injections did not
provoke complete destruction of the cortex but rather its reorganization into a
microcortex consisting of neurons normally destined for layer IT and III, in the
absence of granular and infragranular layers. These neurons have not finished
migration at the time of injection and appear to be spared by the injection. The
structure of the microcortex is similar to that of microgyria, a congenital
malformation of the human cortex whose most probable cause appears to be an
ischemic insult around the end of the period of neuronal migration. The ibotenic
acid-induced microcortex possess several features of normal visual cortex, including
connections with the lateral geniculate and with other cortical areas and
orientation- and direction-specific responses to visual stimuli. Surprisingly, the
microcortex maintains the normally transient projections from ipsi- and
contralateral auditory cortex (Fig. 14) but not the transient projections from
contralateral area 17. The specificity and apparent long duration of the stabilization
suggests that it may not be due to generalized trophic effects of the lesion (for this
concept see Nieto Sampedro et al. 1983), although this possibility cannot be fully
ruled out in view of the increase in the number of astrocytes in the white matter
of the microcortex. It appears more probable that the absence of the granular and
infragranular layers is directly responsible for the stabilization. Layer VI or perhaps
subplate neurons may be more specifically involved, since parts of cortex where
only these structures are injured maintain axons from the auditory cortex.
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Fig. 14. Stabilization of projections from auditory cortex to frontal cortex in an adult cat in
which microcortical regions were created in arcas 17 and 18 by neonatal injections of ibotenic
acid. The microcortex was injected with wheat germ agglutinin—horseradish peroxidase (dot
in brain drawing; note narrower gyri in the right occipital cortex). The injection site is shown
by the hatching on the low-power frontal sections. Labeled neurons are shown in the auditory
areas (41 and A2) ipsi- and contralateral to the injection, which would normally have been
eliminated. (See Innocenti and Berbel 1990b for details)

6.4 Others

The factors discussed above are almost certainly not an exhaustive list of those
which may influence the fate of Juvenile axons. For example, lesioning the
superior colliculus was also found to maintain callosal projections which would
otherwise be eliminated (Mooney et al. 1984). If in the hamster, as in the cat, visual
callosal projections transfer information to the superior colliculus (Antonini et aj.
1979), probably by contacting corticocollicular projection neurons in layer V, this
finding may indicate that, in development, the fate of an axon is not only affected by
its target neurons but aiso, indirectly, by events affecting the neuronal population
to which the latter project.
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Factors intrinsic to the neuron undoubtedly can affect both formation and
maintenance of axonal arbors (Schneider et al. 1987). These factors may include
intrinsic differences among axonal branches in sustaining critical neuronal functions
such as survival and target recognition (Sharkey et al. 1986; Tolbert 1987).
General signals, in particular hormones, may play a role. Both the elimination of
exuberant callosal axons and the maturation of their cytoskeleton, ie. the expression
of the heavy neurofilament subunit, were prevented by hypothyroidism (Gravel and
Hawkes 1990). Gender may affect callosal size and shape in animals and man
(Berrebi et al. 1988; Clarke et al. 1989), suggesting a possible role of steroids in
callosal maturation.

Understanding the respective roles of the factors discussed above and their
interactions will be not be an easy task. But it may be a worthwhile one. Failures
in the elimination of normally transient projections may occur in circumstances
other than the well-documented situations described above, in for example
an experimental model of the fetal alcohol syndrome (Miller 1987) or even in
schizophrenia (Feinberg 1982). The opposite type of pathology, i.e. an exaggerated
elimination of axons in pathways of cortical origin such as the corpus callosum and
the pyramidal tract, can also occur (Fig. 15) and might have a genetic origin (Lyon
et al. 1990).

7 Conclusions

One may wonder if, besides their contribution to the understanding of the
development of cerebral cortex, and therefore ultimately of higher brain functions,
the studies above may also be relevant for the old and more general problem of the
formation of neural connections.

Certainly, the formation of exuberant projections linking in a transient way neural
structures which will be disconnected in the adult is not restricted to the cerebral
cortex. For example, major transient retinofugal (Land and Lund 1979; McLoon
and Lund 1982; Frost 1984; Bagnoli et al. 1987 inter alios) and retinopetal (Clarke
and Cowan 1976; O’Leary and Cowan 1982; Catsicas et al. 1987) projections have
been described, together with others at higher levels in the visual pathway (Stein
et al. 1985). Although some of these projections may not involve the formation of
long transient axons but only of locally widespread terminal arbors (Rakic 1976;
Sretavan and Shatz 1987), the regulation of the survival of some of these projections
appears to obey some of the same factors, for example competition and activity,
which are crucial in the development of cortical connectivity (Rakic 1981; Frost
1986; Sretavan et al. 1988). One of the fascinating perspectives emerging from these
studies is that of redirecting major sensory pathways within the brain with at least
partially preserved function (Frost and Metin 1985).

The artificial control of developmental exuberance by selective lesions, con-
strained sensory experience, chemical manipulations and grafting, in addition to
the more obvious potential of genetic manipulations, make a new type of “neuronal
engineering” possible, and through the latter the repair of the developing and adult
brain.
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Fig. 15. A case of human congenital atrophy of the corpus caliosum accompanied by atrophy
of the white matter and absence of the pyramidal tract, considered to be a primary disorder of
axonal development, occurring during the late fetal and early postnatal period, i.e. roughly
during the time when normal elimination of cortical projections is suspected to occur in man
(see Fig. 10). Girl deceased at 10 months. Coronal sections (dorsal is up, medial to the left) of
the hemispheres. Myelin stain. Notice the white matter atrophy in the gyrus cinguli and the
extremely thin, but myelinated corpus callosum. No Probst bundle exists, and the pathology
is therefore different from the classical agenesis of the corpus callosum. This anomaly may bea
pathological exaggeration of the normal developmental elimination of cortical axons,
possibly a cytoskeletal defect. (From Lyon et al. 199}

Still, one seems to be only nagging at the main theoretical question: to what extent
is brain connectivity determined by prespecified axon-target recognition
mechanisms?

At first glance, the development by exuberance of many neural connections seems to
exclude prespecification as a plausible mechanism for their formation. Indeed, this
mode of development seems at odds with the parsimonious and infailible growth to
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the target that prespecification, in particular chemoaffinity, seems to imply (see also
Innocenti 1988, for discussion). Furthermore, the selection of juvenile axons for
maintenance or elimination depend on multiple factors, including functional
criteria whose logic seems hierarchically higher than that of the molecular
interactions at the site of neuron-target interaction.

Appealing as it may be, this view of neural development must nevertheless be
qualified by several other considerations. First, in some systems, projections
topographically similar to those of the adult are established from the beginning. This
is the case with afferent projections to the cerebellum (Sotelo et al. 1984; Arsenio
Nunes and Sotelo 1985; Mariani et al. 1987), although recently transient pro-
jections to this structure were found as well (Bower and Payne 1987). In the case of
neuromuscular connections, the elimination of multiple innervation results only
in small topographical rearrangements (Bennett 1987). Thus, in these systems,
some kind of “prespecification” cannot be excluded and its role may be
preponderant in the formation of the connections. Second, even in the case of
corticofugal projections, where exuberance is impressive, there are early signs of
specificity in the projection, including topographic specificity. Third, the possibility
that some “preformed” specific cell recognition mechanism, presumably chemical in
nature, may be involved in the selection of the juvenile connections cannot be
excluded, although contrary to what chemospecificity theories suggest, it probably
does not play the primary role.

Possibly the most important lesson of the developmental studies of cortical
connectivity is the demonstration that no unique mechanisim is responsible for the
final shape of a neural circuit. Possibly, like the brain itself, the mode of its
development is the piecemeal product of pragmatic evolution. In the course of
phylogenesis, the complexity of regulatory developmental mechanisms may have
increased because new mechanisms were introduced and were maintained when and
where they had adaptive value.

The isolation and analysis of fragments of the whole developmental process is
certainly a legitimate procedure, as far as these pieces can then be modeled in the
complex network of causal interactions they belong to. This consideration may
warn against the continually resurrected reductionistic vs holistic sectarianism in
the field of science.
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