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We had previously shown that regularization principies lead to ap-
proximation schemes that are equivalent to networks with one layer
of hidden units, called regularization networks. In particular, standard
smoothness functionals lead to a subclass of regularization networks,
the well known radial basis functions approximation schemes. This
paper shows that regularization networks encompass a much broader
range of approximation schemes, including many of the popular gen-
eral additive models and some of the neural networks. In particular,
we introduce new classes of smoothness functionals that lead to differ-
ent classes of basis functions. Additive splines as well as some tensor
product splines can be obtained from appropriate classes of smooth-
ness functionals. Furthermore, the same generalization that extends
radial basis functions (RBF) to hyper basis functions (HBF) also leads
from additive models to ridge approximation models, containing as
special cases Breiman’s hinge functions, some forms of projection pur-
suit regression, and several types of neural networks. We propose to
use the term generalized regularization networks for this broad class of
approximation schemes that follow from an extension of regulariza-
tion. In the probabilistic interpretation of regularization, the different
classes of basis functions correspond to different classes of prior prob-
abilities on the approximating function spaces, and therefore to differ-
ent types of smoothness assumptions. In summary, different multilayer
networks with one hidden layer, which we collectively call generalized
regularization networks, correspond to different classes of priors and
associated smoothness functionals in a classical regularization prin-
ciple. Three broad classes are {1) radial basis functions that can be
generalized to hyper basis functions, (2) some tensor product splines,
and (3) additive splines that can be generalized to schemes of the type
of ridge approximation, hinge functions, and several perceptron-like
neural networks with one hidden layer.

Neural Computation 7, 219-269 (1995)  (© 1995 Massachusetts Institute of Technology
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1 Introduction

In recent years we and others have argued that the task of learning from
examples can be considered in many cases to be equivalent to multivari-
ate function approximation, that is, to the problem of approximating a
smooth function from sparse data, the examples. The interpretation of an
approximation scheme in terms of networks and vice versa has also been
extensively discussed (Barron and Barron 1988; Poggio and Girosi 1989,
1990a,b; Girosi 1992; Broomhead and Lowe 1988; Moody and Darken
1988, 1989; White 1989, 1990; Ripley 1994; Omohundro 1987; Kohonen
1990; Lapedes and Farber 1988; Rumelhart et al. 1986; Hertz et al. 1991,
Kung 1993; Sejnowski and Rosenberg 1987; Hurlbert and Poggio 1988;
Poggio 1975).

In a series of papers we have explored a quite general approach to
the problem of function approximation. The approach regularizes the ill-
posed problem of function approximation from sparse data by assuming
an appropriate prior on the class of approximating functions. Regular-
ization techniques (Tikhonov 1963; Tikhonov and Arsenin 1977; Morozov
1984; Bertero 1986; Wahba 1975, 1979, 1990} typically impose smoothness
constraints on the approximating set of functions. It can be argued that
some form of smoothness is necessary to allow meaningful generaliza-
tion in approximation type problems (Poggio and Girosi 1989, 1990). A
similar argument can also be used (see Section 9.1) in the case of classifi-
cation where smoothness is a condition on the classification boundaries
rather than on the input-output mapping itself. Our use of regulariza-
tion, which follows the classical technique introduced by Tikhonov, iden-
tifies the approximating function as the minimizer of a cost functional
that includes an error term and a smoothness functional, usually called a
stabilizer. In the Bayesian interpretation of regularization (see Kimeldorf
and Wahba 1971; Wahba 1990; Bertero et al. 1988; Marroquin et al. 1987;
Poggio et al. 1985) the stabilizer corresponds to a smoothness prior, and
the error term to a model of the noise in the data (usually gaussian and
additive).

In Poggio and Girosi (1989, 1990) and Girosi (1992) we showed that
regularization principles lead to approximation schemes that are equiv-
alent to networks with one “hidden” layer, which we call regulariza-
tion networks (RN). In particular, we described how a certain class of
radial stabilizers—and the associated priors in the equivalent Bayesian
formulation—lead to a subclass of regularization networks, the already-
known radial basis functions (Powell 1987, 1992; Franke 1982, 1987; Mic-
chelli 1986; Kansa 1990a,b; Madych and Nelson 1990a,b; Dyn 1987, 1991;
Hardy 1971, 1990; Buhmann 1990; Lancaster and Salkauskas 1986; Broom-
head and Lowe 1988; Moody and Darken 1988, 1989; Poggio and Girosi
1990; Girosi 1992). The regularization networks with radial stabilizers
we studied include many classical one-dimensional (Schumaker 1981; de
Boor 1978) as well as multidimensional splines and approximation tech-
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niques, such as radial and nonradial gaussian, thin-plate splines (Duchon
1977; Meinguet 1979; Grimson 1982; Cox 1984; Eubank 1988) and multi-
quadric functions (Hardy 1971, 1990). In Poggio and Girosi (1990a,b) we
extended this class of networks to Hyper Basis Functions (HBF). In this
paper we show that an extension of regularization networks, which we
propose to call Generalized Regularization Networks (GRN), encompasses
an even broader range of approximation schemes including, in addition
to HBF, tensor product splines, many of the general additive models,
and some of the neural networks. As expected, GRN have approxima-
tion properties of the same type as already shown for some of the neural
networks (Girosi and Poggio 1990a; Cybenko 1989; Hornik et al. 1989;
White 1990; Irie and Miyake 1988, Funahashi 1989; Barron 1991, 1994;
Jones 1992; Mhaskar and Micchelli 1992, 1993; Mhaskar 1993a,b).

The plan of the paper is as follows. We first discuss the solution of
the variational problem of regularization. We then introduce three differ-
ent classes of stabilizers—and the corresponding priors in the equivalent
Bayesian interpretation—that lead to different classes of basis functions:
the well-known radial stabilizers, tensor-product stabilizers, and the new
additive stabilizers that underlie additive splines of different types. It is
then possible to show that the same argument that extends radial basis
functions to hyper basis functions also leads from additive models to
some ridge approximation schemes, defined as

K
flxy=3_ hu(w,-x)
pe=1
where h, are appropriate one-dimensional functions.

Special cases of ridge approximation are Breiman's hinge functions
(1993), projection pursuit regression (PPR) (Friedman and Stuezle 1981;
Huber 1985; Diaconis and Freedman 1984; Donoho and Johnstone 1989;
Moody and Yarvin 1991), and multilayer perceptrons (Lapedes and Far-
ber 1988; Rumelhart ef al. 1986; Hertz et al. 1991; Kung 1993; Sejnowski
and Rosenberg 1987). Simple numerical experiments are then described
to illustrate the theoretical arguments.

In summary, the chain of our arguments shows that some ridge ap-
proximation schemes are approximations of regularization networks with
appropriate additive stabilizers. The form of k, depends on the stabi-
lizer, and includes in particular cubic splines (used in typical implemen-
tations of PPR) and one-dimensional gaussians. Perceptron-like neural
networks with one hidden layer and with a gaussian activation function
are included. 1t seems impossible, however, to directly derive from regu-
larization principles the sigmoidal activation functions typically used in
feedforward neural networks. We discuss, however, in a simple example,
the close relationship between basis functions of the hinge, the sigmoid
and the gaussian type.

The appendices deal with observations related to the main results of
the paper and more technical details.
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2 The Regularization Approach to the Approximation Problem ___ _

Suppose that the set ¢ = {(x,, ;) € R x R}¥,, of data has been obtained by
random sampling a function f, belonging to some space of functions X
defined on R?, in the presence of noise, and suppose we are interested in
recovering the function f, or an estimate of it, from the set of data &. This
problem is clearly ill-posed, since it has an infinite number of solutions.
To choose one particular solution we need to have some a priori knowl-
edge of the function that has to be reconstructed. The most common form
of a priori knowledge consists in assuming that the function is smootk,
in the sense that two similar inputs correspond to two similar outputs.
The main idea underlying regularization theory is that the solution of
an ill-posed problem can be obtained from a variational principle, which
contains both the data and prior smoothness information. Smoothness is
taken into account by defining a smoothness functional ¢(f] in such a way
that lower values of the functional correspond to smoother functions.
Since we look for a function that is simultaneously close to the data and
also smooth, it is natural to choose as a solution of the approximation
problem the function that minimizes the following functional:

H{f] = ; [F(x:) = vi)* + Ag[f] 2.1)

where A is a positive number that is usually called the regularization pa-
rameter. The first term is enforcing closeness to the data, and the second
smoothness, while the regularization parameter controls the trade-off be-
tween these two terms, and can be chosen according to cross-validation
techniques (Allen 1974; Wahba and Wold 1975; Golub et al. 1979: Craven
and Wahba 1979; Utreras 1979; Wahba 1985) or to some other principle,
such as structural risk minimization (Vapnik 1988).

It can be shown that for a wide class of functionals ¢, the solutions
of the minimization of the functional (2.1) all have the same form. Al-
though a detailed and rigorous derivation of the solution of this problem
is out of the scope of this paper, a simple derivation of this general re-
sult is presented in Appendix A. In this section we just present a family
of smoothness functionals and the corresponding solutions of the varia-
tional problem. We refer the reader to the current literature for the math-
ematical details (Wahba 1990; Madych and Nelson 1990a; Dyn 1987).

We first need to give a more precise definition of what we mean by
smoothness and define a class of suitable smoothness functionals. We
refer to smoothness as a measure of the “oscillatory” behavior of a func-
tion. Therefore, within a class of differentiable functions, one function
will be said to be smoother than another one if it oscillates less. If we
look at the functions in the frequency domain, we may say that a func-
tion is smoother than another one if it has less energy at high frequency
(smaller bandwidth). The high frequency content of a function can be

W
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measured by first high-pass filtering the function, and then measuring
the power, that is the L, norm, of the result. In formulas, this suggests
defining smoothness functionals of the form

slfl = [, ds s (2.2)

where the tilde indicates the Fourier transform, G is some positive func-
tion that tends to zero as ||s|| — oo (so that 1/G is an high-pass filter)
and for which the class of functions such that this expression is well de-
fined is not empty. For a well defined class of functions G (Madych and
Nelson 1990a; Dyn 1991; Dyn et al. 1989) this functional is a seminorm,
with a finite dimensional nult space A/. The next section will be devoted
to giving examples of the possible choices for the stabilizer ¢. For the
moment we just assume that it can be written as in equation 2.2, and
make the additional assumption that G is symmetric, s0 that its Fourier
transform G is real and symmetric. In this case it is possible to show (see
Appendix A for a sketch of the proof) that the function that minimizes
the functional (2.1) has the form

N k
fix) = S aG(x — xi) + 3 datalX) (2.3)
=1

=]

where {1, }%_, is a basis in the k-dimensional null space N of the func-
tional ¢, that in most cases is a set of polynomials, and therefore will be
referred to as the “polynomial term” in equation 2.3. The coefficients d,,
and ¢, depend on the data, and satisfy the following linear system:

G+ Al)c+ ¥'d=y (2.4)
Yc=10 (2.5)

where I is the identity matrix, and we have defined

(yh = ¥ (¢} =ci, (d), = di
(G)r'; = Gi{x; - xi): (W)a = 'd}u(x,-)

Notice that if the data term in equation 2.1 is replaced by oL VI (x) =il
where V is any differentiable function, the solution of the variational
principle has still the form 2.3, but the coefficients cannot be found any
more by solving a linear system of equations (Girosi 1991; Girosi et al.
1991).

The existence of a solution to the linear system shown above is guar-
anteed by the existence of the solution of the variational problem. The
case of A = 0 corresponds to pure interpolation. In this case the existence
of an exact solution of the linear system of equations depends on the
properties of the basis function G (Micchelli 1986).
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The approximation scheme of equation 2.3 has a simple interpretation
in terms of a network with one layer of hidden units, which we call a
Regularization Network (RN). Appendix B describes the extension to the
vector output scheme.

In summary, the argument of this section shows that using a regular-
ization network of the form 2.3, for a certain class of basis functions G,
is equivalent to minimizing the functional 2.1. In particular, the choice

of G is equivalent to the corresponding choice of the smoothness func-
tional 2.2.

2.1 Dual Representation of Regularization Networks. Consider an ap-
proximating function of the form 2.3, neglecting the “polynomial term”
for simplicity. A compact notation for this expression is

fix) =c-g(x) (2.6)

where g(x) is the vector of functions such that [8(x)li = G{x — x;). Since
the coefficients c satisfy the linear system 2.4, solution 2.6 becomes

fl) =(G+ A"y - g(x)

We can rewrite this expression as

N
fix) =3 yibi{x) = y - b(x) 2.7)
i=1

in which the vector b(x) of basis functions is defined
b(x) = (G + Al)~'g(x) (2.8)

and now depends on all the data points and on the regularization pa-
rameter A. The representation 2.7 of the solution of the approximation
problem is known as the dual of equation 2.6, and the basis functions
b.(x) are called the equivalent kernels, because of the similarity between
equation 2.7 and the kernel smoothing technique that we will define in
Section 2.2 (Silverman 1984; Hirdle 1990; Hastie and Tibshirani 1990).
While in equation 2.6 the “difficult” part is the computation of the vector
of coefficients c,, the set of basis functions g(x) being easily built, in equa-
tion 2.7 the “difficult” part is the computation of the basis functions b(x),
the coefficients of the expansion being explicitly given by the ;. No-
tice that b(x) depends on the distribution of the data in the input space
and that the kernels b(x), unlike the kernels G{x — x;}, are not translated
replicas of the same kernel. Notice also that, as shown in Appendix B,
a dual representation of the form 2.7 exists for all the approximation
schemes that consists of linear superpositions of arbitrary numbers of
basis functions, as long as the error criterion that is used to determine
the parameters of the approximation is quadratic.

The dual representation provides an intuitive way of looking at the
approximation scheme 2.3: the value of the approximating function at an
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evaluation point x is explicitly expressed as a weighted sum of the values
y, of the function at the examples x;. This concept is not new in approx-
imation theory, and has been used, for example, in the theory of quasi-
interpolation. The case in which the data points {x;} coincide with the
multi-integers Z9 where Z is the set of integers number, has been exten-
sively studied in the literature, and it is also known as Schoenberg’s approx-
imation, (Schoenberg 1946a, 1969; Rabut 1991, 1992; Madych and Nelson
1990a; Jackson 1988; de Boor 1990; Buhmann 1990, 1991; Dyn et al. 1989).
In this case, an approximation f* to a function f is sought of the form

frix) =3 fieix—j) (2.9)

jeZ¢

where ¥ is some fast-decaying function that is a linear combination of
radial basis functions. The approximation scheme 2.9 is therefore a lin-
ear superposition of radial basis functions in which the functions ¥(x — j)
play the role of equivalent kernels. Quasi-interpolation is interesting be-
cause it could provide good approximation without the need of solving
complex minimization problems or solving large linear systems. For a
discussion of such noniterative training algorithms see Mhaskar (1993b)
and references therein.

Although difficult to prove rigorously, we can expect the kernels b;{x)
to decrease with the distance of the data points x; from the evalua-
tion point, so that only the neighboring points affect the estimate of
the function at x, providing therefore a “local” approximation scheme.
Even if the original basis function G is not “local,” like the multiquadric
G(x) = /1 + lix|i?, the basis functions bi(x) are bell shaped, local func-
tions, whose locality will depend on the choice of the basis function G,
on the density of data points, and on the regularization parameter A. This
shows that apparently “global” approximation schemes can be regarded
as local, memory-based techniques (see equation 2.7) (Mhaskar 1993b). It
should be noted however, that these techniques do not have the highest
possible degree of locality, since the parameter that controls the locality
is the regularization parameter A, that is the same for all the kernels. It is
possible to devise even more local techniques, in which each kernel has
a parameter that controls its locality (Bottou and Vapnik 1992; Vapnik,
personal communication).

When the data are equally spaced on an infinite grid, we expect the
basis functions b;(x) to become translation invariant, and therefore the
dual representation 2.7 becomes a convolution filter. For a study of the
properties of these filters in the case of one-dimensional cubic splines see
the work of Silverman (1984}, who gives explicit results for the shape of
the equivalent kernel.

Let us consider some simple experiments that show the shape of the
equivalent kernels in specific situations. We first considered a data set
composed of 36 equally spaced points on the domain [0,1] x [0, 1], at the
nodes of a regular grid with spacing equal to 0.2. We use the multiquadric
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Figure 1: (a) The multiquadric function. (b) An equivalent kernel for the mul-
tiquadric basis function in the cases of two-dimensional equally spaced data.
(c,d,e) The equivalent kernels by, bs, and bs, for nonuniform one-dimensional
multiquadric interpolation (see text for explanation).

basis functions G(x) = \/o2 + ||x||2, where o has been set to 0.2. Figure 1a
shows the original multiquadric function, and Figure 1b the equivalent
kernel by, in the case of A =, where, according to definition 2.8

36
bilx) = 3 (G™")yG(x — x,)
=i
All the other kernels, except those close to the border, are very simi-
lar, since the data are equally spaced, and translation invariance holds
approximately.

Consider now a One-dimensional example with a multiquadric basis
function:

Gix) = o2 4+ x2
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The data set was chosen to be a nonuniform sampling of the interval
[0,1], that is the set

{0.0,0.1,0.2,0.3,0.4,0.7,1.0}

In Figure 1c, d, and e we have drawn, respectively, the equivalent ker-
nels b;, bs, and b, under the same definitions. Notice that all of them
are bell-shaped, although the original basis function is an increasing,
cup-shaped function. Notice, moreover, that the shape of the equivalent
kernels changes from by to bs, becoming broader in moving from a high
to low sample density region. This phenomenon has been shown by Sil-
verman (1984) for cubic splines, but we expect it to appear in much more
general cases.

The connection between regularization theory and the dual represen-
tation 2.7 becomes clear in the special case of “continuous” data, for
which the regularization functional has the form

Hifl = [ dx [f(x) = y0oF + Al ] @10)

where y(x) is the function to be approximated. This functional can be
intuitively seen as the limit of the functional 2.1 when the number of
data points goes to infinity and their spacing is uniform. It is easily
seen that, when the stabilizer ¢|f] is of the form 2.2, the solution of the
regularization functional 2.10 is

f(x) = yix) = B(x) (2.11)
where B(x) is the Fourier transform of

B(s) = S8
A+ G(s)

[see Poggio ef al. (1988) for some examples of B(x)]. The solution 2.11 is
therefore a filtered version of the original function y(x) and, consistently
with the results of Silverman (1984), has the form 2.7, where the equiv-
alent kernels are translates of the function B(x) defined above. Notice
the effect of the regularization parameter: for A = 0 the equivalent kernetl
B(x) is a Dirac delta function, and f(x) = y(x) (no noise), while for A — oo
we have B(x) = G(x)/A and f = G/X +y (a low-pass filter).

The dual representation is illuminating and especially interesting for
the case of a multi-output network—approximating a vector field—that
is discussed in Appendix B.

2.2 Normalized Kernels. An approximation technique very similar
to radial basis functions is the so-called normalized Radial Basis Functions



(Moody and Darken 1988, 1989). A normalized radial basis functions
expansion is a function of the form

- Z:;:l CQG(X B tu)
) = 0

The only difference between equation 2.12 and radial basis functions is
the normalization factor in the denominator, which is an estimate of the
probability distribution of the data. A discussion about the relation be-
tween normalized gaussian basis function networks, gaussian mixtures,
and gaussian mixture classifiers can be found in the work of Tresp et al.
{(1993). In the rest of this section we show that a particular version of
this approximation scheme has again a tight connection to regularization
theory.

Let P(x,y) be the joint probability of inputs and outputs of the net-
work, and let us assume that we have a sample of N pairs {(xi, i} Y|
randomly drawn according to P. Our goal is to build an estimator (a
network) f that minimizes the expected risk:

(2.12)

1l = [ axayPix,y)iy - f 2.13)

This cannot be done, since the probability P is unknown, and usually the
empirical risk

N
Templf] = }Vg[y CFx)P (2.14)

is minimized instead. An alternative consists in obtaining an approxima-
tion of the probability P(x, y) first, and then In minimizing the expected
risk. If this option is chosen, one could use the regularization approach
to probability estimation (Vapnik and Stefanyuk 1978; Aidu and Vapnik
1989; Vapnik 1982) that leads to the well-known technique of Parzen win-
dows. A Parzen window estimator P* for the probability distribution of
a set of data {z;}, has the form

where & is an appropriate kernel, for example a gaussian, whose L,
norm is 1, and where f is a3 positive parameter, that, for simplicity, we
set to 1 from now on. If the joint probability P(x, y) in the expected risk
2.13 is approximated with a Parzen window estimator P*, we obtain an
approximated expression for the expected risk, I*[f], that can be explicitly
minimized. In order to show how this can be done, we notice that we
need to approximate the probability distribution P(x,y), and therefore

10
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the random variable z of equation 2.15 is z = (x,y). Hence, we choose a
kernel of the following form:'

®(z) = K(|Ix|DKiy)

where K is a standard one-dimensional, symmetric kernel, like the gaus-
sian. The Parzen window estimator to P(x,y) is therefore

Piy) = 5 K (I = ) Ky = ) 216

1=1

An approximation to the expected risk is therefore obtained as

N
Pl = 53 [ dxdyK (i - ) Ky - vly = F0)F

i=1
In order to find an analytical expression for the minimum of I'[f] we
impose the stationarity constraint:

rif)
sy O

that leads to the following equation:

N
S~ [ dbdyK (lx = ) Kl = y)ly = f()6(x — ) = 0

Performing the integral over x, and using the fact that ||K||,, = 1 we
obtain

) = S K U= ) [dyKly — yily

i K (fhx = xill)
Performing a change of variable in the integral of the previous expression

and using the fact that the kernel K is symmetric, we finally conclude
that the function that minimizes the approximated expected risk is

_ T yiK(ix = xl) 2.17
F) = SR K= oW @17

The right-hand side of the equation converges to f when the number
of examples goes to infinity, provided that the scale factor h tends to
zero at an appropriate rate. This form of approximation is known as
kernel regression, or Nadaraya-Watson estimator, and it has been the subject
of extensive study in the statistics community (Nadaraya 1964; Watson
1964; Rosenblatt 1971; Priestley and Chao 1972; Gasser and Miiller 1985;
Devroye and Wagner 1980). A similar derivation of equation 2.17 has
been given by Specht (1991), but we should remark that this equation

'Any kernel of the form ®(z) = K(x,y) in which the function K is even in each of
the variables x and y would lead to the same conclusions that we obtain for this choice.

[
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is usually derived in a different way, within the framework of locally
weighted regression, assuming a locally constant model (Hardle 1990)
with a local weight function K.

Notice that this equation has the form of equation 2.12, in which the
centers coincide with the examples, and the coefficients ¢, are simply the
values y, of the function at the data points X On the other hand, the
equation is an estimate of f, which is linear in the observations y, and
has therefore also the general form of equation 2.7.

The Parzen window estimator, and therefore expression 2.17, can be
derived in the framework of regularization theory (Vapnik and Stefanyuk
1978: Aidu and Vapnik 1989; Vapnik 1982) under a smoothness assump-
tion on the probability distribution that has to be estimated. This means
that in order to derive equation 2.17, a smoothness assumption has to
be made on the joint probability distribution P(x.y), rather than on the
regression function as in 2.2.

3 Classes of Stabilizers

In the previous section we considered the class of stabilizers of the form

I i
ofl = [ ds % G

and we have seen that the solution of the minimization problem always
has the same form. In this section we discuss three different types of
stabilizers belonging to the class 3.1, corresponding to different prop-
erties of the basis functions G. Each of them corresponds to difterent
a priori assumptions on the smoothness of the function that must be
approximated.

3.1 Radial Stabilizers. Most of the commonly used stabilizers have
radial symmetry, that is, they satisfy the following equation:

ol f(x)} = oif (Rx)]

for any rotation matrix R. This choice reflects the a priori assumption that
all the variables have the same relevance, and that there are no privileged
directions. Rotation invariant stabilizers correspond to radial basis func-
tion G(J|x||). Much attention has been dedicated to this case, and the cor-
responding approximation technique is known as radial basis functions
(Powell 1987, 1990; Franke 1982, 1987; Micchelli 1986; Kansa, 1990a,b;
Madych and Nelson 1990a; Dyn 1987, 1991; Hardy 1971, 1990; Buhmann
1990: Lancaster and Salkauskas 1986; Broomhead and Lowe 1988; Moody
and Darken 1988, 1989; Poggio and Girosi 1990; Girosi 1992). The class
of admissible radial basis functions is the class of conditionally positive
definite functions (Micchelli 1986) of any order, since it has been shown

12
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(Madych and Nelson 1990a; Dyn 1991) that in this case the functional
of equation 3.1 is a seminorm, and the associated variational problem is
well defined. All the radial basis functions can therefore be derived in
this framework. We explicitly give two important exampies.

3.1.1 "Duchon Mudtidimensional Splines. Duchon (1977) considered mea-
sures of smoothness of the form

dlfl = [, ds lsi*"IF(s)7

In this case G(s) = 1/||s||*" and the corresponding basis function is there-
fore

2m—il . .
Gix) = ||xi|2m‘dln [Ix]| if 2m >.d and d is even (3.2)
fi| otherwise

In this case the null space of ¢(f] is the vector space of polynomials of
degree at most m in d variables, whose dimension is

o fd+m-=1
()

These basis functions are radial and conditionally positive definite, so that
they represent just particular instances of the well known radial basis
functions technique (Micchelli 1986; Wahba 1990). In two dimensions,
for m = 2, equation 3.2 yields the so-called “thin plate” basis function
G(x) = |]x}?In{|x§f (Harder and Desmarais 1972; Grimson 1982).

3.1.2 The Gaussian. A stabilizer of the form
olfl = [, dse T 1f(s)F

where § is a fixed positive parameter, has G(s) = ¢”"*/# and as ba-
sis function the gaussian function (Poggio and Girosi 1989; Yuille and
Grzywacz 1988). The gaussian function is positive definite, and it is well
known from the theory of reproducing kernels (Aronszajn 1950) that pos-
itive definite functions {Stewart 1976) can be used to define norms of the
type 3.1. Since ¢|{f] is a norm, its null space contains only the zero ele-
ment, and the additional null space terms of equation 2.3 are not needed,
unlike in Duchon splines. A disadvantage of the gaussian is the appear-
ance of the scaling parameter 3, while Duchon splines, being homoge-
neous functions, do not depend on any scaling parameter. However, it is
possible to devise good heuristics that furnish suboptimal, but still good,
values of [, or good starting points for cross-validation procedures.

i3,



3.1.3 Other Basis Functions. Here we give a list of other functions that
can be used as basis functions in the radial basis functions technique, and
that are therefore associated with the minimization of some functional.
In the following, we indicate as “p.d.” the positive definite functions,
which do not need any polynomial term in the solution, and as “c.p.d.
k" the conditionally positive definite functions of order k, which need
a polynomial of degree k in the solution. It is a well known fact that
positive definite functions tend to zero at infinity whereas conditionally
positive functions tend to infinity.

Glr) =e#" Gaussian, p.d.

Glry=vrt+¢ multiquadric, c.p.d. 1

. 1 - * .
Gir) = oA inverse multiquadric, p.d.
G(r) = r*+! thin plate splines, c.p.d. 1
Gi{r)=r"Inr thin plate splines, c.p.d. n

3.2 Tensor Product Stabilizers. An alternative to choosing a radial

function G(s) in the stabilizer 3.1 is a tensor product type of basis function,
that is a function of the form

G(s) = L &(s;) (3.3)

where s; is the jth coordinate of the vector s, and g is an appropriate one-
dimensional function. When g is positive definite the functional ¢{f] is
clearly a norm and its null space is empty. In the case of a conditionally
positive definite function the structure of the null space can be more
complicated and we do not consider it here. Stabilizers with G(s) as in
equation 3.3 have the form

|f(s)P
Qb - ds ————
0= 4 T 363
which leads to a tensor product basis function
G(x) = T_,g(x))

where x; is the jth coordinate of the vector x and g(x) is the Fourier

transform of §(s). An interesting example is the one corresponding to
the choice

- 1
8s) = 1 + s?
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which leads to the basis function

Gx) = el = ¢~ Zomr bl _ o=l
This basis function is interesting from the point of view of VLS| imple-
mentations, because it requires the computation of the L; norm of the
input vector x, which is usually easier to compute than the Euclidean
norm L,. However, this basis function is not very smooth, and its perfor-
mange in practical cases should first be tested experimentally. Notice that
if the approximation is needed for computing derivatives smoothness of
an appropriate degree is clearly a necessary requirement (see Poggio et al.
1988). We notice that the choice

-~ 2

gls)=¢"*

leads again to the gaussian basis function G(x) = e~ I,

3.3 Additive Stabilizers. We have seen in the previous section how
some tensor product approximation schemes can be derived in the frame-
work of regularization theory. We now will see that it is also possible to
derive the class of additive approximation schemes in the same framework,
where by additive approximation we mean an approximation of the form

d
fix}=>"f.x") (3.4)

=1

where x* is the pth component of the input vector x and the f. are one-
dimensional functions that will be defined as the additive components of f
(from now on Greek letter indices will be used in association with compo-
nents of the input vectors). Additive models are well known in statistics
(Hastie and Tibshirani 1986, 1987, 1990; Stone 1985: Wahba 1990; Buja
et al. 1989) and can be considered as a generalization of linear models.
They are appealing because, being essentially a superposition of one-
dimensional functions, they have a low complexity, and they share with
linear models the feature that the effects of the different variables can be
examined separately.

The simplest way to obtain such an approximation scheme is to choose
if possible, a stabilizer that corresponds to an additive basis function:

o’

d
G(x) = > b.9(x") (3.5)

pr=1

where 6, are certain fixed parameters and g is a one-dimensional basis
function. Such a choice would lead to an approximation scheme of the
form 3.4 in which the additive components fu have the form

N
(") = 6,3 ciglx* — x*) (3.6)
=1

[s .
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Notice that the additive components are not independent at this stage,
since there is only one set of coefficients ¢, We postpone the discussion
of this point to Section 4.2.

We would like then to write stabilizers corresponding to the basis
function 3.5 in the form 3.1, where G(s) is the Fourier transform of G(x).
We notice that the Fourier transform of an additive function like the one
in equation 3.5 exists only in the generalized sense (Gelfand and Shilov
1964), involving the § distribution. For example, in two dimensions we
obtain

Gls) = 0,3(5:)8(s,) + 6,3(s,)6(s,) (3.7)

and the interpretation of the reciprocal of this expression is delicate.
However, almost additive basis functions can be obtained if we approx-
imate the delta functions in equation 3.7 with gaussians of very small
variance. Consider, for example in two dimensions, the stabilizer

()2
- 3
o= [, ds B3 (5)e BT 4 G 3(s, Je- B8

This corresponds to a basis function of the form
Glx,y) = 0.8(x)e™ " + B,9(y)e~ (3.9)

In the limit of ¢ going to zero the denominator in expression 3.8 ap-
proaches equation 3.7, and the basis function 3.9 approaches a basis
function that is the sum of one-dimensional basis functions. In this pa-
per we do not discuss this limit process in a rigorous way. Instead we
outline another way to obtain additive approximations in the framework
of regularization theory.

Let us assume that we know a priori that the function f that we want
to approximate is additive, that is

d
fOx) =3 fulx®)

n=1

We then apply the regularization approach and impose a smoothness
constraint, not on the function f as a whole, but on each single additive
component, through a regularization functional of the form (Wahba 1990;
Hastie and Tibshirani 1990):

N d 2 ) P 2
HIf = 3 [y, -3 fua } 23 [ ae

i=} n=1 u=1 "4

where f, are given positive parameters that allow us to impose different
degrees of smoothness on the different additive components. The min-

16
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imizer of this functional is found with the same technique described in
Appendix A, and, skipping null space terms, it has the usual form

N

f(x)= ZC,‘G(X - x;) (3.10)

=1

where

P o
Gix - x;) = 6.8(x" —x)
=1
as in equation 3.5.

We notice that the additive component of equation 3.10 can be written
as

N
fulxy =3 gl — ')
=1

where we have defined

Cf‘ = C,’H“
The additive components are therefore not independent because the pa-
rameters ¢, are fixed. If the 6, were free parameters, the coefficients ¢!
would be independent, as well as the additive components.

Notice that the two ways we have outlined for deriving additive ap-
proximation from regularization theory are equivalent. They both start
from a priori assumptions of additivity and smoothness of the class of
functions to be approximated. In the first technique the two assumptions
are woven together in the choice of the stabilizer (equation 3.8); in the
second they are made explicit and exploited sequentially.

4 Extensions: From Regularization Networks to Generalized
Regularization Networks

In this section we will first review some extensions of regularization net-
works, and then will apply them to radial basis functions and to additive
splines.

A fundamental problem in almost all practical applications in learning
and pattern recognition is the choice of the relevant input variables. It
may happen that some of the variables are more relevant than others, that
some variables are just totally irrelevant, or that the relevant variables are
linear combinations of the original ones. It can therefore be usefu! to work
not with the original set of variables x, but with a linear transformation of
them, Wx, where W is a possibly rectangular matrix. In the framework
of regularization theory, this can be taken into account by making the
assumption that the approximating function f has the form f(x) = F(Wx)
for some smooth function F. The smoothness assumption is now made

(7.
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directly on F, through a smoothness functional ¢[F| of the form 3.1. The
regularization functional is expressed in terms of F as

N

HIF] = 3 yi — F(z,))* + AolF]

=1

where z; = Wx;. The function that minimizes this functional is clearly,
accordingly to the results of Section 2, of the form

N
Flz) = ZC.G(Z - 2z,)
=1

(plus eventually a polynomial in z). Therefore the solution for f is

f(x) = F(Wx) = ic,G(Wx - Wx,) 4.1)

=1

This argument is rigorous for given and known W, as in the case of
classical radial basis functions. Usually the matrix W is unknown, and
it must be estimated from the examples. Estimating both the coefficients
¢; and the matrix W by least squares is usually not a good idea, since
we would end up trying to estimate a number of parameters that is
larger than the number of data points (though one may use regularized
least squares). Therefore, it has been proposed (Moody and Darken 1988,
1989; Broomhead and Lowe 1988; Poggio and Girosi 1989, 1990a) that the
approximation scheme of equation 4.1 be replaced with a similar one, in
which the basic shape of the approximation scheme is retained, but the
number of basis functions is decreased. The resulting approximating
function that we call the Generalized Regularization Network (GRN) is

f(x) = Z caG(Wx — Wt,,} 4.2)

a=1

where 11 < N and the centers t,, are chosen according to some heuristic, or
are considered as free parameters (Moody and Darken 1988, 1989; Poggio
and Girosi 1989, 1990a). The coefficients ¢, the elements of the matrix W,
and eventually the centers t,, are estimated according to a least squares
criterion. The elements of the matrix W could also be estimated through
cross-validation (Allen 1974; Wahba and Wold 1975; Golub et al. 1979;
Craven and Wahba 1979; Utreras 1979; Wahba 1985), which may be a
formally more appropriate technique.

In the special case in which the matrix W and the centers are kept
fixed, the resulting technique is one originally proposed by Broomhead
and Lowe (1988), and the coefficients satisfy the following linear equation

C'Ge = GTy

/8
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where we have defined the following vectors and matrices:
¥y = v. {€)a = Ca- (Gha = G(Wx; — Wt,)

This technique, which has become quite common in the neural network
community, has the advantage of retaining the form of the regularization
solution, while being less complex to compute. A complete theoretical
analysis has not yet been given, but some results, in the case in which the
matrix W is set to identity, are already available (Sivakumar and Ward
1991; Poggio and Girosi 1989).

The next sections discuss approximation schemes of the form 4.2 in
the cases of radial and additive basis functions.

4.1 Extensions of Radial Basis Functions. In the case in which the
basis function is radial, the approximation scheme of equation 4.2 be-
comes

f(x) = Z C“G(“X - tu”w)

a=1}

where we have defined the weighted norm
lIx|lw = xWTWx (4.3)

The basis functions of equation 4.2 are not radial any more, or, more
precisely, they are radial in the metric defined by equation 4.3. This
means that the level curves of the basis functions are not circles, but
ellipses, whose axis does not need to be aligned with the coordinate
axis. Notice that in this case what is important is not the matrix W
itself, but rather the symmetric matrix WTW. Therefore, by the Cholesky
decomposition, it is sufficient to consider W to be upper triangular. The
optimal center locations t,, satisfy the following set of nonlinear equations
(Poggio and Girosi 1990a,b):

_ Z: P.cuxi
P

where P are coefficients that depend on all the parameters of the network
and are not necessarily positive. The optimal centers are then a weighted
sum of the example points. Thus in some cases it may be more efficient to
“move” the coefficients P{' rather than the components of t, (for instance
when the dimensionality of the inputs is high relative to the number of
data points).

The approximation scheme defined by equation 4.2 has been dis-
cussed in detail in Poggio and Girosi (1990a) and Girosi (1992), so we
will not discuss it further. In the next section we will consider its ana-
logue in the case of additive basis functions.

t, =1 ..., n (4.4)
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4.2 Extensions of Additive Splines. In the previous sections we have
seen an extension of the classical regularization technique. In this section
we derive the form that this extension takes when applied to additive
splines. The resulting scheme is very similar to projection pursuit regres-
sion (Friedman and Stuezle 1981; Huber 1985; Diaconis and Freedman
1984; Donoho and Johnstone 1989; Moody and Yarvin 1991).

We start from the “classical” additive spline, derived from regulariza-
tion in Section 3.3:

N d
fix) =3 ¢ ) 0.8(x" —x) (4.5)

i=t =l

In this scheme the smoothing parameters ¢, should be known, or can
be estimated by cross-validation. An alternative to cross-validation is to
consider the parameters 6, as free parameters, and estimate them with a
least squares technique together with the coefficients ¢;. If the parame-
ters #, are free, the approximation scheme of equation 4.5 becomes the
following;:

N o
flx) =33 ciglxt — )

=1 =1

where the coefficients ¢ are now independent. Of course, now we must
estimate N x d coefficients instead of just N, and we are likely to en-
counter an overfitting problem. We then adopt the same idea presented
in Section 4, and consider an approximation scheme of the form

" d
flx) =73 3 chg(x* — 1) (4.6)

a=1 u=1

in which the number of centers is smaller than the number of examples,
reducing the number of coefficients that must be estimated. We notice
that equation 4.6 can be written as

d
flx) = 3_fulx*)
pu=1

where each additive component has the form

fulx?) =} _ chglx" — 1)

a=1

Therefore another advantage of this technique is that the additive com-
ponents are now independent, each of them being one-dimensional radial
basis functions.

We can now use the same argument from Section 4 to introduce a
linear transformation of the inputs x — Wx, where W is a 4’ x d matrix.
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Calling w,, the uth row of W, and performing the substitution x — Wx
in equation 4.6, we obtain

v
f(x) = ZZcﬁg(w“-x-—t‘;) (4.7)

a=1pu=1

We now define the following one-dimensional function:

haiy) =3 chgly — 1)

a=1
and rewrite the approximation scheme of equation 4.7 as

P
f(x)= 3 hulw, - x) (4.8)

=1

Notice the similarity between equation 4.8 and the projection pursuit
regression technique: in both schemes the unknown function is approxi-
mated by a linear superposition of one-dimensional variables, which are
projections of the original variables on certain vectors that have been esti-
mated. In projection pursuit regression the choice of the functions 1, (y)
is left to the user. In our case the h, are one-dimensional radial basis
functions, for example, cubic splines, or gaussians. The choice depends,
strictly speaking, on the specific prior, that is, on the specific smoothness
assumptions made by the user. Interestingly, in many applications of
projection pursuit regression the functions h, have been indeed chosen
to be cubic splines but other choices are flexible Fourier series, ratio-
nal approximations, and orthogonal polynomials (see Moody and Yarvin
1991).

Let us briefly review the steps that bring us from the classical additive
approximation scheme of equation 3.6 to a projection pursuit regression-
like type of approximation:

1. The regularization parameters 8, of the classical approximation
scheme 3.6 are considered as free parameters.

9. The number of centers is chosen to be smaller than the number of
data points.

3. The true relevant variables are assumed to be some unknown linear
combination of the original variables.

We notice that in the extreme case in which each additive component
has just one center (n = 1), the approximation scheme of equation 4.7
becomes

"

fx) = 3 c'gwx = 1) 4.9)

=1
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When the basis function g is a gaussian we call—somewhat improperly—
a network of this type a gaussian multilayer perceptron (MLP) network, be-
cause if g were a threshold function sigmoidal function this would be
a multilayer perceptron with one layer of hidden units. The sigmoidal
function, typically used instead of the threshold, cannot be derived di-
rectly from regularization theory because it is not symmetric, but we will
see in Section 6 the relationship between a sigmoidal function and the
absolute value function, which is a basis function that can be derived
from regularization.

There are a number of computational issues related to how to find
the parameters of an approximation scheme like the one of equation 4.7,
but we do not discuss them here. We present instead, in Section 7, some
experimental resuits, and will describe the algorithm used to obtain them.

5 The Bayesian Interpretation of Generalized Regularization Networks

It is well known that a variational principle such as equation 2.1 can be
derived not only in the context of functional analysis (Tikhonov and Ar-
senin 1977), but also in a probabilistic framework (Kimeldorf and Wahba
1971; Wahba 1980, 1990; Poggio et al. 1985; Marroquin ef al. 1987; Bert-
ero et al. 1988). In this section we illustrate this connection informally,
without addressing the related mathematical issues.

Suppose that the set ¢ = {(x;, ;) € RY x R}, of data has been obtained

by random sampling a function f, defined on RY, in the presence of noise,
that is

f(x) =y + ¢, i=1,...,N (5.1

where ¢; are random independent variables with a given distribution. We
are interested in recovering the function f, or an estimate of it, from the
set of data g. We take a probabilistic approach, and regard the function
f as the realization of a random field with a known prior probability
distribution. Let us define

* Pif | g] as the conditional probability of the function f given the
examples g.

* Plg | f] as the conditional probability of g given f. If the function
underlying the data is f, this is the probability that by random
sampling the function f at the sites {x;}", the set of measurement

{vi}lL, is obtained. This is therefore a model of the noise.

* P{f]: is the a priori probability of the random field f. This embodies
our a priori knowledge of the function, and can be used to impose
constraints on the model, assigning significant probability only to
those functions that satisfy those constraints.

21
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Assuming that the probability distributions Pfg | f] and P(f] are
known, the posterior distribution P[f | g can now be computed by ap-
plying the Bayes rule:

Pif i gl = Plg | f] PIf] (5.2)

We now make the assumption that the noise variables in equation 5.1
are normally distributed, with variance ¢. Therefore the probability
Plg1{f] can be written as

Plg | f] x o= (17201 oL iy, —fix)?

where o is the variance of the noise.

The model for the prior probability distribution P[f] is chosen in
analogy with the discrete case (when the function f is defined on a finite
subset of a n-dimensional lattice) for which the problem can be formal-
ized (see for instance Marroquin et al. 1987). The prior probability P|[f}
is written as

Pif] o emoel] (5.3)

where ¢{f] is a smoothness functional of the type described in Section 3
and « a positive real number. This form of probability distribution gives
high probability only to those functions for which the term #{f] is small,
and embodies the a priori knowledge that one has about the system.

Following the Bayes rule (5.2) the a posteriori probability of f is writ-
ten as

Pf | 8] o e~ V2L i~ftx )+ 20021 1) (5.4)

One simple estimate of the function f from the probability distribution
5.4 is the so-called maxintum a posteriori (MAP) estimate, that considers
the function that maximizes the a posteriori probability P(f | g], and
therefore minimizes the exponent in equation 54. The MAP estimate of
{ is therefore the minimizer of the following functional:

H{f] = E_:{yf = fO)F + Aglf]

where A = 2¢%a. This functional is the same as that of equation 2.1,
and from here it is ciear that the parameter ), that is usually called the
“regularization parameter” determines the trade-off between the level of
the noise and the strength of the a priori assumptions about the solution,
therefore controlling the compromise between the degree of smoothness
of the solution and its closeness to the data. Notice that functionals of
the type 5.3 are common in statistical physics (Parisi 1988), where @l f}
plays the role of an energy functional. It is interesting to notice that, in
that case, the correlation function of the physical system described by
¢lf] is the basis function G(x).

23 .
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As we have pointed out (Poggio and Girosi 1989; Rivest, personal
communication), prior probabilities can also be seen as a measure of
complexity, assigning high complexity to the functions with small proba-
bility. It has been proposed by Rissanen (1978) to measure the complexity
of a hypothesis in terms of the bit length needed to encode it. It turns out
that the MAP estimate mentioned above is closely related to the mini-
mum description length principle: the hypothesis f, which for given g can
be described in the most compact way, is chosen as the “best” hypothesis.
Similar ideas have been explored by others (see for instance Solomonoff
1978). They connect data compression and coding with Bayesian infer-
ence, regularization, function approximation, and learning.

6 Additive Splines, Hinge Functions, Sigmoidal Neural Nets

In the previous sections we have shown how to extend RN to schemes
that we have called GRN, which include ridge approximation schemes
of the PPR type, that is

J'
f(X) = Z h;t(wrt ) X)

n=1

where

hy) = 3~ chgly — 1)
a=l

The form of the basis function g depends on the stabilizer, and a list
of “admissible” G has been given in Section 3. These include the ab-
solute value g(x) = |x|-—corresponding to piecewise linear splines, and
the function g(x) = |x|*—corresponding to cubic splines (used in typical
implementations of PPR), as well as gaussian functions. Though it may
seem natural to think that sigmoidal muitilayer perceptrons may be in-
cluded in this framework, it is actually impossible to derive directly from
regularization principles the sigmoidal activation functions typically used
in muitilayer perceptrons. In the following section we show, however,
that there is a close relationship between basis functions of the hinge, the
sigmoid and the gaussian type. |

6.1 From Additive Splines to Ramp and Hinge Functions. We will
consider here the one-dimensional case, since multidimensional additive
approximations consist of one-dimensional terms. We consider the ap-
proximation with the lowest possible degree of smoothness: piecewise
linear. The associated basis function g{x) = |x| is shown in Figure 2a, and
the associated stabilizer is given by

olfl = [ ds RAfs)r

2y
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Figure 2: (a) Absolute value basis function, |x|. (b) Sigmoidal-like basis function
oy (x). (c) Gaussian-like basis function g, (x).

This assumption thus leads to approximating a one-dimensional function
as the linear combination with appropriate coefficients of translates of [x|.
It is easy to see that a linear combination of two translates of |x| with ap-
propriate coefficients (positive and negative and equal in absolute value}
yields the piecewise linear threshold function ¢)(x) also shown in Fig-
ure 2b. Linear combinations of translates of such functions can be used to
approximate one-dimensional functions. A similar derivative-like, linear
combination of two translates of o, (x) functions with appropriate coef-
ficients yields the gaussian-like function g;(x) also shown in Figure 2c.
Linear combinations of translates of this function can also be used for
approximation of a function. Thus any given approximation in terms
of g1 (x} can be rewritten in terms of o, (x) and the latter can be in turn
expressed in terms of the basis function |x|.

Notice that the basis functions |x| underlie the “hinge” technique pro-
posed by Breiman (1993), whereas the basis functions o (x) are sigmoidal-
like and the g; (x) are gaussian-like. The arguments above show the close
relations between all of them, despite the fact that only (x| is strictly a
“legal” basis function from the point of view of regularization [g.(x) is
not, though the very similar but smoother gaussian is]. Notice also that
[x| can be expressed in terms of “ramp” functions, that is |x| = x4 + x_.
Thus a one-hidden-layer perceptron using the activation function o (x)
can be rewritten in terms of a generalized regularization network with
basis function |x|. The equivalent kernel is effectively local only if there
exist a sufficient number of centers for each dimension {w,,-x). This is the
case for projection pursuit regression but not for usual one-hidden-layer
perceptrons.

These relationships imply that it may be interesting to compare how
well each of these basis functions is able to approximate some simple
function. To do this we used the model f(x) = 3! cog{wax — ta) to
approximate the function h(x) = sin(27x} on [0, 1], where g(x) is one of
the basis functions of Figure 2. Fifty training points and 10,000 test points
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Figure 3: Approximation of sin(27x) using 8 basis functions of the (a) absolute
value type, (b) sigmoidal-like type, and (c) gaussian-like type.

were chosen uniformly on [0.1). The parameters were learned using the
iterative backfitting algorithm (Friedman and Stuezle 1981; Hastie and
Tibshirani 1990; Breiman 1993) that will be described in Section 7. We
looked at the function learned after fitting 1, 2, 4, 8, and 16 basis functions.
Some of the resulting approximations are plotted in Figure 3.

The results show that the performance of all three basis functions
is fairly close as the number of basis functions increases. All models
did a good job of approximating sin{2nx). The absolute value function
did slightly worse and the “gaussian” function did slightly better. It is
interesting that the approximation using two absolute value functions is
almost identical to the approximation using one “sigmoidal” function,
which again shows that two absolute value basis functions can sum to
equal one “sigmoidal” piecewise linear function.

7 Numerical Illustrations

7.1 Comparing Additive and Nonadditive Models. To illustrate
some of the ideas presented in this paper and to provide some prac-
tical intuition about the various models, we present numerical experi-
ments comparing the performance of additive and nonadditive networks
on two-dimensional problems. In a model consisting of a sum of two-
dimensional gaussians, the model can be changed from a nonadditive
radial basis function network to an additive network by “elongating”
the gaussians along the two coordinate axes x and y. This allows us to
measure the performance of a network as it changes from a nonadditive
scheme to an additive one.

Five different models were tested. The first three differ only in the
variances of the gaussian along the two coordinate axes. The ratio of the
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x variance to the y variance determines the elongation of the gaussian.
These models all have the same form and can be written as

N
f(x) =3 alGilx — xi) + Ga(x = x;)]

1=1
where

G] — e*[lizfal}*(!fz/ﬂz)i; GZ — e‘[(llf"!}*(yzfal)l

The models differ only in the values of ¢y and ¢,. For the first model,
o, = 0.5 and 0; = 0.5 (RBF), for the second model g, = 10 and o; =
0.5 (elliptical gaussian), and for the third model, o, = oo and ¢; = 0.5
(additive). These models correspond to placing two gaussians at each
data point x,, with one gaussian elongated in the x direction and one
elongated in the y direction. In the first case (RBF) there is no elongation,
in the second case (elliptical gaussian) there is moderate elongation, and
in the last case (additive) there is infinite elongation.

The fourth model is a generalized regularization network model, of
the form 4.9, that uses a gaussian basis function:

"
fix) = 30 cpetmermt
=1

In this model, to which we referred earlier as a gaussian MLP network
(equation 4.9), the weight vectors, centers, and coefficients are all learned.

In order to see how sensitive were the performances to the choice
of basis function, we also repeated the experiments for model 4 with a
sigmoid (that is not a basis function that can be derived from regular-
ization theory) replacing the gaussian basis function. In our experiments
we used the standard sigmoid function:

1
1+e*

o(x) =

Models 1 to 5 are summarized in Table 1: notice that only model 5 is a
multilayer perceptron in the standard sense.

In the first three models, the centers were fixed in the learning algo-
rithm and equal to the training examples. The only parameters that were
learned were the coefficients ¢;, that were computed by solving the linear
system of equations 2.4. The fourth and the fifth models were trained
by fitting one basis function at a time according to the following recur-
sive algorithm with backfitting (Friedman and Stuezle 1981; Hastie and
Tibshirani 1990; Breiman 1993)

e Add a new basis function;

¢ Optimize the parameters w,, f,, and ¢, using the “random step”
algorithm (Caprile and Girosi 1990) described below;

27 .
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Table 1: The Five Models Tested in our Numerical Experiments.

Model 1
(r—1x,) (y—y;) (x—x;) {y—y}
fley) =T8¢ e (et | (SR —0s
Model 2

_fumr? ew? e IT ot T

flxy) = T2 —e (5 )+e ( E ) oy =10, 07 = 0.5

Model 3
[ PR —¢ 12
fiay) = £2 6 [ 5 4] 0 =05
Model 4
fx.y) = Ty cae ™ot =
Model 5
fix,y) = FneiCat{Wa - X — Lg) —_

e Backfitting: for each basis function « added so far:

— hold the parameters of all other functions fixed;

— reoptimize the parameters of function «;

o Repeat the backfitting stage until there is no significant decrease in
L, error.

The “random step” (Caprile and Girosi 1990) is a stochastic optimization
algorithm that is very simple to implement and that usually finds good
local minima. The algorithm works as follows: pick random changes to
each parameter such that each random change lies within some interval
[2,5]. Add the random changes to each parameter and then calculate the
new error between the output of the network and the target values. If
the error decreases, then keep the changes and double the length of the
interval for picking random changes. If the error increases, then throw
out the changes and halve the size of the interval. If the length of the
interval becomes less than some threshold, then reset the length of the
interval to some larger value.

The five modeis were each tested on two different functions: a two-
dimensional additive function

Haga(x,y) = sin(27x) 4 4(y - 0.5)
and the two-dimensional Gabor function

8Gabor(x,¥) = 7™ cos [0.757(x + y}]

8.
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Table 2: A Summary of the Results of Our Numerical Experiments.”

Mode!l 1 Model 2 Model 3 Model 4 Model 5

Haga (X, Y},
Training 0.000036 0.000067 0.000001 0.000170 0.000743
Test 0.011717 0.001598 (0.000007 0.001422 0.026699
LGabor (I, y)
Training {.000000 0.000000 (0.000000 0.000001 0.000044
Test (0.003818 0.344881 67.95237 0.033964 0.191055

aEach table entry contains the L, errors for both the training set and the test set.

The training data for the functions faaq and gavor coOnsisted of 20 points
picked from a uniform distribution on [0,1] x [0,1] and [-1,1} x [-1,1],
respectively. Another 10,000 points were randomly chosen to serve as
test data. The results are summarized in Table 2 (see Girosi et al. 1993 for
a more extensive description of the results).

As expected, the results show that the additive model 3 was able to
approximate the additive function, h,ga(x,y) better than both the RBF
model 1 and the elliptical gaussian model 2, and that there seems to be
a smooth degradation of performance as the model changes from the
additive to the radial basis function. Just the opposite results are seen
in approximating the nonadditive Gabor function, §Gabor(X. ), shown In
Figure 4a. The RBF model 1 did very well, while the additive model 3 did
a very poor job, as shown in Figure 4b. However, Figure 4c shows that
the GRN scheme (model 4) gives a fairly good approximation, because
the learning algorithm finds better directions for projecting the data than
the x and y axis as in the pure additive model.

Notice that the first three models we considered had a number of
parameters equal to the number of data points, and were supposed to
exactly interpolate the data, so that one may wonder why the training
errors are not exactly zero. The reason is the ill-conditioning of the asso-
ciated linear system, which is a typical problem of radial basis functions
(Dyn et al. 1986).

8 Hardware and Biological Implementation of Network Architectures

We have seen that different network architectures can be derived from
regularization by making somewhat different assumptions on the classes
of functions used for approximation. Given the basic common roots, one
is tempted to argue—and numerical experiments support the claim—
that there will be small differences in average performance of the var-
ious architectures (see also Lippmann 1989; Lippmann and Lee 1991).
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Figure 4: (a) The function to be approximated g(x.y). (b) Additive gaussian

model approximation of g{x,y) (model 3). (c) GRN approximation of g(x,y)
(model 4}).

it therefore becomes interesting to ask which architectures are easier to
implement in hardware.

All the schemes that use the same number of centers as examples—
such as RBF and additive splines—are expensive in terms of memory
requirements (if there are many examples) but have a simple learning
stage. More interesting are the schemes that use fewer centers than ex-
amples (and use the linear transformation W). There are at least two
perspectives for our discussion: we can consider implementation of ra-
dial vs. additive schemes and we can consider different activation func-
tions. Let us first discuss radial vs. nonradial functions such as a gaussian
RBF vs. a gaussian MLP network. For VLSI implementations, the main
difference is in computing a scalar product rather than an L, distance,
which is usually more expensive both for digital and analog VLSI. The
L, distance, however, might be replaced with the L, distance, that is a
sum of absolute values, which can be computed efficiently. Notice that
a radial basis functions scheme that uses the L, norm has been derived
in Section 3.2 from a tensor-product stabilizer.
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Let us consider now different activation functions. Activation func-
tions such as gaussian, sigmoid, or absolute values are equally easy to
compute, especially if look-up table approaches are used. In analog
hardware it is somewhat simpler to generate a sigmoid than a gaus-
sian, although gaussian-like shapes can be synthesized with fewer than
10 transistors (J. Harris, personal communication).

In practical implementations other issues, such as trade-offs between
memory and computation and on-chip learning, are likely to be much
more relevant than the specific chosen architecture. In other words, a
general conclusion about ease of implementation is not possible: none of
the architectures we have considered holds a clear edge.

From the point of view of biological implementations the situation is
somewhat different. The hidden unit in MLP networks with sigmoidal-
like activation functions is a plausible, albeit much oversimplified, model
of real neurons. The sigmoidal transformation of a scalar product seems
much easier to implement in terms of known biophysical mechanisms
than the gaussian of a multidimensional Euclidean distance. On the
other hand, it is intriguing to observe that HBF centers and tuned cor-
tical neurons behave alike (Poggio and Hurlbert 1994). In particular, 2
gaussian HBF unit is maximally excited when each component of the
input exactly matches each component of the center. Thus the unit is
optimally tuned to the stimulus value specified by its center. Units with
multidimensional centers are tuned to complex features, made of the con-
junction of simpler features. This description is very like the customary
description of cortical cells optimally tuned to some more or less com-
plex stimulus. So-called place coding is the simplest and most universal
example of tuning: cells with roughly bell-shaped receptive fields have
peak sensitivities for given locations in the input space, and by overlap-
ping, cover all of that space. Thus tuned cortical neurons seem to behave
more like gaussian HBF units than like the sigmoidal units of MLP net-
works: the tuned response function of cortical neurons mostly resembles
exp(—|ix ~ t||?) more than it does o(x-w). When the stimulus to a cortical
neuron is changed from its optimal value in any direction, the neuron’s
response typically decreases. The activity of a gaussian HBF unit would
also decline with any change in the stimulus away from its optimal value
t. For the sigmoid unit, though, certain changes away from the optimal
stimulus will not decrease its activity, for example, when the input x is
multiplied by a constant a > 1.

How might, then, multidimensional gaussian receptive fields be syn-
thesized from known receptive fields and biophysical mechanisms?

The simplest answer is that cells tuned to complex features may be
constructed from a hierarchy of simpler cells tuned to incrementally
larger conjunctions of elementary features. This idea—popular among
physiologists—can immediately be formalized in terms of gaussian ra-
dial basis functions, since a multidimensional gaussian function can be
decomposed into the product of lower dimensional gaussians (Ballard

3.
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Figure 5: An implementation of the normalized radial basis function scheme.
A “pool” cell (dotted circle} summates the activities of the hidden units and
then divides the output of the network. The division may be approximated in
a physiological implementation by shunting inhibition.

1986; Mel 1988, 1990, 1992; Poggio and Girosi 1990a). There are several
biophysically plausible ways to implement gaussian RBF-like units (see
Poggio and Girosi 1989; Poggio 1990), but none is particularly simple.
Ironically one of the plausible implementations of a RBF unit may ex-
ploit circuits based on sigmoidal nonlinearities (see Poggio and Hurlbert
1994). In general, the circuits required for the various schemes described
in this paper are reasonable from a biological point of view (Poggio and
Girosi 1989; Poggio 1990). For example, the normalized basis function
scheme of Section 2.2 could be implemented as outlined in Figure 5 where
a “pool” cell summates the activities of all hidden units and shunts the
output unit with a shunting inhibition approximating the required divi-
sion operation.

9 Summary and Remarks

A large number of approximation techniques can be written as mui-
tilayer networks with one hidden layer. In past papers (Poggio and
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Figure 6: Several classes of approximation schemes and corresponding network
architectures can be derived from regularization with the appropriate choice of

smoothness priors and associated stabilizers and basis functions, showing the
common Bayesian roots.

Girosi 1989, 1990; Girosi 1992) we showed how to derive radial basis
functions, hyper basis functions, and several types of multidimensional
splines from regularization principles. We had not used regularization to
yield approximation schemes of the additive type (Wahba 1990; Hastie
and Tibshirani 1990), such as additive splines, ridge approximation of the
projection pursuit regression type, and hinge functions. In this paper, we
show that appropriate stabilizers can be defined to justify such additive
schemes, and that the same extensions that lead from RBF to HBF lead
from additive splines to ridge function approximation schemes of the pro-
jection pursuit regression type. Our generalized regularization networks
include, depending on the stabilizer (that is on the prior knowledge on
the functions we want to approximate), HBF networks, ridge approxi-
mation, tensor products splines, and perceptron-like networks with one
hidden layer and appropriate activation functions (such as the gaussian).
Figure 6 shows a diagram of the relationships. Notice that HBF networks
and ridge approximation networks are directly related in the special case
of normalized inputs (Maruyama et al. 1992).



252 F. Girosi, M. Jones, and T. Poggio

We now feel that a common theoretical framework justifies a large
spectrum of approximation schemes in terms of different smoothness
constraints imposed within the same regularization functional to solve
the ill-posed problem of function approximation from sparse data. The
claim is that many different networks and corresponding approximation
schemes can be derived from the variational principle

N
HI(f] =Zjif(xi) —yil* + Aol f] 9.1)

They differ because of different choices of stabilizers ¢, which corre-
spond to different assumptions of smoothness. In this context, we believe
that the Bayesian interpretation is one of the main advantages of regu-
larization: it makes clear that different network architectures correspond
to different prior assumptions of smoothness of the functions to be ap-
proximated.

The common framework we have derived suggests that differences
between the various network architectures are relatively minor, corre-
sponding to different smoothness assumptions. One would expect that
each architecture will work best for the class of function defined by the
associated prior (that is stabilizer), an expectation that is consistent with
numerical results in this paper (see also Donoho and johnstone 1989).

9.1 Classification and Smoothness. From the point of view of regu-
larization, the task of classification—instead of regression—may seem to
represent a problem since the role of smoothness is less obvious. Con-
sider for simplicity binary classification, in which the output y is either
0 or 1 and let P(x,y) = P(x)P(y | x) be the joint probability of the input-
output pairs (x,y). The average cost associated to an estimator f(x) is the
expected risk (see Section 2.2)

1) = [ dxdy Px,p)ly - Fx)

The problem of learning is now equivalent to minimizing the expected
risk based on N samples of the joint probability distribution P(x,y), and it
is usually solved by minimizing the empirical risk (2.14). Here we discuss
two possible approaches to the problem of finding the best estimator:

¢ If we look for an estimator in the class of real valued functions, it is

well known that the minimizer fy of Q|f] is the so-called regression
function, that is

folx) = [ dy yPly 1) = P(1 | x) 92)

Therefore, a real valued network f trained on the empirical risk
(2.14) will approximate, under certain conditions of consistency

2% .
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(Vapnik 1982; Vapnik and Chervonenkis 1991), the conditional prob-
ability distribution of class 1, P(1] x). In this case our final estimator
f is real valued, and in order to obtain a binary estimator we have
to apply a threshold function to it, so that our final solution turns
out to be

fr{x) = 8] f(x)]
where § is the Heaviside function.

* We could look for an estimator with range {0,1}, for example of
the form f(x) = #g(x)]. In this case the expected risk becomes the
average number of misclassified vectors. The function that mini-
mizes the expected risk is not the regression function any more, but
a binary approximation to it.

We argue that in both cases it makes sense to assume that f (and
8) is a smooth real-valued function and therefore to use regularization
networks to approximate it. The argument is that a natural prior con-
straint for classification is smoothness of classification boundaries, since
otherwise it would be impossible to effectively generalize the correct clas-
sification from a set of examples. Furthermore, a condition that usually
provides smooth classification boundaries is smoothness of the underly-
Ing regressor: a smooth function usually has “smooth” level crossings.
Thus both approaches described above suggest to impose smoothness of
f or g, that is to approximate f or g with a regularization network.

9.2 Complexity of the Approximation Problem. So far we have dis-
cussed several approximation techniques only from the point of view of
the representation and architecture, and we did not discuss how well
they perform in approximating functions of different functions spaces.
Since these techniques are derived under different a priori smoothness
assumptions, we clearly expect them to perform optimally when those a
priori assumptions are satisfied. This makes it difficult to compare their
performances, since we expect each technique to work best on a different
class of functions. However, if we measure performances by how quickly
the approximation error goes to zero when the number of parameters of
the approximation scheme goes to infinity, very general resuits from the
theory of linear and nonlinear widths (Timan 1963; Pinkus 1986; Lorentz
1962, 1986; DeVore et al. 1989; DeVore 1991; DeVore and Yu 1991) sug-
gest that all techniques share the same limitations. For example, when
approximating an s times continuously differentiable function in d vari-
ables with some function parameterized by n parameters, one can prove
that even the “best” nonlinear parameterization cannot achieve an ac-
curacy that is better than the Jackson type bound, that is O(n=5/4). Here
the adjective “best” is used in the sense defined by DeVore et al. (1989)

PLY
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in their work on nonlinear n-widths, which restricts the sets of nonlin-
ear parameterization to those for which the optimal parameters depend
continuously on the function that has to be approximated. Notice that,
although this is a desirable property, not all the approximation techniques
may have it, and therefore these results may not always be applicable.
However, the basic intuition is that a class of functions has an intrin-
sic complexity that increases exponentially in the the ratio d/s, where s
is a smoothness index, that is a measure of the amount of constraints
imposed on the functions of the class. Therefore, if the smoothness in-
dex is kept constant, we expect that the number of parameters needed
in order to achieve a certain accuracy increases exponentially with the
number of dimensions, irrespectively of the approximation technique,
showing the phenomenon known as “the curse of dimensionality” (Bell-
man 1961). Clearly, if we consider classes of functions with a smoothness
index that increases when the number of variables increases, then a rate
of convergence independent of the dimensionality can be obtained, be-
cause the increase in complexity due to the larger number of variables is
compensated by the decrease due to the stronger smoothness constraint.
To make this concept clear, we summarized in Table 3 a number of differ-
ent approximation techniques, and the constraints that can be imposed
on them in order to make the approximation error to be 0O(1/+/n), that
is “indepedent of the dimension,” and therefore immune to the curse
of dimensionality. Notice that since these techniques are derived under
different a priori assumptions, the explicit form of the constraints are
different. For example in entries 5 and 6 of Table 3 (Girosi and Anzel-
lotti 1992, 1993; Girosi 1993) the resuit holds in H*"!'(R?), that is the
Sobolev space of functions whose derivatives up to order 2m are inte-
grable (Ziemer 1989). Notice that the number of derivatives that are
integrable has to increase with the dimension 4 in order to keep the rate
of convergence constant. A similar phenomenon appears in entries 2 and
3 (Barron 1991, 1993; Breiman 1993), but in a less obvious way. In fact,
it can be shown (Girosi and Anzellotti 1992, 1993) that, for example, the
spaces of functions considered by Barron (entry 2) and Breiman (entry 3
are the set of functions that can be written respectively as f(x) = [jx]|'~*»
and f(x) = ||x||*™ « A, where A is any function whose Fourier transform
is integrable, and * stands for the convolution operator. Notice that,
in this way, it becomes more apparent that these space of furctions be-
come more and more constrained as the dimensions increase, due to the
more and more rapid fall-off of the terms {|x{|'~? and ||x|{?~*. The same
phenomenon is also very clear in the results of Mhaskar (1993a), who
proved that the rate of convergence of approximation of functions with
s continuous derivatives by muitilayered feedforward neural networks
is O(n~*/?): if the number of continuous derivatives s increases linearly
with the dimension 4, the curse of dimensionality disappears, leading to
a rate of convergence independent of the dimension.

it is important to emphasize that in practice the parameters of the
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Table 3: Approximation Schemes and Corresponding Functions Spaces with the
Same Rate of Convergence O(nl/2)e

Function space Norm Approximation scheme

Jpa ds |f(s)] < 400 L) f(x) = T, cisin(x - w; + )
(Jones 1992)

Jra ds Isfi|f(s)] < +oo LE) )=k colx-w, +6)
{Barron 1991)

Jre ds [Is|P?|f(s)] < +oc L) f)=Thiclx-wi+6]s +x-a+b
{Breiman 1993)

eI ), 4 e Ly(RY) LolR?)  f(x) = T0_, cqeletoll
{(Girosi and Anzellotti 1992)

H2* YRy 2 > 4 Lo(R?*)  f{x) = a=1 CaGm{][x = ta]1?)
{Girosi and Anzellotti 1592)

H2™(R%), 2m > d LaR%) f(x) = Ty coemlntoli/el

{(Girosi 1993)

“The function o is the standard sigmoidal function, the function 1]+ in the third
entry is the ramp function, and the function Gy in the fifth entry is a Bessel potential,
that is the Fourier transform of (1 + lIslI*)="/? (Stein 1970). H*(RY) is the Sobolev
space of functions whose derivatives up to order 2m are integrable (Ziemer 1989).

approximation scheme have to be estimated using a finite amount of
data (Vapnik and Chervonenkis 1971, 1981, 1991; Vapnik 1982; Pollard
1984; Geman ef al. 1992; Haussler 1989; Baum and Haussler 1989;: Baum
1988; Moody 1991a,b). In fact, what one does in practice is to minimize
the empirical risk (see equation 2.14), while what one would really like to
do is to minimize the expected risk (see equation 2.13). This introduces
an additional source of error, sometimes called “estimation error,” that
usually depends on the dimension d in a much milder way than the
approximation error, and can be estimated using the theory of uniform
convergence of relative frequences to probabilities (Vapnik and Chervo-
nenkis 1971, 1981, 1991; Vapnik 1982; Pollard 1984),

Specific results on the generalization error, that combine both approx-
imation and estimation error, have been obtained by Barron (1991, 1994)
for sigmoidal neural networks, and by Niyogi and Girosi (1994) for gaus-
sian radial basis functions. Although these bounds are different, they all
have the same qualitative behavior: for a fixed number of data points
the generalization error first decreases when the number of parameters
increases, then reaches a minimum and starts increasing again, revealing
the well known phenomenon of overfitting. For a general description of
how the approximation and estimation error combine together to bound
the generalization error see Niyogi and Girosi (1994).

7.
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9.3 Additive Structure and the Sensory World. In this last section we
address the surprising relative success of additive schemes of the ridge
approximation type in real world applications. As we have seen, ridge
approximation schemes depend on priors that combine additivity of one-
dimensional functions with the usual assumption of smoothness. Do
such priors capture some fundamental property of the physical world?
Consider, for example, the problem of object recognition, or the prob-
lem of motor control. We can recognize almost any object from any of
many small subsets of its features, visual and nonvisual. We can perform
many motor actions in several different ways. In most situations, our sen-
sory and motor worlds are redundant. In terms of GRN this means that
instead of high-dimensional centers, any of several lower-dimensional
centers, that is components, are often sufficient to perform a given task.
This means that the “and” of a high-dimensional conjunction can be re-
placed by the “or” of its components (low-dimensional conjunctions)—a
face may be recognized by its eyebrows alone, or a mug by its color. To
recognize an object, we may use not only templates comprising all its fea-
tures, but also subtemplates, comprising subsets of features and in some
situations the latter, by themselves, may be fully sufficient. Additive,
small centers—in the limit with dimensionality one—with the appropri-
ate W are of course associated with stabilizers of the additive type.

Splitting the recognizable world into its additive parts may well be
preferable to reconstructing it in its full multidimensionality, because a
system composed of several independent, additive parts is inherently
more robust than a whole simultaneously dependent on each of its parts.
The smail loss in uniqueness of recognition is easily offset by the gain
against noise and occlusion. There is also a possible meta-argument that
we mention here only for the sake of curiosity. It may be argued that
humans would not be able to understand the world if it were not additive
because of the too-large number of necessary examples (because of high
dimensionality of any sensory input such as an image). Thus one may
be tempted to conjecture that our sensory world is biased towards an
“additive structure.”

Appendix A: Derivation of the General Form of Solution of the Regu-
larization Problem

We have seen in Section 2 that the regularized solution of the approxi-
mation problem is the function that minimizes a cost functional of the
following form:

N
H(f] = ;tvi — f(x)]? + A f] (A.1)
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where the smoothness functional ¢[f] is given by

f(s)I?
olfl = [, ds Yer

The first term measures the distance between the data and the desired
solution f, and the second term measures the cost associated with the de-
viation from smoothness. For a wide class of functionals ¢ the solutions
of the minimization problem A.1 all have the same form. A detailed and
rigorous derivation of the solution of the variational principle associated
with equation A.1 is outside the scope of this paper. We present here
a simple derivation and refer the reader to the current literature for the
mathematical details (Wahba 1990; Madych and Nelson 1990; Dyn 1987).

We first notice that, depending on the choice of G, the functional ¢|f]
can have a nonempty null space, and therefore there is a certain class of
functions that are “invisible” to it. To cope with this problem we first
define an equivalence relation among all the functions that differ for an
element of the null space of ¢[f]. Then we express the first term of H|f)
in terms of the Fourier transform of f:2

— d F; tx-§
flx) = [ dsfisie
obtaining the functional

HU‘-] — i [y.' — /Rd dsf'(s)e'x'-sr + /\/R-‘ ds %I'E

Then we notice that since f is real, its Fourier transform satisfies the
constraint:

f*(s) = f(—s)

so that the functional can be rewritten as

N

Hf) =3

=1

- . 2 _ f
. /Rd dsf(S)f“"s] + /\jf;d ds ﬂ%

In order to find the minimum of this functional we take its functional
derivatives with respect to f and set it to zero:

Sl _o wer (A.2)
of (t)

*For simplicity of notation we take all the constants that appear in the definition of
the Fourier transform to be equal to 1.

£7.
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We now proceed to compute the functional derivatives of the first and
second term of Hif|. For the first term we have

) N [ p: ;s 2 5 N | | m s
Ef(_t)gly“/gu ds fls)ens| = 25 = fll [, ds e

5F(t)
Al IX; 5
23 by - /0] [, ds é(s - ve

N .
= 25 [y~ f(x)] ™!
i=1
For the smoothness functional we have
L[ g fl=s)fts) _ 2[ ds f(=s) 6f(s)
sf(t) Jre G(s) R Gls) 6f(t)
_ fl=s).
- ZfRdds = bls 1

S % Eis)
Y

G(t)
Using these results we can now write equation A.2 as

" — f(x -1 M —
;[y, fx}e™! + A 0 =0

Changing t in —t and multiplying by G(—t) on both sides of this equation
we get

- . N of, _ |
f(t) = G(—t) Z Ll{%(x_')]e—ml
f=1

We now define the coefficients

[yi —f(xr)

A

assume that G is symmetric (so that its Fourier transform is real), and
take the Fourier transform of the last equation, obtaining

i=1,...,N

N
fix) =3 cib(x, — x) * G(x) = ic,-G(x - x;)
i=l i=1

We now recall that we had defined as equivalent all the functions differ-

ing by a term that lies in the null space of #{f], and therefore the most
general solution of the minimization problem is

N
f(x) = 32 eGlx - x) + plx)

i=1
where p(x) is a term that lies in the null space of o[ f], that is a set of
polynomials for most common choices of stabilizer o[ f)
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Figure 7: The most general network with one hidden layer and vector output.
Notice that this approximation of a g-dimensional vector field has, in general,
fewer parameters than the alternative representation consisting of 4 networks
with one-dimensional outputs. If the only free parameters are the weights from
the hidden layer to the output (as for simple RBF with n = N, where N is the
number of examples) the two representations are equivalent.

Appendix B: Approximation of Vector Fields with Regularization
Networks

Consider the problem of approximating a q-dimensional vector field y(x)
from a set of sparse data, the examples, which are pairs (x;,y;) for i =
1,...,N. Choose a generalized regularization network as the approximation
scheme, that is, a network with one “hidden” layer and linear output
units. Consider the case of N examples, n < N centers, input dimension-
ality d and output dimensionality g (see Fig. 7). Then the approximation
is

yix) =3 caGi{x —tg) (B.1)
a=1

where G is the chosen basis function and the coefficients ¢, are now
g-dimensional vectors?® ¢, = {cy,....c4, ..., cd).

3The components of an output vector will always be denoted by superscript, Greek
indices.
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Here we assume, for simplicity, that G is positive definite in order to
avoid the need of additional polynomial terms in the previous equation.
Equation B.1 can be rewritten in matrix notation as

y(x) = Cg(x) (B.2)

where the matrix C is defined by (C),. = ¢4 and g is the vector with
elements [g(x)la = G(x — t,). Assuming, for simplicity, that there is no
noise in the data [that is equivalent to choosing A = 0 in the regulariza-
tion functional (2.1)], the equations for the coefficients ¢, can be found
imposing the interpolation conditions:

yi = Cg(xi)

Introducing the following notation

(Miw =y"x),  Qa=¢ (Gl =Gl ~ta)
the matrix of coefficients C is given by

C=YG*

where G* is the pseudoinverse of G (Penrose 1955; Albert 1972). Sub-
stituting this expression in equation B.2, the following expression is ob-
tained:

y(x) = YGg(x)

After some algebraic manipulations, this expression can be rewritten as
N
y(x) = 3 _bilx)y;
i=1

where the functions b;(x), that are the elements of the vector b(x}, depend
on the chosen G, according to

b(x) = G*g(x)

Therefore, it follows (though it is not so well known) that the vector field
y(x) is approximated by the network as the linear combination of the
example fields y,.

Thus forany choice of the reqularization network and any choice of the (positive
definite) basis function the estimated output vector is atways a linear combina-
tion of the output example vectors with coefficients b that depend on the input
value. The result is valid for all networks with one hidden layer and

linear outputs, provided that the mean square error criterion is used for
training.

£7 .
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