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On the Relationship Between Generalization Error, Hypothesis Complexity,

and Sample Complexity for Radial Basis Functions
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Center for Biological and Computational Learning
and
Artificial Inteiligence Laboratory
Massachusetts Institute of Technology

Cambridge. Massachusetts, 02139

Abstract
Feedforward networks are a class of regression techniques that can be used to learn to perform
some task from a set of examples. The question of generalization of network performance from
a finite training set to unseen data is clearly of crucial importance. In this article we first show
that the generalization error can be decomposed in two terms: the approximation error, due to
the insufficient representational capacity of a finite sized network. and the estimation error, due
to insufficient information about the target function because of the finite number of sampies.
We then consider the problem of approximating functions belonging to certain Sobolev spaces
with Gaussian Radial Basis Funetions. Using the above mentiusned decomposition we bound
the generalization error in terms of the number of basis {unctions and number of examples.
While the bound that we derive is specific for Radial Basis Functions, a number of observations
deriving from it apply to any approximation technique. Qur result also sheds light on ways to
choose an appropriate network architecture for a particular probiem and the kinds of problems
which can be effectively solved with finite resources, i.e., with finite number of parameters and

finite amounts of data.



1 Introduction

Many problems in learning theory can be effectively modelled as learning an input output mapping
on the basis of limited evidence of what this mapping might be. The mapping usually takes the
form of some unknown function between two spaces and the evidence i3 often a set of labelled.
noisy. examples i.e.. (z.y) pairs which are consistent with this function. On rhe basis of this data
set. the learner tries to infer the true function. The unknown target function is assumed to belong
to some class F (the concept class). Typical examples of concept classes are classes of indicator
functions. boolean functions. Sobolev spaces etc. The learner is provided with a finite data set.
For our purposes we assume that the data is drawn by sampling independently the input/output
space (X x Y) according to some unknown probability distribution. On the basis of this data. the
learner then develops a hypothesis {another function belonging to the hypothesis class H C F)
about the identity of the target function. Hypothesis classes could also be of different kinds. For
example, they could be classes of boolean functions, polynomials. Multiiayer Perceptrons. Radial
Basis Functions and so on.

If, as more and more data becomes available, the learner’s hypothesis becomes closer and
closer to the target and converges to it in the limit, the target is said to be learnabie. The error
between the learner’s hypothesis and the target function is defined to be the generalization error
and for the target to be learnable the generalization error should go to zero as the data goes to
infinity. While learnability is certainly a very desirable quality, it requires the fulfillment of two
important criteria.

First. there is the issue of the representational capacity (or hypothesis complezity) of the



hypothesis class. This must have sufficient power to represent or closely approximate the concept
class. Otherwise for some target function f £ F. the best hypothesis h in H might be far away
from it. The error that this best hvpothesis makes is formalized later as the approzimation error.

Second. we do not have infinite data but only some finite random sample set from which
we construct a hypothesis. This hypothesis constructed from the finite data might be far from
the best possible hypothesis, /2, resulting in an additional error. This is formalized later as the
¢stimation error. The amount of data needed to ensure a small estimation error is referred to
as the sample complérity of the problem. The hypothesis complexity. the sample complexity
and the generalization error are related. If the class H is very large or in other words has high
complexity, then for the same estimation error, the sample complexity increases. If the hypothesis
complexity is small, the sample complexity is also small but now for the same estimation error the
approximation error is high. This point has been developed in terms of the bias-variance trade-off
by Geman, Bienenstock, and Doursat (1992). The bias term corresponds to the approximation
error, and the variance corresponds to the estimation error. Other authors have discussed this
more generally in the statistics literature (Rissanen, 1989; Vapnik, 1982).

The purpose of this paper is two-fold. First, we formalize the probiem of learning from
examples so as to highlight the relationship between hypothesis complexity, sample complexity
and generalization error. Second, we explore this relationship in the specific context of Radial
Basis Function networks (Moody and Darken, 1989; Poggio and Girosi, 1990; Powell, 1992).
Specifically, we are interested in asking the following questions about Radial Basis Functions.

Imagine you were interested in solving a particular problem (regression or pattern classifica-
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tion} using Radial Basis Function networks. Then. how large must the network be and how many
ezamples do you need to draw so that you are guarenteed with high confidence to do very well?
Conversely, if you had a finite nelwork and a finite amount of (?am. what are the kinds of problems
you could solve effectively?

Clearly. if one were using a network with a finite number of parameters. then its representa-
tional capacity would be limited and therefore even in the best case we would make an approxi-
mation error. Drawing upon results in approximation theory {Lorentz. 1936} several researchers
(Cvbenko, 1989; Barron. 1993: Hornik. Stinchcombe. and White. 1989: Mhaskar. and Micchelli.
1992: Mhaskar. 1993) have investigated the approximating power of feedforward networks showing
how as the number of parameters goes to infinity, the network can approximate any continuous
function. These results ignore the question of learnability from finite data.

For a finite network. due to finiteness of the data, we make an error in estimating the parame-
ters and consequently have an estimation error in additior to the approximation error mentioned
earlier. Using results from Vapnik and Chervonenkis {Vapnik, 1982: Vapnik and Chervonenkis;
1971) and Pollard (Pollard, 1984) , work has also been done (Haussler, 1989; Baum and Haussler.
1989) on the sample compiexity of finite networks showing how as the data goes to infinity, the
estimation error goes to zero l.e., the empirically optimized parameter settings converge to the
optimal ones for that class. However, since the number of parameters are fixed and finite, even the
optimal parameter setting might yield a function which is far from the target. This issue is left
unexplored by Haussler (1989) in an excellent investigation of the sample complexity question.

In this article we explore the errors due to both finite parameters and finite data in a common
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setting. In order for the total generalization error to go to zero. both the number of parameters
and the number of data have to go to infinity. and we provide rates at which they grow for
learnability to result. Further. as a coroilary. we are able to provide a principled way of choosing
the optimal number of parameters so as to minimize expected errors. It shouid be mentioned
here that A. Barron (1994) and H. White (1990) have also provided treatments of this problem
for different hypothesis and concept classes.

The plan of the article is as follows: in section 2 we provide a general formalization of the
problem. We then provide in section 3 a precise statement of a specific problem along with our
main resuit. whose proof can be found in (Nivogi. and Girosi. 1994} . In section 4 we discuss what
could be the implications of our result in practice; we provide severai qualifying remarks and a

numerical simulation. Finally we conclude in section 5 with a reiteration of our essential points.

2 Definitions and Statement of the Problem

In order to make a precise statement of the problem we first need to introduce some terminology

and to define a number of mathematical objects.

2.1 Random Variables and Probability Distributions

Let X and Y be two arbitrary sets. We will call x and y the independent variable and response
respectively, where x and y range over the generic elements of X and Y. In most cases X will be
a subset of a k-dimensional Euclidean space and Y a subset of the real line. We assume that an

unknown probability distribution P(x,y) is defined on X x Y.



The probability distribution P(x.,y) can also be written as Pix.y; = P(x)Plylx). where
P{y|x) is the conditional probability of the response y given the independent variable x. and
P(x) is the marginal probability of the independent variable. Expected values with respect to
P(x.y)or P(x) will be always indicated by E[-]. In practical cases we are provided with examples
of this probabilistic relationship. that is with a data set D; = {(X;. 1) € X X Y} _,. obtained by
sampling { times the set X x Y according to P{x.y). From the definition of P(x.y) we see that
we can think of an element {x;.y) of the data set D; as obtained by sampling .X according to
P(x), and then sampling Y according to P(y|x). The interesting problem is. given an instance of
x that does not appear in the data set D), to give an estimate of what we expect y to be.

Formally, we define an estimator to be any function f : X — Y. Clearly, since the independent
variable x need not determine uniquely the response y, any estimator wiil make a certain amount
of error. However, it is interesting to study the problem of finding the best possibie estimator.
given the knowledge of the data set D;. and this problem will be defined as the problem of learning

from examples, where the examples are represented by the data set D,.

2.2 The Expected Risk and the Regression Function

Having defined an estimator, we now need to define a measure of how good an estimator is.
Suppose we sample X x Y according to P(x,y), obtaining the pair (x.y}. A possible measure of
the error of the estimator f at the point x is {y — f(x)}?. The average error of the estimator f is

now given by the functional
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. dxdy P(x.y)ly — flx))* .

that is usually called the ezpected risk of f for the specific choice of the error measure. We are
now interested in finding the estimator that minimizes the expected risk over some domain F.
We will assume in the following that F is some space of differentiable functions. for example the
space of functions with m bounded derivatives.

Assuming that the problem of minimizing I[f} in F is well posed. it is easy to obtain Iis

solution. In fact, the expected risk can be decomposed in the following way {see appendix A):

I[f] = E[(fo(x) — f(x))*] + El(y — fo(x))*] (1)

where fy(x) is the so called regression function, that is the conditional mean of the response given

the independent variable:

fo(x) = ]Y dy yPlylx) . (2)

From eq. (1) it is clear that the regression function is the function that minimizes the expected

risk in F, and is therefore the best possible estimator. Hence,

fo(x) = arg }:gi}f[f] ;

While the first term in eq. (1) depends on the choice of the estimator f, the second term is
an intrinsic limitation due to the probabilistic nature of the problem, and therefore even the

regression function will make an error equal to E{{y — fo{x))?].



The problem of learning from examples can now be reformulated as the problem of recon-
structing the regression function fo. given the exampie set D;. It should also be pointed out that
this framework includes pattern classification and in this case the regression (target) funciion
corresponds to the Bayves discriminant function (Gish, 1990: Hampshire and Pearlmutter. 1990:

Richard and Lippman. 1991}.

2.3 The Empirical Risk

In practice the expected risk /[f] is unknown because P(x.y) is unknown. and our onlvy source
of information is the data set D;. Using this data set. the expected risk can be approximated by

the empirical risk lemp:

[ernp[f] =

1

—

i

(v — flxi))*

=1

For each given estimator f, the empirical risk is a random variable. and under fairly general

assumptions, by the law of large numbers, it converges in probability to the expected risk as the

number of data points goes to infinity:

lim P{I1[f] ~ LamolfIl > &} =0 ¥e > 0. (3

Therefore a common strategy consists in estimating the regression function as the function that
minimizes the empirical risk, since it is “close” to the expected risk if the number of data is high
enough. However, eq. (3) states only that the expected risk is “close” to the empirical risk for

each given f, and not for all f simulteneously. Consequently the fact that the empirical risk




converges in probability to the expected risk when the number. {. of data points goes to infinity
does not guarantee that the minimum of the empirical risk will converge to the minimum of the
expected risk {the regression function). As pointed out and analvzed in the fundamental work of
Vapnik and Chervonenkis (1971, .1991) the notion of uniform convergence in probability has to

be introduced. and it will be discussed in other parts of this paper.

2.4 The Problem

The argument of the previous section suggests that an approximate solution of the learning

problem consists in finding the minimum of the empirical risk. that is solving

J}Ig}femp[f} .

However this problem is often ill-posed. because. for most choices of F. it will have an infinite
number of solutions. In fact, all the functions in F that interpolate the data points {x,, y;),
that is with the property {f(x;}) = % 1,....1} will give a zero value for lomp. This problem is
very common in approximation/regression theory and statistics and can be approached in several
ways. A common technique consists in restricting the search for the minimum to a smaller set
than F. We consider the case in which this smaller set is a family of parametric functions, rtha.l: is
a family of functions defined by a certain number of real parameters. The choice of a parametric
representation also provides a convenient way to store and manipulate the hypothesis function on

a computer.

We will denote a generic subset of 7 whose elements are parametrized by a number of param-




eters proportional to n, by H,. Moreover. we wiil assume that the sets H, form a nested family.
that is H, € H, C ... C H, C ... C H. For example. H, could be the set of polynomials in
one variable of degree n — |, Radial Basis Functions with n centers, Multilaver Perceptrons with
n sigmoidal hidden units. Therefore, we choose as approximation to the regression function the

function fn_g defined as:

fn.! = arg J}ggln Lempif] - i+)
It should be pointed out that the sets H, and F have to be matched with each other. QOne
could look at this matching from both directions. For a class F, one might be interested in an
appropriate choice of H,. Conversely, for a particular choice of H,, one might ask what classes
F can be effectively solved with this scheme.
Thus. we see that in principle we would like to minimize I[f} over the large class F obtaining
thereby the regression function fo. What we do in practice is to minimize the empirical risk
Lemplf] over the smaller class f,, obtaining the function fai. Assuming we have solved all the

computational problems related to the actual computation of the estimator fn., the main problem

is now: how good is f,,?

Independently of the measure of performance that we choose when answering this questic;n, we
expect fn*g to become a better and better estimator as n and [ go to infinity. In fact, when !/
increases, our estimate of the expected risk improves and our estimator improves. The case of

n is trickier. As n increases, we have more parameters to model the regression function, and

our estimator should improve. However. at the same time. because we have more parameters to

P ;~w-mﬂwwmf.m



estimate with the same amount of data. our estimate of the expected risk deteriorates. Thus we
now need more data and n and { have to grow as a function of each other for convergernce to oCcur.
At what rate and under what conditions the estimator f, improves depends on the praperties
of the regression function. that.is on F. and on the approximation scheme we are using, that is

on H,.

2.5 Bounding the Generalization Error

Recall that our goal is to minimize the expected risk /{f] over the set F. If instead we were to

choose our estimator from H, we would obtain fn as:

fo = arg min I1f].

However we can only minimize the empirical risk lemp, obtaining as our real estimate the function

Sni. Our goal is to bound the distance from fn,g to fo. If we choose to measure the distance in

the L%( P) metric, the quantity that we need to bound, that we will call generalization error, is:

El(fo = Faa)] = [ e POOCR) ~ Fui0))? = o = Fullbage

There are 2 main factors that contribute to the generalization error, and we are going to analyze
them separately for the moment.

1. A first source of error is due to the fact that we are trying to approximate an infinite dimensional
object, the regression function fo € F, with a function defined by a finite number of parameters.

We call this the approzimation error, and we measure it By the quantity E[(fo — fz)%]. The

10



approximation error can be expressed in terms of the expected risk using the decompesition (1)

as

El(fo— fa)?] = Ifa] = I1fa] - {

it

Notice that the approximation error does not depend on the data set D;, but depends only on
the approximating power of the class H,, and can be naturally studied within the framework of
approximation theory. In the following we will always assume that it is possible to bound the

approximation error as follows:

El(fo - fa)*] < &(n)

where ¢(n) is a function that goes to zero as n goes to infinity if # is dense in F. In other words,
as the number n of parameters gets larger the representation capacity of H,, increases, and allows
a better and better approximation of the regression function fy. This issue has been studied by
a number of researchers (Cybenko, 1989; Hornik, Stinchcombe and White, 1989: Jones, 1992;
Barron, 1993; Mhaskar and Micchelli, 1992; Mhaskar, 1993) in the neural networks community.

2. Another source of error comes from the fact that, due to finite data, we minimize the empirical
risk fomp[f], and obtain fmg, rather than minimizing the expected risk I[f], and obtaining f,. As
the number of data goes to infinity we hope that fn'; will converge to f,, and convergence will take
place if the empirical risk converges to the expected risk uniformly in probability (Vapnik, 1982).
The quantity |lemp[f] = I[f]| is called estimation error, and conditions for the estimation error

to converge to zero uniformly in probability have been in\'eétigated by Vapnik and Chervonenkis

11
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(1971.1991). Pollard {198:4) . Dudley {1987). and Haussler {1989} . Under a variety of different

hvpothesis it is possible to prove that. with probability | — ¢. a bound of this form is valid:

emplf] ~ I[fll Sw(l,n.8) Yfe H, (6)

The specific form of w depends on the setting of the problem, but. in general. we expect w{l.n. 4}
to be a decreasing function of . However, we also expect it to be an increasing function of n.
The reason is that, if the number of parameters is large then the expected risk is a verv complex
object, and then more data will be needed to estimate it. Therefore. keeping fixed the number
of data and increasing the number of parameters will result, on the average. in a larger distance
between the expected risk and the empirical risk.

The approximation and estimation error are clearly two components of the generalization error.
and it is interesting to notice, as shown in the next statement and represented in figure (1). the

generalization error can be bounded by a linear combination of the two:

Statement 2.1 The following inequality holds:

1o = Fatlapy < £(n) + 20(l,n,6) .

—
-1
—

FIGURE (1) HERE

Proof: using the decomposition of the expected risk (1), the generalization error can be written

as:

12



“fU - f:n.ir‘l

Pupy = Ellfo - foidi = T0ad - T (%)

A natural way of bounding the generalization error is as follows:

E{(fo = fau ) S U = 1)l + i, = I fudli - (9)

In the first term of the right hand side of the previous inequality we recogunize the approximation
error (534, If a bound of the form {6) is known for the estimation error. it is simple to show {see

figure 2) that the second term can be bounded as

U fa] = I fad]] € 2w(lon.é)

and statement (2.1) follows Q.
FIGURE {2) HERE

A Note on Models and Model Complexity: from the form of eq. {7) the reader will realize
that there is a trade-off between n and { for a certain generalization error. For a fixed {. as n
increases. the approximation error =(n) decreases but the estimation error w(i.n.§) inereases,
Consequently, there is a certain n which might optimally balance this trade-off. Note that the
classes H, can be looked upon as models of increasing complexity and the search for an optimal
n amounts to a search for the right model complexity. One typically wishes to match the model

complexity with the sample complexity {measured by how much data we have on hand) and

this problem is well studied (Rissanen. 1989: Barron and Cover. 1989: Efran. 19%2: (raven and

13



Wahba. 1979) in statistics. Broadlv speaking. simple models would have high approximation
errors but small estimation errors while complex models would have low approximation errors
but high estircation errors. This trade-off is also embodied in the so-called bias-variance dilemma
as described in Geman et al. [1992).

So far we have provided a verv general characterization of this problem. without stating what
the sets F and H, are. and in the next section we will consider a specific choice for these sets.

and we will provide a bound on the generalization error of the form of eq. 7).

3 Stating the Problem for Radial Basis Functions

In this article we focus our attention on a Radial Basis Functions approximation scheme . This

is an hypothesis class defined as follows:

H. = {f =G (”—"—1"—")} (10!

=1 i
where (7 is a Gaussian function and the 3;, t,;. and o, are free parameters. We would like to
understand what classes of problems can be solved *well” by this technique. where “weil” means
that both approximation and estimation bounds need to be favorabie. It is possible to show that
a favorable approximation bound can be obtained if we assume that the concept class of functions

F to which the regression function belongs is defined as follows:

}_E{f!f:/\*(;m.M>k/2.|/\le§,V[}. (11)
Here M is a positive number. A is a signed Radon measure on the Borel sets of RF and (., is

14



the Bessel-Macdonald kernel. i.e.. the inverse fourier transform of (. (s} = (] + IIsl[*y=™% The
symbol = stands for the convolution operation. Az« is the rotal variation of the measure A. The
space F as defined in eq. 11 is the Bessel potential space of order m. L. [f i is even. this contains
the Sobolev Space H™* of functions whose derivatives upto order m are integrable (Stein. 1970}.

In order to obtain an estimation bound we need the approximating class to have bounded
variation. and we impose the constraint } [_,iJ{ < M. This constraint does nat affect the
approximation bound. and the two pieces fit together nicely. Thus the set H, is defined now as

the set of functions belonging to L, such that

T

ZJG(”X ]) ZW{[S;W. t{ERk.o‘,-ER"'.Vi:l.....n. (12}

=1

Having defined the sets H, and 7 we remind the reader that our goal is to recover the regression
function. that is the minimum of the expected risk over . What we end up doing is to draw a
set of [ examples and to minimize the empirical risk Iemp oOver the set H,, that is to solve the

{ollowing non-convex minimization problem:

“”))2 ©(13)

Assuming now that we have been able to solve the minimization problem of eq. (13), the main

fni ®arg min Z(g Zd G(

Bakta,ga .

question we are interested in is “how faris f,; from fo?”. We give an answer in the next section.

3.1 Main Result

Our main theorem is now stated in a PAC-like formulation:



Theorem 3.1 Let H, be the class of Gaussian RBF networks with k tnput nodes and n hidden
nodes as defined in eq. [0, and fo be an element of the Bessel potential space LTURSY of order
m.owith mo> k/2 (the class F defined in eq. 11). Assume that a data set {{x ¥}, has been
obtained by randomly sampling the function fq in presence of notse. and that the noise distribution
has compact support. Then, for any 0 < & < 1. with probability greater than | ~ 6. the foilowing

hound for the generalization error holds:

1 fo = faul

(14}

[

. 1
iffP) <0 (;) +0 (

This theorem is proved by decomposing the total generalization error into an approximation

nklninl) - In @} “’2>

component and an estimation one as in eq. 7. The bourd for the approximation error {the first
term in the equation above) can be found in {Girosi. 1994) and (Girosi and Anzellotti, 1993) .
and it is a consequence of the Maurey-Jones-Barron lemma (Jones. 1992: Barron. 1993). The
bound for the estimation error {the second term) has been obtained using ideas from the uniform
convergence of empirical estimates to their means (Vapnik. 1982). In particular. we have used
notions of metric entropy (Pollard, 1984) to bound the complexity of the class H,. The full proof

of this theorem is not reported here because of its length. and can be found in (Niyogi and Girosi.

1994).

16



4 Implications of the Theorem in Practice: Putting In the

Numbers

In figure (3) we show the bound on the generalization error presented in the previous section as
a function of the number of examples ({) and the number of basis functions {n). .\ number of

remarks about this picture are in order.

FIGURE (3) HERE

4.1 Rate of Growth of n for Guaranteed Convergence

From our theorem (3.1) we see that the generalization error converges to zero only if n goes to
infinity more siowly than {. In fact. if n grows too quickly the estimation error wil.n.é) will

diverge. because it is proportional to n. In fact. setting n = [". we obtain

lim w(l,n,8)= lim " ‘ln!.
=400 {0

Therefore the condition r < 1 should hold in order to guarantee convergence to zero.

4.2 Optimal Choice of n

In the previous section we made the point that the number of parameters n should grow more
slowly than the number of data points /. in order to guarantee the consistency of the estimator
fri. It is quite clear that there is an optimal rate of growth of the number of parameters. that,

for any fixed amount of data points /. gives the best possible performance with the least number

i



of paramerters. In other words. for any fixed / there is an optimal number of parameters n*(/] that
minimizes the generalization error. That such a number should exist is quite intuaitive: for a fixed
rumber of data. a small number of parameters will give a low estimation error w({. n.¢}. but very
high approximation error z{n). and therefore the generalization error will be high. If the number
of parameters is very high the approximation error z(n) will be verv small. but the estimation
error wil.n.6) will be high, leading to & large generalization error again. Therefore. somewhere
in between there should be a number of parameters high enough to make the approximation
error small. but not too high, so that these parameters can be estimated reliabiv. with a small
estimation error. Although the exact form for the generalization error is unknown. we can work
with the upper bound {14}, which we plot in figure (4) as a function of the number of paramerters
n for various choices of sample size [. Notice that for a fixed sample size. the error passes through
a minimum. Notice that the location of the minimum shifts to the right when the sample size is

increased.

FIGURE (4) HERE

In order to find out exactly what is the optimal rate of growth of the network size we simply
find the minimum of the generalization error as a function of n keeping the sarple size ! fixed.

Therefore we have to solve the equation:

%E[(fo — [ =0

for n as a function of {. Substituting the bound given in theorem (3.1) in the previous equation.

18



and ignoring logarithmic factors. we obtain an approximation of the optimal number of parameters

n=({) for a given number of examples I behaves as

nii x T 15

While a fixed sample size suggests the scheme above for choesing an optimal network size. it is
important to note that for a certain confidence rate (¢} and for a fixed error bound. there are
various choices of n and ! which are satistactorv. Fig. 3 shows r as a function of [, in other words

{n.l) pairs which vield the same error bound ( E} with the same confidence.

FIGURE (5) HERE

For any fixed error bound. the region to the right of the minimum is uninteresting because it
uses more parameters and data than needed. The narrow region between the minimum and the
asymptote is more interesting: if networks size is very expensive. less parameters can be used
at the expenses of many more data points. Notice however how narrow this region is and how

quickly the curve goes to infinity: a very large number of data poinss is needed to compensate for

v

a listle less parameters.

4.3 Remarks

In this section we suggest future work, and make connections with other related research.

Extensions:

1. While we have obtained an upper bound on the error in terms of the number of nodes and

19



examples. it would be worthwhile to obtain lower bounds on the same. Such lower bounds do not

seem to exist in the neural network literatire to the best of our knowledge.

2. We have considered here a situation where the estimated network i.e.. j':n_; i5 obtained hy
minimizing the empirical risk over the class of functions H,. Very often. the estimated network
is obtained by minimizing a somewhart different objective function which consists of two parts.
Omne is the fit to the data and rhe other is some complexity term which favors less complex
(according to the defined notion of complexity) functions over more complex ones. For example
the regularization approach {Tikhorov, 1963: Poggio. and Girosi. 1990: Wahba. 1990) minimizes

a cost function of the form

N
H(F1 =y = fixi) + A®{f]
i=1

over the class H = Un» H,. Here A is the so called “regularization parameter” and ®{f] is a
functional which measures smoothness of the functions involved. Choice of an optimal A is an
interesting question in regularization techniques and typically cross-validation or other heuristic
schemes are used.

3. Structural risk minimization (Vapnik. 1982) is another met'od to achieve a trade-off between
network complexity (corresponding to n in our case) and fit to data. However it does not guarantee
that the architecture selected will be the one with minimal parametrization. In fact. it would be
of some interest to develop a sequential growing scheme. Such a technique would at any stage
perform a sequential hypothesis test. [t would then decide whether to ask for more data. add

one more node or simply stop and output the function it has as its e-good hypothesis. In such a
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process. one might even incorporate active learning {Angluin. 1988: Nivogi. 1995] so that if the
algorithm asks for more data. then it might even specify a region in the input domain from where
it would like to see this data.

4. It should be noted here that we have assumed that the empirical risk Zﬁzl(yi — f{x;: 1) can be
minimized over the class H, and the function fﬂ‘g be effectivelv computed. While this might be
fine in principle. in practice only a localiv optimal solution to the minimization problem is found
{typicaily using some gradient descent schemes). The computational complexity of obtaining
even an approximate solution to the minimization problem is an interesting one and results from
computer science {Judd. 1988: Blum. and Rivest. 1988} suggest rhat it might in general be V P-
hard.

Connections with Other Results

l. In the neural network and computational learning theory communities results have been
obtained pertaining to the issues of generalization and learnability. Some theoretical work has
been done (Baum and Haussler. 1989: Haussier. 1989: Ji and Psaltis. 1992} in characterizing
the sample complexity of finite sized networks. Of these. it is worthwhile to mention again the
work of Haussler {1989) from which this paper derives much inspiration. He obtains bounds
for a fixed hypothesis space i.e. a fixed finite network architecture. Here we deal with families
of hypothesis spaces using richer and richer hypothesis spaces as more and more data becomes
available. Others (Levin, Tishby and Solla, 1990) attempt to characterize the generalization
abilities of feed-forward networks using theoretical formalizations from statistical mechanics. Yet

others (Botros and Atkeson. 1991; Moody, 1992: Cohn and Tesauro. 1991: Rumelhart, Weigand,

21



and Huberman. 1991} attempt to obtain empirical bounds on generalization abilities.

2. This is an attempt to obtain rate-of-convergence bounds in the spirit of Barron’s work i 1994).
but using a different approach. We have chosen to combine theorems {from approximation theory
(which gives us the O(l/n) term in the rate. and uniform convergence theory (which gives us
the other part). Note that at this moment. our rate of convergence is worse than Barron's. In
particular. he obtains a rate of convergence of O(1/n + (nkln({))/1). Further. he has a different
set of assumptions on the class of functions (corresponding to our F3. Finallv, the approximation
scheme is a class of networks with sigmoidal units as opposed to radial-basis units and a different
proof technigque is used.

3. Tt is worthwhile to refer to the article of Geman. Bienenstock. and Doursat (1992} in this
journal which discusses the Bias-Variance dilemma. Using our notation the integrated square bias
is defined as B = || fo— Ep,[ fn.4]i|* and the integrated variance is V = Ep,[(Ep,[fatl= fat)?], where
Ep, stands for the expected value over all the possible data sets of size {. Geman. Bienenstock,
and Doursat (1992) show that the generalization error averaged over [; can be decomposed as
B+V. They show that as the number of parameters increases. the bias of the estimator decreases
and the variance increases for a fixed size of the data set. From an intuitive point of view. the
bias B plays the role of the approximation error ||fo — foll?. although their relationship is not
clear. In fact, the average estimator Ep,[f,,] differs from f., and need not even belong to Hn.
The variance V is related to the average estimation error, and it can be shown that both of them
are bounded by the quantity Ep || fn — faull?. Finding the right bias-variance trade-off is very

similar in spirit to finding the trade-off between network complexity and data complexity.
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1. Given the class of radial basis functions we are using, a natural comparison arises with kernel

regression (Krzyzak. 1986: Devroye, 1981) and results on the convergence af kerne!l estimators.
It should be pointed out that. unlike our scheme. Gaussian-kernel regressors require the variance
of the Gaussian to go to zero as a function of the data. Further the number of kernels is alwavs
equal to the number of data points and the issue of trade-off between the two is not explored to
the same degree.

5. In our statement of the problem. we discussed how pattern classification could be treated as
a special case of regression. In this case the function fo corresponds to the Bayes a-posteriort
decision function. Researchers (Richard. and Lippman. 1991: Hampshire. and Pearlmutter. 1990:
Gish, 1990) in the neural network community have observed that a network trained on a least
square error criterion and used for pattern classification was in effect computing the Bayes decision

function. This paper provides a rigorous proof of the conditions under which this i1s the case.

4.4 Empirical Results

The main thrust of this paper is to provide some insight into how overfitting can be studied
in classes of feedforward networks and the general laws that govern overfitting phenomena in
such networks. How closely do “real” function learning problems obey the the general principles
embodied in the theorem described earlier? We do not attempt to provide an extensive answer to
this question—but just to satisfy the reader’s curiosity, we now describe some empirical results.
The experiment: The target function, a k-dimensional function. was assumed to have the

following form, which ensures that the assumptions of theorem (3.1) are satisfied:
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hY ‘
fix) = (Z o sInix - w, +oi‘)) ez‘“g_)x”z (16)

=1

Here T© is a diagonal matrix (S)ag = k 0abay. The parameters. {o,. . Wi.c;} were chosen at
random in the following ranges: o; € [1.7.2.3]. w. € [—2.2]%. ¢ € = 1.1 o € [0.27]. .V £ 3,200
Training sets of different sizes. ranging from { = 30 to [ = 500 were randomly generated in the &
dimensional cube {—=, 7], and an independent test set of 2000 examples was chosen to estimate
the generalization error. Gaussian RBF networks {as in theorem 3.1 with different number of
hidden units. ranging from n = 1 to n = 300. were trained using a gradient descent scheme. Each
training session was repeated 10 times with random initialization. because of the problem of local
minima. We did experiments in 2, 4. 6 and 8 dimensions. in all cases the qualitative behavior
of the experimental results followed the theoretical predictions. In figures 6 and 7 we report the

experimental results for a 2 and 6 dimensional case respectively.
FIGURE (6) AND (7) HERE

We found, in general, that although overfitting occurs as expected, it has a tendency to occurr
at a larger number of parameters than expected. We attribute that to the presence of local
minima. that have the effect of restricting the hypothesis, and suggesting that the “effective”
number of parameters (Moody, 1992) is much smaller than the total number of parameters.

We believe that extensive experimentation is needed to compare the deviation between theory
and practice, and the problem of local minima should be seriously addressed. This is well bevond

the scope of the current article, and further research on the matter is planned.
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5 Conclusion

For the task of learning some unknown function from labeled examples where we have multiple
hypothesis classes of varving complexity, choosing the class of right complexity and the appropriate
hypothesis within that class poses an interesting problem. Ve have provided an analvsis of
the situation and the issues involved and in particular have tried to show how the hvpothesis
complexitv. the sample complexity anrd the generalization error are related. We proved a theorem
for a special set of hypothesis classes. the radial basis function networks. and we bound the
generalization error for certain function learning tasks in terms of the number of parameters and
the number of examples. This is equivalent to obtaining a bound on the rate at which the number
of parameters must grow with respect to the number of examples for convergence to take place.
Thus we use richer and richer hypothesis spaces as more and more data become available. We
also see that there is a tradeoff between hypothesis complexity and generalization error for a
certain fixed amount of data and our result allows us a principled way of choosing an appropriate
hvpothesis compiexity {network architecture). The choice of an appropriate model for empirical
data is a problem of long-standing interest in statistics and we provide connections between our

work and other work in the field.
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A A Useful Decomposition of the Expected Risk

We now show that regression function defined in eq. {2) minimizes the expected risk. {f]. By
adding and subtracting the regression function. fy. we see that:

bl

I[f] = [yoy dxdyP(x.y)y — folx) + folX) — fix))® =
= [y dxdyPix y)(y — fo(x))*+
+ f,\'xy dXdyP(x-y)(fO(x) - f(x‘i)z +

+ 2 [yuy dxdyP(x y)iy — fo(x)) foix) — f(x))
By definition of the regression function fs(x). the cross product in the last equation is easily seen

ta be zero, and therefore

If) = ]X AxPIX)( folx) — F(x)7% + [[fo] |

Clearly, the minimum of [[f] is achieved when the first term is minimum. that is when fix) =
fo(x). In the case in which the data come from randomly sampling a function f in presence of
additive noise, I{fy] = ¢ where ¢? is the variance of the noise. When data are noisy, therefore.
even in the most favourable case we cannot expect the expected risk to be smailer than the vari-

ance of the noise.
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Figure 1: The outermost circle represents the concept class . Embedded in this are the nested
approximating subsets H, {hvpothesis classes). The target function fo is an element of F. f, is
the closest element of H, to fy. and fn_,! is the element of A, which the learner hypothesizes on
the basis of data. The arrow with the question mark represents the generalization error. and the

other two arrows represent the approximation and estimation errors.
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Figure 2: This picture represents the fact that I[f.] < I[fa) and that {{f] - Templf]] < w for
all f € H,. Notice that if the distance between [!f,] and I{fni] 1s larger than 2., the condition

Lemplfrt] < lemplfnl is violated. and therefore we must have that [[fn] — I fnid]l < 2.
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Figure 3: The bound on the generalization error derived in theorem (3.1) plotted as a function

of the number of examples 1/} and the number of basis functions tn). The bound has the form

2+ b{(nkln(nl)

= Iné)/{1""*. and in this picture the parameters have values a = 0.01. b = 0.0006

k=354and & = 0.01. For / = 100 we show n". the critical number of nodes after which overfitting

Qccurs. 39



Bound on the generalization error
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Figure 4: The bound (14) on the generalization error is here plotted as a function of the number
of basis functions n. for different number of data points {/ = 30.100.300}. The parameters are the
same as in figure (3). Notice how the minima n™(!) of these curves move as { increases. Note also
that the minima are broader for larger [, suggesting that an accurate choice of n is less critical

when plenty of data is available.
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Figure 5. This figures shows various choices of {n.!) which give the same bound E {14} on the

seneralization error. The interesting observation is that there are an infinite number of choices

for number of basis functions and number of data points all of which would guarantee the same

bound on the generalization error. If (n”.I"} are the coordinates of the minimum of this curve.

/" is the minimum number of points necessary to achieve the error bound E with the optimal
1

number of parameters n”. The asymptote on the curve occurs at n = . and corresponds to the

case in which { — > and the estimation error is zero.
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Figure 6: The generalization error is plotted as a function of the number of nodes of an RBF
network (10} trained on 100 data points of a function of the tvpe (16). For each number of
parameters 10 results. corresponding to 10 different local minima. are reported. The continuous
lines above the experimental data represents the bound £ + b[(nkln(ni) —In 5)/1]1/2 of eq. {14).

in which the parameters a and b have been estimated empiricallv. and é = 1075,
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Figure 7: Evervthing is as in figure (6). but here the dimensionality is 6 and the number of data

points 1s 150
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