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310 Nenlinear Vision

INTRODUCTION

One of the major tasks of the human visual systern is 10 extract quickly and effortlessly
the most salient informanon from an image to form a symbolic representation of the scene.
This argument was made most forcefully by Marr (1976. 1982) with the concept of the
primal sketch™, an early and grossly simpiified abstract representation of the original
scene. The primal sketch is not simply a reduced or sampled version of the original image.
but a highly nonlinear caricature compnsing lines. cvlinders, and other basic forms that
capture the essential essence of the scene, while ignoring much detail. as well as gradual
varauon of luminance. Figure | depicts a weil-known example of how economicaily an
artistic sketch may convey the essential features of an image. A few well-placed strokes are
sufficient to represent the image without ambiguity.

Two of the more cornmon visual features are lines and edges. both being rich sources
of visual information. The potentiai of lines to convey information is well illustrated in the
sketch of Figure || and edges are obviously important in delimiting the boundaries of objects.
Indeed. there is a sense in which ¢dges and lines are almost interchangeable. illustrated bv
the fact that sketch-artists often use lines to symbolize edges (see Figure 1). However.
mathematically speaking. the two types of features are quite distinct and, indeed. orthogonal:
edges can be described as odd-symmetric functions and lines are even-symmetric functions.
orthogonal with respect to each other in L°

It is because these two equally important features are orthogonal . defining a two-
dimensional feature space. that we propose that a two-dimensional basis set is required for
therr detection. We further argue that nonlinear combination of the two bases is the most
efficient way of detecting lines and edges.

Many models have been proposed for line and edge detection. all similar in one major
respect: thev convolve the image with simple linear operators of various sizes and search
for maxima or zero-crossings in the output. However. this approach runs into several dif-
ficulties. particularly when the image features are adjacent and when the features are not
simply edges or lines but combinations of both (see Figure 2).

Our approach to line and edge detection differs from that of others in that we have
attempted to understand why lines and edges are important o vision. and have been able
to provide a robust operational definttion of what constitutes a visual feature. Our model.
like most others. convolves the image with linear operators of limited bandwidth. But it
differs from others in that it requires two sets of linear operators. orthogonai to each other
(and related by the Hilbert transform). It aiso tncorporates two major nonlinearities: a second-
order {squaring) nonlinearity to combine the output of the martched filters, and a higher-
order “‘nonmaximal suppression”’ nonhnearity, whereby only the points producing maxima
in the combined output are considered as features effective in structunng visual information.
This chapter outlines the details of the model and illustrates its application to several inter-
esting images. These demonstrations show how the model successfully predicts human

perception. both qualitatively and quantitativelv, in conditions where most previous models
fail

II. THE LOCAL ENERGY MODEL OF FEATURE DETECTION

As mentoned above. our model fequires two sets of matched operators. one even-
symmetnic. the other odd-svinmetric. hence. one the Hilbert transform of ihe other. The
image (s convelved separately by the two sets of operators. and the cutputs combined by
“Phythagorsan sum™ (square root of the sum of squares) o give what we term the “local
energy  protile. The operation 15 usuallv performed separately over several scales and
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FIGURE 1. A sketch by Matisse, illusraung how a few well-piaced strokes may provide an adequate symbalic
representation of an image  Note that the linas have been positioned 5o correspond to luminance borders, or edges,
of the onginal 1mage
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FIGURE 2. Examples of the operation of the mode} for an edge. a ltne. and a combination edge-line. Under
each profile is shown the output of the even-symmetnc (dashed lines) and odd-symmetric (continuous lines) at
two spatial scaies. Immediatelv above these traces 15 the local-energy profile, the square reot of the sums of the
squared output from the even- and odd-symmetric operators. Whereas the linear operators produce Many minima.
maxima. and zero-crossings. only some of which fall at the position of the feature. the local-energy functions are
always positive, with one ¢lear peak at the posion of the feature The three different feamres are all marked
unambiguously with the same operator. To decide which type of feature caused the local energy peak, it is sufficient
10 evaluate the response of the linear operators at thar point: for the edge. only the odd-symmetnc operators respond

at that point; for the line. only the even-symmetnc operators. for the edge and {ine. both operators respond, so the
feature is recognized vendically
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FIGURE 3. lllustrauon of the relanonship between features. phase cangruence, and local energy. See lext for
exptanation.

orientations. modeiing the action of cortical visual detectors (e.2.. Biakemore and Campbell,
1969). but this is. in fact. not an essential feature of the model (see Morrone and Owens,
1987).

Figure 2 illustrates the action of the model in one dimension for three profiles, an edge.
a line. and a combination edge and line. For clanty we illustrate the response at only two
spatial scales. although at least four are required to mode! human vision (Wilson and Bergen.
1979). The superimposed curves under the profile show the responses of the even-symmetric
operators (dashed curves) and odd-symmetric operators (continuous curves). These linear
responses are similar 1o those predicted by most models of feature detection that use only
one class of operator (either even-symmetric: Marr and Hildreth, 1982; Waa and Morgan.
1985 or odd-symmetric: Canny, 1983, 1986} and illustrate some of the difficulties inherent
with this approach. Although the odd-symmetnc operators peak at the position of the edge.
there are also spurious negative peaks at either side of the true edge. and two very large
peaks near the bar. The even-symmetric operators face similar problems as line detectors,
and the zero-crossings mark several spurious features. The feature that presents most dif-
ficuities for models with a single class of detector is the combination edge and line. For
this feature. neither the peaks nor the zero-crossings of the even- or the odd-symmetric
detectors correspond to the perceived position of the feature. This class of feature. 1n fact,
cccurs very frequently in natural scenes, particularly under conditions of oblique lighting
(see Hom. 1977; Perona and Malik. 1990; and Figure 4).

Several strategies have been devised to mimmize spunous feature marking, usually
involving thresholding and comparison across spatial scales {Marr, 1982; Watt and Morgan,
1985; Yuille and Poggio. 1985). However. many of these strategies have been criticized as
being computationaily expensive. biwologically implausible. and often neffective. parucularly
with more complicated images with closely adjacent features. And none of these strategies
is effective with the combination of iine and =dge features (like Figure 2C).

The local energy output (Pvthagorean sum ot even- and odd-svmmetric output} 1s shown
directlv above the linear outputs. One obvious advantage of this operation is that at each

S
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scale the profile has only one peak. and that peak corresponds in position to the feature.
Furthermore. the same function signals both types of features with a positive peak (rather
than relving on the difficult process of searching for zero-crossings). After the feature has
peen detected, it can easily be identified by examining the amplitude of the linear operators
at that point: a response of odd-symmetric operators signals an edge, and even-symmetric
operators a line. If both classes of operators respond at the position of the feature (such as
in Figure 2C), then both a line and an edge are signaied.

What were the theoretical considerations that led us to choose local energy as an indicator
of visual features? It has long been known that the Founer phase spectrum is important for
vision. indeed, far more important than the Fourier amplitude spectrum. If the phase spectra
of two 1mages are interchanged. leaving the amplitude spectra intact, the appearance of the
hybnd pictures is determined almost compietely by the phase spectra (Oppenheim and Lim,
1981: Piotrowski and Campbell. 1982). We have recently shown that the importance of the
phase to vision lies not m the Fourer phase spectrum per se. but in how phase relationships
of the various harmonics cause them to interact 1o create visual features (Morrone and Burr,
1988; Burr and Morrone, 1990). Specifically, we have demonstrated that visually salient
features occur at those points of an image where the Founer components come into phase
with each other. Thus. they can be detected bv searching for points of congruence in arrival
phase.

Figure 3 illustrates the concept of phase congruence of Founer harmonics and shows
how this congruence creates maxima in the local-energy function. The upper traces {A and
D) show two pentodic waveforms. a squarewave and a series of delta functions, both slightly
blurred with a Gaussian filter (to attenuate the infinite series of harmonics). The sinusoids
under each waveform represent the first three components in the Fourer expansion. For
both waveforms. these harmonics {and all mgher harmonics) come into phase periodicaliy,
at twice the frequency of the fundamental; and the point where the harmonics come into
phase is where the feature i1s seen, be it edge or line. For an edge, all cosine harmonics
have arrival phases of = w2 (depending on the polarity of the edge). For a bar, the amval
phases are all 0 or w. If the feature were a combination edge and line (like Figure 2C), the
arrival phases wouid take on an intermediate value at the point of phase congruence. From
these and other observations. we have proposed the generalization that visually salient
features alwavs occur at the point of maximum phase congruence (Morrone and Burr, 1988).

The relauonsnip between local energy and phase congruence s illustrated i the lower
graphs of Figure 3 These curves. parametnc in x. were obtained by plotting the mput
functions fix) (Figure 3 A and D) against their Hilbert transforms hfx). In this representation,
local energy 15 given by the distance of the curves from the ongin (the norm).*

The arrows inside the graphs depict the vectors associated in this space with the first
four individual harmonics of the periodic waveforms. calculated at two positions: x = 0.5T
the point where the feature 1s seen, and x = 0,18T, an arbitrarv point on the plateau. The
norm of the vectors for each harmonic does not vary with position (x} on the waveform [as
sin*(2wx/T) + cos*(2wx/T} = 1]. but the argument is proportional to the product of position
and spatial frequency (2mx/T). At x = 0.5T (the position of the edge or line), the armval
phases of all the harmonics are the same (m/2 1n Figure 3C and w in Figure 3F}, so the
vectors are all aligned. For x = 0.18T. however, the amval phases of the harmonics are
very different. so the vectors (indicated by dashed arrows) will all point in different

The functiens f(xi can be considered to be the ouptut of an even-symmetric operator of broad bandwidth. and
its Hilbert transform hix) the output of an odd-symmetric operator of identical bandwidth. In practice the model
does not evaluate iocal energy for the whole pattern, but separately at different scales. However, the concepts
illustrated here for the physical image can readily be extended to the output of our inear operators by considenng
band-pass filtered versions of fix) and hix
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directions. Each point of the parametric curves is the resultant of all the vectors associated
with the harmonics, Clearly, the norm of the resuitant vector will be greatest when the
individual vectors are most closely aligned; that is, when the arrival phases of the component
harmonics are most similar. Hence, peaks in local energy will mark points of maximal
arrival-phase congruence. Although this exampie uses periodic patterns, the same argument
can readily be extended to aperiodic patierns, by considering a patch-wise Fourier analysis.

Operators simiiar to local energy have been used in several applications. including image
enhancement (Granlund, 1978: Wilson et al., 1983), motion detection (Adelson and Bergen,
1985, Heeger, 1987) and in modeling hyperacuity (Klein and Levi, 1985). However, the
motivation for using this class of operation has always been to eliminate phase tnformation,
rather than to capitalize on it. These seemingly contradictory assertions can be reconciled
by the understanding that aithough local energy 1s, in fact, insensitive to absoiute phase, 1t
18 highly sensitive to relative phase organization. For example. the local energy of a sinewave
is identical to that of cosinewave; and any L. function will have the same local-energy
profile as its Hilbert transform. or any other phase-shifted version of it. However. local
energy does depend on the relationships between phases of the various Fourier harmonics.
as the above exampie clearly shows. It is for both of these reasons that we find the function
s0 useful. It is sensitive to phase relanonships and. therefore, detects points of phase con-
gruence; but it responds equally well. irespectve of the value of the phase ar those points
of phase congruence. so the same operator can detect both lines and edges. Distinguishing
between lines and edges is a simple process, readily established by evaluating the phase (or

relative contribution of the even- and odd-symmetric operators) at the maxima of local
energy.

1. THE MODEL IN TWO DIMENSIONS

The model has recently been extended to two dimensions {Burr and Morrone, 1990
Morrone and Burr, 1992). This slep is not as routine as may be imagined, as the operators
must be Hilbert transforms of each other. and the Hilbert transform is not defined in two
dimensions. Therefore the Operators must be essentially one dimensional and oriented in
space. It 1s interesting that the oriented operators that we were forced to use in order to
obain a Hilbert transform in fact resemble guite closely the receptive field properties of
visual neurones. In both cat and monkey. the most striking property of cortical neurons (as
distinct from retinal and thalamic neurons) is that they respond very selectively to stimuli
of given orientations (Hubel and Wiesel, 1962, 1977). We use four sets of oriented operators,
oriented at 0, 90, and = 45°. Along one axis the operators are modulated with the even- or
odd-svmmetric profile depicted in Figure 2, and along the other with a simple Gaussian of
about the same size.

Another difficulty for the two-dimensional model is in detecting maxima in local energy.
If only the absolute maxima of the plane are considered. only a few tsolated points would
be marked. On the other hand, if maxima are marked line by line (at each orientaton), too
many features would be marked. producing a tendency for ““overshoot”, making lines appear
ionger than they are and comners terminated incorrectly. Qur strategy is to establish first the
direction of maximal change of energy (within a small window} and search for maxima oniy
along this direction. Again this process finds a neurophysiological analogue in human and
amimal vision called cross-orientation inhibition”": mutual inhibition between neurons of
differing orientation preference (Morrone. Burr. and Maffei. 1982 Morrone and Burr. 1986:
Burr and Morrone, 1987).

Finally, there is the difficuity of how information at various scales and various oren-
ations is combined to give an overall feature map of the scene. For this we find little
guidance either from phvsiologrcal or from ps¥chophvsical research. Although there is

N
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compelling evidence that information is decomposed by filters selective for both orientation
and spatial frequency. there is as yet no information of how this information may be resyn-
thesized to yield a unified percept. Indeed, for the human visual system, there may be no
need for resynthesis of information at all. However, to gain some insight into how our model
performs. we must be able to combine our separate representations to form a single feature
map. To achieve this, each map is given a scale-dependent ‘‘uncertainty weighting’’ by
blurring the feature maps with Gaussians of space constantly proportional 1o the scale of
the operators, and then summed together. The effect of the uncertainty weighting is to
privilege-attach positional information from the higher scales, which we may expect to be
more precise.

An example of the operation of the model in two dimensions is shown in Figure 4. The
image was convolved separately by even- and odd-symmetric operators of four spatial scales
and four orientations. (In practice this operation is achieved using the pyramid technique of
Burt and Adelson [19831 for efficiency of computation.) At each scale and at each onientation,
the even- and odd-symmetric outputs were combined by Pythagorean sum 1o produce the
local energy profile, from which the local maxima were calculated (along the direction of
maximal energy gradient) to yield the independent feature maps. The feature maps were
biurred in proportion to scale size (again achieved by *‘expanding'’ the pyramid) and summed
1o give the image of Figure 4B.

The first obvious point to make is that although the feature map may lack some of the
artistic merit expressed in Figure 1. it is in fact a quite good sketch of the original image
Furthermore. evey relevant feature, line. edge. and specularity, has been marked. with no
glaring false positves. Given that there has been no thresholding or postprocessing, this
result is more than acceptabie.

The histograms of Figure 4C give an idea of the proportions of vanious features types
by plotting the distributions of phase at the maxima of local energy, separately for three
different scales. All three histograms have clear peaks at = /2. corresponding to positive-
and negauve-going edges, suggesting that these features are the most common. However,
it is important to note that while these phases do predominate. there remains a jarge proportion
of marked features of intermediate phases (like the feature of Figure 2C), features that often
result from oblique lighting and shadowing effects. For our model, this class of features
presents no difficulty and is venidically marked as combination edge bars. But for any model
based on simple linear convolution. these types of features are difficult to localize veridically
isee Figure 2C).

1V. STRUCTURING THE IMAGE

One of the clearest illustrations that vision is not strictly linear is provided by Harmon
and Julesz's (1973) demonstration of coarse-quantization, illustrated in Figure 5A. The
original image of Figure 4A has been ‘'quantized” by setting all the pixels within each
square to the mean value of those of the original image. This sampling technique preserves
nearly all low-frequency 1mage information (below the Nyquist sampling rate), whiie intro-
ducing the spurious high spatial frequency components that shape the blocks. What is
interesting 1s that although blocking preserves sufficient low frequency information to allow
face recognition (readily verified by blurring or distancing the image), by no effort of will
can one extract this information from the unfiltered blocked image.

Whatever mechanisms underlie the phenomenon of blocking. they demonstrate a clear
noniinearity in the human visual system. The low-frequency information about the face
cannot be extracted when viewed together with the high spurious spatial frequencies, clearly
violating the additivity principle of linear sysiems. The originai explanation for the effect
was that the high spunous frequencies intreduced by blocking mask the lower spanal fre-
quencies that contain the image information, rendering them effectively invisible (Harmon
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FIGURE 4. An example of results of the model in two dimensions. B is the output of the model applied 10 A
isee text for details). The histograms of C show the distribut

1on of armval phases at the marked
fupper curver. medium umiddle curve), and low tlower curve) scales

features. for high
phases o group & ~ 2 icorresponding to edges),

Although there 15 a clear tendency tor the
all phases ure represented m the histograms
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and Julesz, 1973). However. aithough nonlinear compression of this sort certainly occurs
{e.g., Stromever and Julesz, 1972; Legge and Foley, 1980), calculations of the strength of
masking (for example. from the data of Legge and Foley, 1980 or Anderson and Burr, 1985)
show that the spurious spatial frequencies could not have sufficient power to suppress the
low-frequency signals below detection tireshold. Perhaps the best demonstration that the
low spatial freguencies are not merely “"masked’” is that addition of further high-frequency
energy (1n the form of high-pass noise) causes the blocked image to be recognizable (Morrone
et al.. [983).

Our expianation for the blocking phenemenen is that the hugh spatial frequencies do not
remove the low spatial frequency information from vision, but structure the way that it is
perceived. According to our model. only maxima in local energy are perceived as features,
and in this image it is the high spatal frequencies that dictate where the maxima of local
znergy fall (partly because of the scale-dependent uncertainty weighting). Figure 4C shows
the output of the model. produced by the procedure described above. The marked features
fall in a grid-like pattern along the borders of the blocks: and according to our model, these
features provide an abstract descripuion of the image, causing it to be perceived as blocks.
The information contained in the low spatial frequencies is not masked or suppressed. but
becomes “‘companmentalized’” by the structure provided by the maxima of local energy.
After the high spatial frequencies of image have been removed by digital blurring (Figure
3B). the low spatial frequencies contribute more to the position of the maxima of local
snergy. creaung a feawre map more consisient with the features of the face (Figure 3D).
allowing a blurred face to be perceived.

/10
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FIGURE 5. [llustration of how the local energy mode! predicts the '"coarse quantization’' phenomenon, first
described by Harmon and Julesz (1973). The image of 4A has been quanuzed by setting all pixels within each
block to the average level (A). This process preserves most low spatial frequency information (below the Nvquist
rate. balf the sampling frequency). readily venfied by viewing the picture from a distance. or blurring the image
(C}. B and D show the output of the model to the blocked and blurred images (see text for fusther explanation).

V. BRIGHTNESS ILLUSIONS

Visual illusions have long been invoked to demonstrate that the visual system does not
simply transpose the external scene into a veridical internal copy. but encodes important
information into a symbolic representation. In doing so it sometimes errs, to produce a so-
called visual illusion.

One of the best known and most powerful illusions is the phenomenon of Mach bands.
the paradoxical light and dark bands seen where a luminance ramp meets a plateau {Mach,
1865. 1906; Ratliff. 1965). Figure 6 provides two illustrations of the phenomenon. in one
and in two dimensions. The figure on the left is a trapezoidal waveform. but is not perceived
as such. There are conspicuous spikes of brightness. where there are none in the luminance
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FIGURE 6. Two examples of the well-known bnghtness illusion of Mach bands. On the left the luminance
profile 1s trapezoidal. but we perceive sharp bright and dark lines where the ramps meet plateaus. The patiern on
the nght was created by muitiplving a verucal with a honzonal tnangle wave to form a pyvramad-like luminance
distnbution: vet we perceive sharp bright and dark crosses. not present in the luminance distribution.

profile. Note also that at the point where the bands are seen. there is a change in brightness
(partly disguised by the Mach bands). so that the luminance ramp between the bands appears
of uniform brightness, with no particular feature at the point where the luminance profile
crosses zero. Figure 6B shows the same effect in two dimensions (Morrone et al.. 1986),
The luminance distribution is, in fact, pyramidal, the product of a hornzontal and vertical
triangular waveform: vet we perceive the pattern as bright and dark star-like structures.

The explanation for the Mach bands that appears in most textbooks (e.g., Cornsweet.
1970: Ratliff. 1965) was first advanced by Mach himself (Mach, 1906): that lateral inhibition
in the retina effectively differentiates the image. producing overshoot and undershoot at the
points where the bands are seen. However, a major difficulty with global differentiation {or
any other hnear high-pass filter operation}) is that it implies that as the ramp 1$ made steeper
that bands should become stronger and stronger. to be maximal for a steep square edge.
which would severely distort our everyday perception. However, the bands, in fact, become
weaker as the ramp is steepened and do not occur at all if the ramp extends over less than
307 (Ross et al., 1981; see also Fiorentini, 1973; Ratliff, 1984).

Our explanation for Mach bands does not rely solely on differentiation or other linear
operations. but on the fact that the energy model marks line-like features at the point where
the bands are seen {Ross et al., 1989). Figure 7 shows the local energy profile at two scales.
Al both scales the energy peaks at the points where the bands are seen. so the summed
feature map will predict features to be there and there alone. At the higher scale there is a
strong response from even-svmmetric operators at these peaks, signaling the presence of
sharp lines. At lower scales the odd-symmetric operators also respond at the energy peaks,
and this response signals that a brightness change should accompany the Mach bands. As

/2.
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FIGURE 7. [llustrauon of the local-energy model appled to a trapezowdal waveform. Under the waveform are
the local energy profiles of a hugh (B) and a low scate 1C. together with the even-symmetne (dashed lines) and
odd-symmetric {continuous lines) output. The energy at the higher scale peaks at the postion where the Mach bands
are seen: and at that posiion there is a strong response [rom the even-symmetric operators, mdicating that the
feature should be a line. At the lower scale, the position of the feature is not positioned exactly on the kneepoint
of the iuminance distribution. but {as discussed eisewhere). the lower scales comnbute little o locaiization of the
features. They do, however. conmnbute to the brightness map. and because the odd-symmetnic operators (as well
as the even-symmetric operators) respond a1 the marked feature. they signal a brightness change

in the previous example, the change in brightness occurs at the feature defined by the local
energy peaks. and the high spatial scales dominate in determining the position of these
peaks.

Local energy predicts not only the occurrence of Mach bands and where they should
occur, but also the perceived strength of the bands. We have measured the strength of the
Mach bands. by adjusting the contrast of 2 trapezoidal waveform until the bands were just
visibie. The inverse of contrast at threshold gives an estimate of contrast sensitivity. a unitless
index greater than !. It turned out that the contrast thresholds were very easy to set, and
three observers agreed closely on the threshold settings. Contrast sensitivity for Mach bands
were measured over a wide range of spatial frequencies and for a vanety of stimuli filtered
in the spatial frequency domain (Morrone et al., 1986; Rass et al., 1989).

Figure 8 shows an example of the results. Contrast thresholds for seeing Mach bands
on blurred stimuli were measured as a funcuon of the low-pass filter cutoff frequency
(triangular symbols). As the pattern is blurred. and bands become progressively weaker, so
more contrast is required to see them. For comparison we also measured contrast thresholds
for detecting a high-pass trapezoid stimulus (circular symbols), deliberately chosen to have
similar thresholds to those of the Mach bands.

The lines passing through the svmbols of Figure 8 are not simply best fits of the data,
but quantitative predictions from the local-energy model. To predict the detection threshoids
for the high-pass stimulus, we first calculated the local energy at each scale. The energy
was then combined by the standard procedure of probability summation across scales and

i3
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FIGURE 8. Conuast threshoids for seetng Mach bands inangles) on a low-pass filtered rapezoidal waveform
teurcle;. as a funcuon of the filter cutoff frequency The circles indicate detection thresholds of a hugh-pass trapezoid,
measured for companson. The curves passing through the symbols are predictions from the local energy model,
while the dashed curves above are predictions derived from lateral inhibition (see Ross =t al., 1989 for details)

across space (2 form of nonlinear summation that takes account of the fact that increasing
the number of visual units that respond to a stimulus increases the probability that at least
one will respond and detect it: see Sachs et al., 1971: Ross et al., 1989). The results of
these predictions tas a function of filter cutoff frequency) are represented by the continuous
curves passing through the circles. To predict the strength of the Mach bands. we considered
only energy that contributed to the peaks at the position where the Mach bands are seen.
Agamn. this energy was summed probabilistically across space and across scale 10 vield the
predictions represented by the other set of solid lines in Figure 8.

[t shoud be stressed that the predictive curves of Figure 8 were derived with only one
degres of freedom: absolute sensitivity determining the height of the curves. Once this was
fixed for the detection results, the prediction curve of the Mach band thresholds was entirely
determined. Given that there are no other vanable parameters (or “‘fudge factors'') in the
model. the predictions are surprisingly good. Not only do the curves follow the general
shape of the data. but they even predict subtle differences in the data. including the crossover
around 7 cideg.

The dashed curves above the figure are predictions of the strength of Mach bands for
a model based solely on differentiation or high-pass filtering (assuming even-symmetric
filters). It 1s clear that such a model does not come close to predicting quantitatively the
actual data.

Many illusions iliustrate how bnghtness* does not depend entirelv on the physical
tuminance of the stimuli. One of the clearest demonstrations of this is the Craik-Cormsweet-

-

A technical lenm meaning the oercerved or apparent lumunance of a surface . often musused 1o refer 10 physical
properties of images

7
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FIGURE 9. (A} An example fo the Craik-O'Brien-Cornsweet illusion. The pattern has identical lumtnance
everywhere except al the border, yer the circle seems to be lighter than the background. (B} The lower figure
shows the classic Chevreul illusion: the steps are all of uniform luminance, but do not appear so. When thin lines
are added o edge step. they appear to divide each step into two regions of quite different brightness.

O’Brien illusion (Craik, 1966; O'Brien. 1958, Comsweet, 1970), illustrated in Figure 9A.
The luminance is. in fact, identical everywhere except at the border of the perceived circle,
yet the circle seems brighter than the background. Original explanations for the phenomenon
relied on high-pass filtering of the visual system (Comsweet. 1970: Campbell et al.. 1978),
but as for the explanations for Mach bands. the filtering cannot predict quantitatively the
results. The illusion holds even at very high spatial frequencies, well outside the range where
viston may be expected to perform high-pass filtering (Burr, 1987).

The local-energy model readily accounts for the illusion. Local energy peaks at the
borders of the inner circle, so features are seen there. As the profile is odd-symmetric, only
odd-symmetric operators respond at the marked feature. so the feature is perceived as an
edge. and perceiving an edge means perceiving a brightness step. The step in brightness
caused by the edge extends to the whole region, as there are no other features to provide
contradictory information,

Other brightness illusions are illustrated in Figure 9B. A staircase luminance profile is
not seen veridically, but takes on the **scallopy’” appearance of the well-known Chevreul
illusion {Chevreul, 1890}. For this illusion we do not as yet have a satisfactory explanation,
but expect that it reflects a nontransitivity in visual computations. Each edge in the series
has the same polarity and should. therefore, signal successive brightness increments. The
second region should appear brighter than the first, the third brighter than the second, etc.
If compiete transitivity were observed. the difference between the brightness of the first and
third region should be twice that of the difference between adjacent panels. However. there
15 good evidence that transitivity is not preserved totally, even for two successive edges of
the same polarty (Shapley and Reid. 1985, Failure in preserving transitivity would create
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FIGURE 19. lliustration of how loca: enargy predicts the bogheness illusion of Figure 9. A shows the mput
waverorm. and B and C me tocal-energy profiles, together with the even- (dashed line) and odd- {continuous lines)
SYmmelnc outputs at two scales. At the high scale (B), the local-energy peaks cormrespond in posttion [0 the lines
and edges. acurately predicting the position of these features. At this scale it is mainlv the even-symmetric operators
that respond at the position of the lines. cofrectly predicting their appearance. At the lower scale, however, odd-

SYMmeNc detectors respond at the peak of local energy caused by the lines, predicting the observed brightness
change

an incompatibility between the local brightness steps and the global brightness of the whole
pattem. and this incompatibility may produce the scailopy pattern we observe.

Unfortznatels. the above explanation is not vet in a form where it can be tested quan-
utatively. However. a new illusion, more amerable (0 quantitative measurernent carn be
created by adding a thin line to each step (Morrone et al.. 1991). The series of lines changes
the appearance of the pattern compietely, causing it to appear “‘square-wave-like'" with the
regions bounded by lines and edges seen with uniform brighness, with z large brightness
step at the position of each line.

Again. the local-energy model can explan readily this illusion. The profiles of Figure
10 show the response of the local energy and of the matched filters at two spatial scales.
The energy profile peaks at the positions of the lines and edges, predicting that all features
should be seenin those positions. The even-symmetric response at the high spatial scales predicts
the presence of lines art those positions. But at the lower scales the odd-symumetric operators
also respond at the peaks of local energy, predicting an edge, with an accompanying bright-
ness change. We ses both sharp lines and a change in brightness. in agreement with the
predictions of the modej.

4s we saw in the previous example. the real test of a model 1s how well it predicts
quantitatively human performance. We have measured the apparent contrast of the illusion
under various conditions. Figure 9B shows how apparent contrast varies as the paftern is
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FIGURE 11. Apparent contrast of the illusory edge of Figure §, measured at high {cpen tnangles) and low {filled
tnangels) contrast. The lines passing through the svmbols are predictions from the local-energy model. obtained
from the srength of response of the odd-svmumetnic operators (see Figure 10).

high-pass fiitered. Again, the solid curves are predictions from the model. based on the
strength of the odd-symmetric response ai the feature. As the low frequencies of the partern
are reduced, the odd-symmetric response becomes progressively diminished. until there
should be no illusion at all. And. indeed. the experimental data follow closelv the predictions
of the model.

V1. DISCUSSION

To conclude, we have presented a model for early human visiorn wherebv the retinal
image Is not simply transmitted through a svstem of linear filters, bur encoded by noniinear
mechanisms to form an abstract, symbolic representation. In general, this representation
reflects the physical reality. However, there exist several examples of visual illusions where
humans perceive an image as different from that defined by its physical luminance distri-
bution. In all the examples examined so far. our model performs like human vision in
“seeing’’ the illusions and predicts accurately the strength of the illusions under vardous
conditions.

In general, we were guided by the known physiology of mammalian vision in choosing
parameters for the model. Our filters all have a limited amplitude spectrum of about 1.5
octaves, agreeing with most physiological and psychophysical data (e.g.. Maffei and Fior-
entini, 1973; Movshon et al. 1978a.b: Biakemors and Campbell, 1969:; Legge and Foley,
1980: Andersor and Burr, 1991). But unlike many models of visual perception (Marr, 1982;
Robson. 1980). the limited bandwidth of the operators (forming so-called spaual frequency
channels) does not perform a major role in our model. Indeed. we have demonstrated
reasonable success by applying the operation with broad-band matched filters of 3 octaves
bandwidth (Morrone and Owens, 1987).

However. once the decision has been made for independent analysis of the image at
various scales, the problem arises as to how the results of the independent analyses should
be combined. and for this problem we find little guidance in the literature. Our strategies
of relying more on the higher than lower scales for feature localization {but not in determining
brightness) seems intwitively logical and does receive some support from the literature: phase
yudgments vary little with spatal frequency. umplying an improvement in absclute positional
judgments at higher scales (Burr. 1980; Tvler and Gorea, 19861 However. we would prefer
that this important strategy be hased on firmer data and have commenced some stdies to
this end.

.
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A differem strategy for svnthesis has been suggested by Perona and Malik (1990). Rather
than evaluate local maxima separately over all scales, Perona and Malik search ait energy
maps (of different scale and orientations) concurrently, and choose the absolute maxima,
thereby producing a single feature map. The strategy has the advantage of not requiring
reintegration of separate feature maps and 1s not at all biologically implausible. Hopefully,
it will be passible to devise a qQuantitative test to distinguish between the two strategies,

Another difference between Perona and Malik's approach and ours is that they use a
different strategy to evaluate local energy. Rather than nonlinear combination of two or-
thogonal filters, they convolve the image with many matched filters with differing phase
response and choose those that give the greater response. This process is formally equivalent
to our approach (consider the parametric plots of Figure 3), but is. of course, computationally
much more expensive. Moreaver, although the physiological evidence remains somewhat
ambiguous (Field and Tolhurst, 1986). there is now clear psychophysical evidence that in
human vision. detectors tend to have phase responses of 0, 7/2 and =, implying that
receptive fields are eight even-symmetric or odd-symmetric (Burr et al., 1989). Thus, both
the experimental evidence and considerations of computational efficiency imply that the
nonlinear technique of taking the Pythagorean sum of orthogonal Operators is reasonable.

Most of the operations that we suggest for our model are readily implementable by
physiologial “*hardware’". There exist two major classes of neurons in the mammalian primary
visual conex, “*stmple celis™* and “complex cells” (Hubel and Wiesel, 1962, 1977). Both
simple and complex cells respond selectively to stimulus orientation. and the preferred
crientation of the stimutus changes progressively with position in the cortex. The major
difference between the two cell classes is that simple cells are quasilinear {except for a half-
wave rectification resulting from the fact that their firing rate cannot fall below zero). while
complex cells exhibit a clear second-order (squaring) nonlinearity (Movshon et al., 1978a,b:
Maffei et al., 1979; Spizer and Hochstein, 1985a,b). Furthermore, the linear simple-cells
tend to be grouped so that adjacent cells have similar orientation and spatial frequency
tuning. but differ in phase response by m/2 (Pollen and Ronner, 1981). The simple cells
are ideally suited to act like the matched filters of our model Complex cells. on the other
hand. with their second-order nonlinearity, are ideal candidates to extract local energy, either
from input supplied by the simple cells or by similar operations performed within their own
subunits. If this suggestion were correct. then the complex cells would be primarily re-
sponsible for location of visual features, while simple cells were responsible for their iden-
ufication.

An important nonlinearity in our model is the NONmaximum suppression, where only
tocal peaks in the energy functions are considered to provide brightness information. Al-
though no such mechanism has vet been observed neurophysiologically, it is by no means
anreasonabie. One of the primary mechanisms of elaboration of sensory information is mutual
nhibition between neurons (Eccles, 1969). Lateral inhibition helps shape the receptive-field
structure of visual neurons (Hartline, 1949). and inhibition between cone types enhances
color sensitivity and helps maintain color constancy (Wiesel and Hubel, 1966). More recently,
"'cross-onientation inhibition”” has been demonstrated between onientation-selective corticat
neurons, a mechanism which should tend to enhance the response of the strongest firing
neurons (Morrone et al.. 1982; Morrone and Burr, 1986, Burr and Morrone, 1987; see also
Chapter 12 of this volume). Similar sorts of mechanisms could well iead to suppression of
weaker responses. ensuring that only iocal maxima of energy contribute toward the feature
map. However, whether this operation is actually implemented neurophysiologicallv, and
if so. at what leve!l. remain open questions.

/8,
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