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The role of features in structuring
visual images

David C. Burr and M. Congetta Morrone

istituto di Neurofisiologia del CNA, Via S. Zeno 51, 56127 Fisa and Depantment of
Psychology. University of Rome. ltaly

Abstract. Edges and lines carry much information about images and many models
have been developed to explain how the human visual system may process them.
One recent approach is the local energy model of Morrone and Burr. This model
detects and locates poth lines and edges simultaneously, by taking the Pythagorean
sum of the output of pairs of matched fiiters {even- and odd-symmetric gperators)
10 produce the ail-positive local energy function. Maxima of this function signal
the presence of all image features thar are then classified as lines or edges (or both)
and as positive or negative, depending on the strength of response of the even-
and odd-svmmetric operators. If the feature is an edge, it carries with it a brightness
descriptior. that extends over space to the next edge. The model successfuily explains
many visual illusions, such as the Craik-O"Brien, Mach bands and a modified
version of the Chevreul. Features can structure the visual image, often creating
appearances quite contrary to the physical luminance distributions. In some
examples the features dictate totally the image structure, ‘capturing’ all other
information; in others the features are seen in transparence together with an
alternate image. All cases can be predicted from the rules for combination of local
energy at different scales.

1994 Higher-order processing in the visual system. Wiley, Chichester (Ciba
Foundarion Symposium 184) p 129-146

It is well accepted that the visual system does not simply transmit information
passively from the eye to the brain, but actively analyses the image to produce
meaningful forms and objects. Certain parts of the image, generally referred
10 as ‘features’, are more salient than others and to a great extent determine
the perceived structure of an image (see, for example, Barlow 1959, Marr 1976).
In previous publications, we have highlighted the importance of features in
structuring images and have proposed the ‘local energy’ model of feature
detection as a means of detecting and analysing features. In this paper, we briefly
review the model and pursue the idea that features provide structure to an image,
extending these ideas to transparency.

For the local energy model, features are lines, edges or combinations of both
(ignoring for the moment possible higher-level features such as corners and
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130 Burr & Marrone

intersections). Many algorithms have been devised for detecting lines and edges
{e.g. Marr & Hildreth 1980, Marr 1982, Wart & Morgan 1985, Canny 1986,
Kingdom & Mouiden 1992), all of which work reasonably well under some
conditions but encounter difficulties under others. For most algorithms (that
use only one class of operator, such as a difference-of-Gaussian), combinations
of lines and edges are particularly difficult fearures to localize accurately, as
each will produce a zero or maximum, but at different positions (see Burr &
Morrone 1992 for further discussion).

The local energy model of Morrone & Burr (1988, [993, Burr & Morrone
1980, 1992) explicitly recognizes the importance of lines and edges as image
features and encodes both feature types simultaneously with the same algorithm.
We achieve this by convolving the image simultaneously with pairs of matched
filters, with even- and odd-symmetric line-spread functions (tuned, respectively,
to lines and edges), and combining the output of these filters by Pythagorean
sum. Peaks in the output (local energy) mark all features—lines, edges and
combinations of them. The feature is then coded as a line or an edge (or both),
depending on the relative strengths of the odd- and €ven-symmetric operators.
Furthermore, if the feature is coded as an edge, the edge is the signal for a change
in brightness, which continues until the next edge.

A useful aspect of the local energy model is that it gives a physical definition
of visual features. Peaks in local E€Nnergy occur at the positions on an image where
the Fourier components tend to come into phase. The absolute value of the
phase of the harmonics depends on the type of feature, being 0° or 180° for
bright and dark lines and +90° for edges. Intermediate phases indicate the
presence of both edges and lines. Thus, local energy can be considered to be
a polar representation of the even- and odd-symmetric output, where the
amplitude (or norm) defines feature strength and phase {or argument) defines
feature type.

To model the known properties of the human visual system, we compute
local energy separately over several orientations and spatial scales. The
maxima of local energy ar each scaje and orientation produce ‘feature maps’
that provide independent descriptions of the brightness of the image (similar
to the model of Kingdom & Moulden 1992). Whiie this strategy finds
firm support from physiological studies, it unfortunately creates the difficult
problem of how to combine the information over scale and orientation.
Here various possibilities exist, none of which is well Justified by physiological
or psychophyvsical data. Qur (provisional) approach is simply to sum the
separate feature maps (given by maxima in locaj energy} at each scale with
an ‘indeterminacy’ factor proportional to scale size {see Morrone & Burr
1993). For most images, the features tend to be consistent at all scales, so
no difficulties arise. However, in some instances (illustrated below), different
scales may contain different features and brightness signals, leading to interesting
results.
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Brightness

Like most models of edge detection, the local energy model assumes that edges
induce in the image a brightness change that extends until there is information
to the contrary (given by another edge). The best known example of this is the
Craik-O’Brien illusion, iltustrated in most vision texts (such as Cornsweet 1970;
see also Burr 1987). The stimulus is usually a simple image, high-pass filtered
so the luminance is identical everywhere except near the border of, for example,
a central circie. The central circle seems to be of homogeneous brightness, much
brighter than the background. We suggest that the abrupt change of luminance
at the border signals an edge and hence a brightness change that extends
throughout the entire region. Here, the information is provided only at the higher
scales. As the iower scales indicate nothing to the contrary, there is no conflict,
so the high-scale brightness signal prevails.

Figure 1 shows more complex examples of the influence of the phase of the
image features at different scales of brightness. Mach bands, the light and dark
lines seen where the luminance ramps meet plateaux (Fig. 1A), were first
observed by the Austrian physicist Emst Mach (Mach 1865). Inspection of the
irmage reveals that at the points where the lines are seen, there appears 10 be
an accompanying change in brightness. The region of the ramp, where luminance
is increasing continuously, seems to be of relatively homogeneous brightness,
especially when the image contrast is low.

Again, both the lines and the brightness change are predictable from the local
energy model (illustrated under the image profile). The middle profile shows
the local energy of a relatively high scale, the lower profile that of a lower scale.
At both scales of analysis, the peaks in local energy occur at the position of
the features. At the higher scale, the phase at the energy peaks (illustrated by the
polar plots) is near 0° or 180°, the signal for a light or dark line. This explains
the perception of lines (where none exist on the profile) and also predicts
quantitatively the conditions under which they occur (see Ross et al 1989).
However, at the lower scale, the phase is not exactly 0° or 180°, but 30° and
150°, a combination of line and edge. This correctly predicts that in addition
to the line, an edge should be perceived, with an accompanying brightness
change. Note that there are no peaks on the ramp (including the point where
it crosses zero) and no features are perceived there. In this example, although
the phase of the features varies with scale, both the line and brightness change
are perceived concurrently as part of the same feature.

Figure 1B is a modification of the classic Chevreul illusion (Chevreul 1890),
where a series of luminance steps do not seem of constant brightness, but take
on a ‘scallopy’ appearance. We have added thin lines 1o each of the luminance
steps, destroying the scallopy appearance of the Chevreul illusion, and creating
a brightness step at the position of the line. Again, this brightness step can be
predicted by the phase of the energy peaks. Whereas the phase at the higher
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FIG. 1. Examples of Mach bands (A) and a modified version of the Chevreul illusion
(B), with their illuminance profiles shown underneath (not to scale). The two lower curves
show the [ocal energy profiles computed at 2.4 cycles/ramp and 1.2 cycles/step (middle
traces), and 1.2 cycles/ramp and 0.6 cycles/step (lower traces). The polar plots indicate
schematicaily the phase of the local energy at the indicated peaks. At the lower scale,
all the polar plots include a sine component, predicting a brightness change at the features.
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scale is near zero, at the lower scale it is —90°, the signal for a negative-going
edge. This explanation works qualitatively, and also predicts guantitatively the
magnitude of the induced brightness (Morrone et al 1994). Why the original
Chevreul illusion should take on a scallopy appearance is less clear, but it is
probably because of the continued series of edges of the same sign and a
breakdown in the ‘transitivity’ of the brightness signalling mechanisms. The
brightness signal accumulates across the series of same-signed edges, but the
accumulation is not perfect (see Shapley & Reid 1985), leading to discrepan:
brightness signals about each edge.

The above images were chosen as examples where features can dictate
brightness changes contrary 1o the luminance distribution of the image but
predictable from the position and phase of the local energy peaks. They are
interesting because the brightness information is different at different spatial
scales. The edge information that produces the brightness change occurs only
at the lower scale. However, the brightness generated (independently) at that
scale is not confined by the low-scale features, but extends over the whole region
up to the features of the finer scale, even though those features are lines.
Brightness information may be generated at any scale, but if the features of
different scales coincide (within a certain tolerance related to scale size), the
high-scale features will dominate when the separate maps are summed
(irrespective of feature type}, and therefore will be most effective in defining
the boundaries of the brightness region. Bowever, as the following examples
show, when the features of different scales are sufficiently distant to remain
separate on summation, the high-scale features will not ‘drag’ the low-scale
features, but both are perceived separarely in transparency.

Transparency

One of the most powerful demonstrations of how features can structure an image
is given by the ‘blocked’ image of Harmon & Julesz (1973) (Fig. 2A). The original
image (not shown) has been ‘sampled and coarsely quantized’ by setting all the
pixels within each square to the mean value of those of the original image.
Although this sampling techmique preserves sufficient low-frequency image
information for face recognition (readily verified by blurring or distancing the
image), this information cannot be extracted from the unfiltered blocked image.

The original explanation for this effect was that the high spurious frequencies
introduced by blocking mask the lower spatial frequencies that contain the image
information, rendering them effectively invisible (Harmon & Julesz 1973).
However, Fig. 2B casts some doubt on this explanation. There the phase of the
spurious frequencies has been shifted by 90°. leaving their amplitude and
distribution of maxima of local energy (and of maxima in local variance)
untouched. The high-frequency features remain {as lines rather than edges), but
are seen in transparency in front of a clearly recognizable face. Several other
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FIG. 2. Examples of coarse quantization of a naturaj image (A,B) and a simple sine wave
(C,D). In the images on the left (A,C), all pixels within the blocks are set to the same
mean tuminance, preserving low-frequency information while introducing spurious high
frequencies. In the images on the right (B,Dy), the phase of the spurious frequencies (higher
than the Nyquist frequency) has been shifted by 90° (above) or 180° (below), leaving
the amptlitude untouched, After phase-shifting, the spurious harmonics are clearly far
less detrimental to recognition than those in phase,.

demonstrations, including the fact that adding more high-frequency noise can
improve detection (Morrone et al 1983), all suggest that the blocks interfere
with perception in ways other than simple critical-band masking (see also Hayes
1989).

Figures 2C and D iilustrate the effect of blocking a more simple image, a
sinusoid. Again, the sine wave is difficult to perceive in Fig. 2C, but becomes
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quite visible in Fig. 2D, when the high harmonics have been phase-shifted (this
time by 180°). Figure 3 shows another blocked example that lends itself both to
obtaining quantitative measurements and to modelling. The letter ‘R’ is obscured
in Fig. 3A but quite visible (albeit somewhat blurred) in Fig. 3B. This effect is
readily measurabie quantitatively, as shown in Fig. 4. Letter detectability increases

a.{r._jx r-:l i

FIG. 3. An example of coarse quantization, with a simple letter form. The phases
have been shifted by 180° in the right-hand image (B). The lower figures (C, D) show
the peaks in local energy at a low scale (6 cycles/picture: thick grey lines) and
higher scale (i2 cycles/picture: thin black lines), computed with filiers of four
oriertations of 60° bandwidih in orientation and 1.6 octaves in spatial frequency
(full width, half height). When the harmonics are in phase, the maxima at the two
scales are very similar, and both follow the block outlines (A, C). When out of
phase, the maxima are quite different, with the Tower scale tending to follow the letter
outline, rather than the blocks.
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FIG. 4. Quantitative assessment of letter detectability after blocking. The letters were
displayed on a monitor and after a certain interval a high-contrast noise mask was
presented, Two subjects (D.B. and M.C.M.) were required to identify the letter (from
a choice of six possibilities), at various stimulus offsets, to vield an estimate of critical
duration (70% correct), plotted on the ordinate. The dotted line indicates detectability
when the spurious harmonics were removed by blurring. When the spurious harmonics
were in phase with the signal (0° on abscissa), the letters had to be presented for
"200-500 ms to be detected, compared with 10-20 ms when the harmonics were out of
phase, or blurred.

monotonically with the difference in phase of the signal and spurious frequencies,
by more than an order of magnitude.

We have suggested that the high spatial frequencies of the blocked image do
not mask or attenuate the low sparial frequency signal (by decreasing the gain
of a hypothetical visual unit), but rather structure the way that the low-scale
information is perceived (Burr & Morrone 1990, 1992). The blocking technique
results in a high correlation in both position and phase of the low- and high-
frequency content of the image. The high spatial frequencies all come into phase
to form maxima of local energy along the borders of the biocks, so the feature
maps at high and moderate scales follow the block pattern. When the feature
maps are combined with the scale-related indeterminacy technique, the higher
scales dominate and so the final feature map follows the block outlines. This
feature map then structures the image, delineating it into discrete and separate
objects, obscuring the lower-scale description of the face (Fig. 2A). However,
when the phase of the spurious frequencies is changed, as in Fig. 2B, it breaks
the phase-coherency between harmonics, creating fearures in distinct positions
at the lower scales that are seen in transparency. The same discussion applies
to the sinusoidal images of Figs 2C and 2D.
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Figures 3C and 3D iliustrate the fearure maps of the blocked letter at two
scales (centred at 6 and 12 cycles/picture}, obtained by searching for maxima
along the preferred orientation, as suggested by Perona & Malik (1990). With
the standard blocked image, the feature maps at these two scales coincide at
the position of the blocks, so both will specify a blocked structure. However,
shifting the phase of the spurious frequencies breaks the phase coherence in
the pattern. This causes the peaks in local energy of the lower scale to occur
at different positions from those of the upper scale, tending to follow the letter
outline rather than the block structure. Summing these two maps will not resuit
in a merger into one map where the blocked structure dominates, but will create
two separate maps, signalling two distinct images to be perceived in transparency.

Figure 5 shows another example of how features may either structure the image
(dragging low-scale information with them) or be seen in transparency. The
patterns have been constructed so that the points of phase congruence align
to create an arrow structure pointing left, while the lowest spatial frequencies
(virtuaily a single karmonic) form an arrow pointing right. When the patterns
are blurred, the upper and lower figures are identical, both showing a rightward-
pointing arrow. However, with normal viewing, the top pattern seems to point
left, when the lower pattern seems to contain both arrows in transparency.
Again, the difference in the patterns is the relative phase of the low and high
frequencies. In the upper pattern the low-frequency arrow is in phase with the
higher harmonics, while in the lower pattern it is out of phase.

As with the blocked patterns, visual features have a profound influence on
the perceived structure. In this example, the features change smoothly from
line to edge, yet both classes of feature dictate the arrow structure. When all
harmonics are in phase, the structure formed by the features is sufficiently strong
and coherent to capture the low-frequency information and force the perceptual
organization, against the organization dictated by the luminance information
(2 leftward-pointing arrow). When the low frequencies are out of phase, they
break the phase coherence and, in a similar way to that illustrated in Fig. 3,
allow two distinct feature maps to emerge to produce the sensation of
transparency.

Motion

The concepts outlined for detection and classification of luminance contours
may be extended readily 1o other visual domains, such as stereopsis, texture,
colour and motion. Recently, we have applied the model to images in motion,
with encouraging results (Morrone et al 1992, Del Viva & Morrone 1992, 1993).
The local energy transform effectively performs the full-wave rectification
required to detect second-order motion (see Chubb et al 1994, Wilson 1994 and
Sperling et al 1994, this volume), and produces an all-positive output that greatly
facilitates further elaboration. Image velocity is then given by the orientation

{10,
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FIG. 5. An example of how features can structure an image. The two-dimensional
luminance distribution Lix,y) of the two paiterns is given by:

Lix,y)= Ly+4da/7x cos(e + 2x)y/4T - 3/8 +x/T)+

D.cosi2a [ (y/2T - 1/2) + k(1/8 - y/4T) =k x/T] )
k=1 p

Where T is the spatial period of the fundamental. The harmonics are in phase for
the upper pattern (¢ =0) and out of phase for the lower pattern (¢ =m). The pattern
is designed so thai the higher harmonics <ome into phase 1o produce peaks in local
cnergy, and hence features, that form an arrow pointing left, Although the fearures
change Systematically from line to edge, they structure the image compellingly
when the lower harmonic is in phase, but allow it to be seen in transparency when out
of phase.
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in three dimensions, defined as the direction of minimum curvature. This has
proven successful over a wide range of conditions, including difficult images
such as motion transparency.

Interestingly, many of the illusions demonstrated here in 2D space can be
observed with image motion. For example, a pattern similar to the arrows of
Fig. 5 (comprising only the upper half) can be generated by letting the ordinate
represent time and the abscissa horizontal space. This produces a series of vertical
gratings whose profile changes continuously over time. The impression of motion
given by orientation in space-time is similar to the impression of orientation
in Fig. 5. When the low spatial frequency is in phase with the higher frequencies,
motion of the entire image is dictated by the motion of the features, even
though the motion of average luminance is in the other direction {verified by
blurring the image). However, when the low frequency is out of phase with the
rest of the harmonics, transparent motion is seen simuitaneously in both
directions. The other illusions based on blocking can also be demonstrated for
motion and are currently being investigated.

Conclusions

The examples shown here and in previous publications suggest that the
iocal energy modei can predict image appearance over a wide range of
conditions. It is particularty successful with ‘broad-band’ images containing
many Fourier harmonics that create strong peaks in local energy when
they come into phase. However, the model is less successful with low-
pass filtered images. In the extreme case, it fails completely to locate
any features on a pure sinusoid (as its energy is uniform everywhere) and
the motion algorithm does not detect drifting sine wave (simple first-
order motion). Similarly, with heavily biurred images, like the ‘R’ of Fig. 3
or the patterns described by Georgeson (1994, this volume), the output is far
from perfect.

There are several indications that low-pass images behave differently to high-
pass or broad-band images, including the fact that negative faces are virtally
unrecognizable in low-pass images, while they are as recognizable as positive
faces in high-pass images (Hayes et al 1986). All this would suggest that a
separate set of mechanisms may be implicated in encoding low-pass images.
These mechanisms may respond more to the physical luminance levels of the
image, rather than attempting to code ‘features’ or other symbolic extractions.
However, when images comprise many harmonics (as do most natural images),
the perceived strucrure is determined to a large extent not by the physical
distribution of luminance, but by the visually salient features, formed when
the harmonics come into phase with each other. The structure formed by the
features is often sufficiently powerful to capture the gradual variation in image
luminance.

|2
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DISCUSSION

Morgan: Does the local energy model make any key predictions that differ
from those of other modeis? A peak in local energy at an edge or a bar
corresponds 10 a peak in the second spatia)] derivative or to a zero crossing in
the first derivative; both these features have been used by other models. What
are the specific advantages of detecting local energy?

Burr: In the case of a very simple feature of known type, such as an isolated
edge or line, there is no advantage at all, as specific filters matched to the feature
type will be more efficient. The problems arise when the feature type is not
known in‘advance, particularly if it happens to be a superimposed line and edge,
because both trigger linear features in different ways: for an even-symmetric
operator, the line will cause a peak and the edge a zero crossing. The sum of
these is a displaced peak and zero crossing, neither corresponding in position
1o the feature. The local energy operator, however, responds positively to both
feature types, so the two different feature types will not interfere with each other.

FParker: Take a cube that is rotating relative to a light source. As the cube
rotates, the luminance distribution across the edge of the cube can reverse its
sign: that is, a face of the cube that is at one position brighter than its neighbour
along the edge can become darker than its neighbour if the cube rotates
appropriately. If you want a computarion to be consistent under such changes
of edges under illumination, then you might want to do that kind of local energy
computation. In a sense, you may be gathering information that’s useful for
some shape-related properties, rather than simply detecting things in a flat image.

) hm‘”"»":v}nm;r.m .
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Malik: There’s always the question of whether a visual task can be carried
out by linear filtering or whether it requires an essential non-linearity. Perona
and [ proved that whenever you have a mixed feature, such as a combination
of an edge and a bar (and it is an arbitrarily chosen combination that is not
known in advance), it is not possible for a finite family of linear filters to locate
the edge (Malik & Perona 1990). However, an energy filter can. An important
point is that it's not necessary that the even and odd filters of the pair be in
strict quadrature.

Morgan: It may be relevant that Vernjer acuity for edges is reduced when
they are of opposite conrtrast polarity (Mather & Morgan 1986). The situation
for bars is more complicated: when the gap between them is smaller than about
10 arc min, Vernier thresholds are higher for opposite- than for same-polarity
bars. At greater separations there is no difference (Morgan 1990). So the local
energy model may be making some predictions that are not borne ourt by the
psychophysics.

Wiison: David, one of the key things that you glossed over was the issue of
capture. For example, you put lines in the centre of the bars in the Chevreul
illusion (Fig. 1B) and you said that the high-frequency scale localizes the lines,
but the low-frequency scales show a luminance difference. In the illusions,
sometimes there was capture, sometimes there wasn’t. Do you have a mechanistic
model that predicts conditions under which capture will occur?

Burr: One of the key ideas to the energy model is coherence in arrival phase
of the Fourier harmonics. When the phases of the harmonics within a channe}
are coherent, they produce a single feature thar wil] ‘capture’ other nearby
features at higher or lower scales. When the coherence is broken, as in Figs
2, 3 and 5, another set of quite distinct features is created and transparency
is seen.

If you consider a motion illusion, where the ordinate is time and the abscissa
space, the patterns create a set of feature-defined gradients, a form of second-
order motion, moving ir one direction and first-order motion (of a single sinusoid)
in the other direction. When the sinusoid is in phase with the other components,
it contributes to the same peaks in spatiotemporal energy and the first-
order motion will be ‘captured’ by the feature motion; the whole pattern of
drift is in one direction. When the sinusoid is out of phase, it is seen moving
Iransparently over the features in the opposite direction (Del Viva & Morrone
1993),

Sperling: There have been some displays in which it seems to me that the
quadrature is very like the second-order component. In other schemes, where
we divide things up into firsi- and second-order components, it is possible to
make displays in which there is no first-order stimulus and you see the second-
order component all by itself. As I looked at some of your demonstrations,
I thought about the possibility of different second-order computations that might
give you the capture results directly.
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Wart: The differences between this model and the Watt & Morgan (1985)
model (expanded in Watt 1988, 1991) are diminishing as the years go on. If
your model combines information from different scales, particularly in ways
that keep edge information segregated from line information, it is extremely
close to the Watt & Morgan model. It doesn’t matter much whether you detect
peaks or centroids in respofise waveforms. There is, however, one very strong,
logical difference that is not just a difference in detail: we never supposed that
our account was intended to mark the location of a feature in a direct and
completely linear geometrical mapping of the image. We supposed that our
model was providing the locations in some sample version of the image that
could be used to create spatial relations between different features—that’s very
different. We weren’t concerned with having a transformation of the image that
produced a discrete peak bang on where subjects saw an edge. We were quite
happy to go for something that found response either side and then inferred,
subsequently, that the edge lay in between. It seems 1o me that one could create
a very strong distinction between two classes of model: those that are firmly
rooted in mappings that are strictly within the image and produce edge maps,
and those that are in some sense far more abstract (which is where I would put
ours). This seems to be the major functional difference between the two classes
of model: the rest seem increasingly less important.

Burr: Yes, I agree that despite the fact that the two models evolved to explain
different aspects of vision, they are in fact quite similar in many respects.
One difference, perhaps, is the fact that we do not analyse lines and edges
separately, as you do, but combine them to form energy. Only later is the
distinction made (after the possibility of *feature capture’),

Wari: But in terms of sheets of cells in V1 (or wherever), are you really
supposing that each cell knows exactly where its receptive field lies with respect
to the coordinate framework of the optical image? That seems to me to be
another critical difference.

Bergen: Most models of what things look like—that is, models of
perception—make a single prediction for each stimulus. Most perceptuai
illusions, however, display some degree of perceptual instability. Certainly, in
some of the cases that you showed, such as the Chevreul illusion, you can see
the effect (in this case a brightness illusion) or not depending on how you look
at it. This is also evident in some of the work that I have done on texture in
which the strength of the segregation seems to depend on the general level of
visual attentiveness (see, for example, Bergen 1991). Even if the underlying
processing is taken to be largely deterministic, when it comes to a model of
the percept as such there needs to be some recognition of the fact that it is
governed by a dynamic process.

Watt: That has always worried me. In looking at all these phenomena, my
impression has been that if the visual system had some degree of selectivity
concerning which band of spatial scales it was going to artend to, it would then
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FIG. L. (Chubb) A simple version of White's illusion. Although the grey bars in this
figure are identical, the one on the left appears darker than that on the right. {See 1ext
for discussion.}

have the option to determine, through that control process, which pattern it
would see at any one time. If, on top of that, the process that’s choosing bands
of scales to look at is hunting to establish where there are coherent patterns
that can be used to organize information at other scales, then you would have
a system that couid oscillate quite widely hetween different organizations.

Bergen: There are some illusions that are very hard not to see, whereas others
can easily be seen in more than one way. I think there is some information in
this difference that most theories ignore.

Chubb: What are the illusions that you classify as hard not to see?

Bergen: Mach bands are a good example of an illusion that is relatively stable.
For me, they just don’t go away. Some people have a different experience of
this, however.

Burr: Hlusions such as Mach bands are easy to measure, with good agreement
between observers. For many other illusions, 'I agree that there can be a
‘bistability’ that our model does predict, when more than one process is
operating, with mutual inhibition between the two.

Bergen: [ haven’t heard anything yet that predicts very well which aspects
of illusions are going to be more stable and which ones less.

Burr: Often there may be very simple expianations. For example, low spatial
frequencies are heavily attenuated when stationary, but become more visible after
blinks or eye movements; this can produce a transient change in appearance.
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The blocking illusion is interesting. It has always been regarded as one of
the more robust visual illusions, guaranteed to work even for classroom
demonstrations. When we first measured the magnitude of the effect (as a
function of the signal:noise ratio), the blocked images required 1.5 log units
more signal than the unblocked images to be recognizable. However, after a
day’s practice, this effect almost vanished. We incorporated several variants,
randomizing every conceivable dimension and tried using brief presentations,
all of which initially made the task virtually impossible, followed by rapid
improvement. All this implies an immense plasticity in the system, perhaps of
the type discussed by Charles Gilbert previously (Gilbert 1994, this volume).

Gilber:: Individual cells are capable of operating over different spatial scales,
under both attentional and contextual control.

Bergen: We have to make a distinction between two very different things that
can have the same effect on the outcome of a psychophysical experiment. The
firstis learning to do a recognition or a discrimination task with some unfamiliar
stimulus; that is, something that doesn’t look like the usuai appearance of the
thing that we are trying to recognize. The second is perceptual plasticity which
causes the unfarniliar stimujus actually to start to look like the things thar we
are trying to recognize.

Shapley: If vou create Mach bands with, say, a triangle wave, at moderate
contrast and you fixate your eyes, the lines that you see at the peaks of the
triangle wave can fade and the pattern be transformed into an apparent square
wave.

Georgeson: That effect is entirely due to the interaction: between afterimages
and changes of fixation. The negative afterimage is shifted slightly and is then
added to the stimulus waveform, effectively transforming it into a completely
new wave form. If you do the experiments with brief presentations, all those
instabilities go away (Georgeson & Turner 1984). Demonstrations that use
prolonged inspection of this kind are rather dangerous in thar low-level effects
like the interaction between fixation and afterimages can make unstabie the
percepts that, with controlled observations, are much more stable (Georgeson
1984),

Chubb: One illusion that you did not discuss, but that seems relevant for
distinguishing vour model from, say, Grossberg & Todorovice's (1988) model,
is White’s illusion. There are several interesting variations of this illusion, but
a simple version is shown in Fig. 1 (Chubb). The grey bars in this figure are
physically identicat. Nonetheless, the bar on the left appears darker than that
on the right. This effect is problematic for models, such as Grossberg &
Todorovic’s (1988), that attempt to expiain lightness perception on the basis
of some sort of lateral inhibitory interaction across boundaries. The difficulty
is that the region immediately bounding the left-hand bar has a lower mean
luminance than the corresponding region bounding the right-hand bar. Thus,
under models of lightness perception based on lateral inhibition, we should
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expect the left-hand bar to appear lighter than the right-hand bar. What does
your model predict about the appearance of this figure?

Burr: We have not yet modelled White’s effect in detail, but [ agree it is a
good illusion to study. I expect our model will predict the result, at least
qualitatively. With the standard White’s stimulus, one grey square falls on a
light and the other on a dark bar of a grating, so each square has two white
and two black sides. However, at the lower scales (lower than the grating
periodicity) the edges within the bar will be stronger than those between adjacent
bars, accounting for the brightness induction. The same explanation can
probably be extended to the chequerboard version of this illusion, bearing in
mind that the low frequencies of a chequerboard are the diagonals.
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