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Cortical Representation of Learned Behaviors
M. M. Merzenich and W. M. Jenkins

W. M. Keck Center for Integrative Neurosciences and Coleman Laboratory,
University of California at San Francisco, San Francisco CA 94143-0732

INTRODUCTION

The mammalian forebrain is a self-organizing machine with a relatively
stable anatomical framework established early in life, whose local functional
connections are remodeled in detail throughout life by our experiences. Our
purpose in this review is to summarize recent evidence that contributes to our
understanding of the basic aperational "rules” and the mechanistic bases of the
adaptive connection-remodeling processes in the cortex that underlie iis
contributions to learning and skill acquisition.

PERSPECTIVE

In the late 19th Century, if we are to take William James' word on the matter,
it waa widely agreed that learning resuited in the natural creation of altered
circuita in the brain that occurred as a predictable consequence of their repetitive
activation {1]. It is the basic nature of physical systems, James argued. to deepen
and widen and strengthen and facilitate pathways as a function of their repeated
engagement, an argument echoed by contemperary theorists [2,3]. When
physiologists began looking for evidence of learning-induced plasticily in the
cerebral cortex in the late 19th and early 20th Century, they found it. Thus, for
example, in brilliantly imaginative studies, Brown-Sequard described changes on
a major scale induced in motor and sensory cortices by associative conditioning, in
his case by temporally pairing electrical shocks to anterior and posterior brain
regions [4; also see 5). Sherrington and colleagues provided compelling evidence
that large sectors of motor cortex could be representationally remodeled by
repeated, localized surface electrical stimulation [6,7; for an earlier precedent, see
8] or by stimulation of a peripheral nerve innervating muscles [8], and believed
that thia rapid remodeling of mapped, stimulus-evocable movements reflected the
kinds of change that were induced in cortex by repetitive movements during skill
acquisition. In the early 1920's, Lashley provided additional strong evidence that
movement representations in cortical area 4 were dynamic constructs, changing
over Lime in the details of how apecific movements were represented within them
(9]. Taken together, these and other experiments provided a compelling early
argument that cortical representations are dynamic, functional constructs,
remodeled continually in detail by life's experiences.

In the middle of the Century, when physiological psychologists gained the
methods neceasary for direcily determining whether or not the responses of
cortical neurons were allered by behavioral training in ways that could account
for learning, they conducted many learning-piasticity experimenta, first using
electroencephalographic and evoked response recording [e.g., see 10 for review],
then later employing single unit recording [see 11-13 for review]). The great
majorily of these experiments succeeded, in the sense that they demonstrated
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that changes in neuronal responses were generated on a8 large and easily
recordable scale by behavioral training. Because they usually employed non-
apecific sengory or electrical stimuli, early experiments did not very directly
address issues of sensory response specificity of the behaviorally-induced changes,
except in the domain of temporal patterning. Focussing principally on the elegant
models of associative conditioning provided by Pavlov and hia early-Century
contemporaries, they did not very specifically relate the features of change to
alterations in discriminative abilities or skille. Nor did they reconstruct the
enduring cortical record of the learned behavior as il was distributed acrose
engaged cortical sectors, although these experiments aB well as numerocus
ablation/behavioral studies bore powerful implicatione for its distributed form.
Despite these limitations, taken as a whole these cortical plasticit.ylamciative
conditioning experiments confirmed a number of the hypotheses that Pavlov had
posited about the corlical origins of learning (141, and provided compelling, direct
evidence in the middle decades of this Century that the cerebral cortex is &
dynamic machine, remodeled continually by our experiences. By inescapable
fogical extension, they demonstrated that the responses of many millions of
cortical neurons could be altered by a relatively brief period of Paviovian
conditioning, with those alterations at jeast roughly reversed when the associative
conditioning inducing these neuronal response changes Wwae behaviorally
*extinguished”.

in parallel with these advances, there was an early understanding that
aclivity coincidence and time-place concurrence 07 juxtaposition were key features
of the learning process [1.15,16]. The concept of coincident-based synaptic
plasticity is most often attribuied to Donald Hebb (17). In fact, Hebb himsell
regarded coincident inpul-based plasticity as a generally excepted concept in his
time. Indeed, the roots of considering input coincidence as a general cortical
oTgANIZING principal dates at Jeast back to Thorndike {15], Tanzi [16] and James,
who noted that “the time- and space-relations between things... stamp copies (oD
themselves within. Things juxtaposed in space impress us, and continue to be
thought, in the relation in which they exist there. Things sequent in Lime, ditto”
(1]. At the same time, Hebb made a major contribution by hie consideration of
this concept in more specific hypothetical neurological terms, both 8) by positing
plausible hypotheses about what could underlie eoincidence-based plasticity, and
b) by explaining some implications of coincident input-based changes for the
creation of stimulus-specific »agsemblies” of cortical neurons. Such assemblies,
Hebb understood, would necessarily be created by behaviorally important slimuli
if coincident input-based synaptic plasticity is put into play in neuronal networks.
Hebb also hypothesized that these emergent assemblies would likely be
reverberant and to some extent self-perpetuating, and as such, could provide &
basis for the stable representation of a learned input or behavier, & general
proposition that had important precedents fespecially 18], as well as many echoes
in contemporary neuroscience.

After Hebb posiled his hypotheses about coincidence-based synaptic plasticity
and the creation of input-specific cell mssemblies, he and later many other
investigators began Lo look for evidence for them. Again, thege experiments were
initially conducted using extracellular recording techniques, then later using in
pitro and in vivo intracellular methods. The great majority of the latter class of
experiments have heen conducted in the pasl decade. Both classes of these
atudies were usually successlul e.p. see, 19-21,13 for reviews of cortical versions
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of these experiments). Coincident or nearly coincident inputs were commonly
mutually strengthened in their effectivenesses for exciing forebrain neurons,
especially when that excitation was behaviorally significant. If we_l.ake the
evidence of the numercug experiments of this clues as a whole, they again lead us
to the inescapable conclusion that the mammalian forebrain including the coriex
iteelf is a dynamical structure that continually remodels itself on the bases of
these widespread, intrinsic, adaptive, coincident inpu!.-based processes. .

Finally, Cajal may have been the first to posit that physu_:al changes in
synaptic structures resulting in facilitated transmission underlies learning, 8
logical extension of his advocacy of the "neuron theory” [22]. Many subsequent
investigators have looked for structural changes induced with learning.
meapuring the physical dimensione of the cerebral cortex and of its compartmer_\ts.
jayers and component neurons, Inveatigators have described changes 10 oor_ucal
thickness, proportional extent of neuropil, numbers of spines, turnover of apines,
local features of spines, dendrite elaboration, synapse number, synaplic turnover.
areas of synaptic contacts --- a8 well as more microscopic changes - all
significantly altered by engaging a cortical region in behaviorally upport,ant
experience OT in learning [for reviews, see 23.27]. 1If we consider this l!mratqre
collectively, we see evidence for local change induced on a massive scale involving
innumerable synaptic aclive zones and spines and boutons and dendnilic
branchlets centinually emerging and undergoing changes in morphology.
throughout life, under the impetus of new experiences and learming.

In parallel and ultimately largely gupetseding this compelling historical flow
of evidence, 8 strong countercurrent model emerged in peuroscience that has
dominated thinking about learning and the cortex over the past geveral decades.
By that opposing view, the selectivity of responses of ecoriical neurons were
believed to be determined by anatomical development of specific connections in a
brain that establishes nearly all of its mature connections in the main studied
model systems (visua cortical area 17, somatosensory cortical area S1) within the
first days or weeks of life. This view of aplastic mature cortex was paraileled by
atudies in cognitive psychalogy and artificisl intelligence that analogized brain
operalions Lo compuler architectures. In such machines, commonly invoked In
artificial models of higher cognilive processes, learning is accomplished by
resident software, and nol by the continual remodeling of the details of machine
wiring.

This extreme alternalive view positing & poat—developmenl,a] anatomical and

functional neurons! responge rigidity has been the pre-eminent position of

majnstream neuroscience for several decades. It has been again challenged in the
current era, by experiments that have provided more specific evidence about the
nature of the establishment and plasticity of cortical neurenal response
specificity, and for a lifelong capacity for learning expressed by cortical
represem.alional remodeling. That new evidence is the subject of this review.

CORTICAL REPRESENTATIONAL PLASTICITY

Plasticity induced by restricted peripheral or central input losses )
Central representations of the skin surface, the retina and the cochiea rapidly
reorganize following @ spatially restricted input loss, eg., 88 induced by
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penphel_-al nerve section fe.g., 28-34}, or by restricted retinal [35,36] or cochlear
[37] Iesl_(ma. In that reorganization, surrounding sensory epithelial surfaces
expand ' representation to occupy the cortical zones formerly predominantly
representing the now-missing inputs. When a peripherat lesion induces such a
!oss. there are of course immediate changes in overt input effectivenesses, termed
'unmaakmg' » thal can be attributed 16 local sensory system/cortical network
imbalances :ndgced by the loss input subset [31,38-40). Interestingly, in motor
cortex, sensory input losses or changes induced by altered limb positions, motor
nerve transections or 8 period of peripheral nerve stimulation [41-43, 6] also
result in almost 1E.nmedmue changes in stimulus-evokable outpuis.

_ Immediately “unmasked” inputs parily occupy cortical zones deprived of their
primary inputs by the peripheral lesion with relatively less apecific or 'detuned’
(e.g., large receptive field) input combinations from sensory zones that surround
dennervat.ed_ retinal or skin or cochlear sensory epithelial surfaces [31,35-37].
From the point in time of the peripheral lesion forward, learninig-based changes
operating in t.he' unusual competitive conditions that apply to a cortical seclor that
bas been deprived o_l' ite original dominating inputs appear to govern the
subsequent reoccupation process, which occurs progressively over a subsequent
gevernl week !ong period [30, 35, 37). These slower, progressive processes result
in the creation of a more topographically refined representation of the
surrounding relinal or skin or cochlear sensory epithelial surfaces. At least in the
somatosensory case, they are marked by the emergence of normal or greater than
normal neuronal response specificity, e.g., by the emergence of normal or smaller
than normal cortical receptive fields. It has been argued that this greater-than-
normal response selectivity can occur because the lesion has elimited inputs that
have v_ag:algd cortical network space. That space can now be occupied by
competitive inputs from non-disturbed sources, which can thereby be represented
in this larger territory in correspondingly finer representational grain {31,32,44;
Bee 45-48 for review].

Because of the regenerative capacity of the distal axons conveyed in
peripheral cutaneous nerves, and because innervated skin can be transiocated
across the body surface with its skin innervation zone maintained intact, several
other interesting input manipulations have been studied in the B0mMatlosensory
syslem I.hal_. have resulted in large-scale cortical plasticity and that bear
important implicalions for the underlying competitive, learning-related
remodeling process [45-50]. For example, representational remodeling has been
tracked a)alier cutting and reconnecting peripheral cutaneous nerves [51,52]; b)
aller cross-connecting peripheral cutaneous nerves [562,53); ¢) after fusing fingera
154,55); d) aller separating long-fused hand digits [56]; and e) after moving
innervaled islands of skin across the hand o new penpheral skin locations
[46,49,57]). The representations of the hand surfaces in somatosensory cortical
areap are remodeled dramatically in all of these cases, substantially on the basis
of the altered input time structures of shuffled or fused or separated or
Lrang]ocatgd skin inpuits  That is, most of the changes that follow such
mampplal.:qns are predicled on lhe basis of cortical plasticity mechanisms
operating with Hebb-like synapses. For example, transection and reconnection of
peripheral cutaneous nerves resulis in a re-establishment of small receptive fields
and local topographic order from shuffied skin-to-central nervous system inputs
that musl be coincident input-based [52,46,48-50). Fusing of digite results in the
breakdown of representational discontinuities thal normally separate their
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cortical representations, presumably because it results in a heavy schedule of
nearly eoincident inputs from digital surfaces that were formerly apart, ie.,
substantially temporally independently stimulated [54,55). Reversal of digital
syndactyly results in the rapid emergence of a separate cortical representation of
digits that were formerly represented in a highly overlapping manner,
presumably because with Enger separation, adjacent, formerly-fused digits now
deliver a more temporally independent input schedule into the somatosensory
afferent system [56). Cross-connection or transfers of innervated skin islands
across the hand results in a novel emergence of a topagraphic representation of
the translocated skin in the part of the cortical hand representation that receives
the transferred skin or nerve. This emergence of a new, orderly representation of
the island skin in a novel cortical sector must involve coincident inpul-based
plasticity mechanisms [46,49,52,563,57].

Similar representational plasticity has also been documented in a growing
number of models following induction of central tract or restricted cortical lesions
le.g., 58-63). These studies provide a growing body of evidence documenting the
contributions of cortical plasticity to functional recovery following brain injury or
stroke.

Cortical representational plasticity induced by "experience”

Representational plasticity is alse generated by any episodic change in
behaviorally driven inputs, e.g., by a change in behaviorally importanti sensory
"experience”. For example: 1) The representation of the ventral aspect of the
trunk of a female rat expands roughly 2X in the primary somatosensory cortex
(81} as a consequence of the female nursing a litter of pups for 10-19 days [64].
Receplive field distributions on the trunk recorded in S1 shilt significantly Lo
disproportionately favor nipple locations, and cutaneous receptive fields sizes are
reduced to about 1/3rd their normal extents. 2) The cortical territories of
representation of the long vibrissae of adult rats maintained in an enriched
environment expand severalfold over a period of several weeks, when other
vibrissae are cul on a regular schedule [65,66]. With that S representalional
expanasion, the domain of short-latency responses recorded in layer 5 also enlarges
severalfold, and commonly extends across the areal domains of several cortical
“barrels” |66; but see 671. 3) The representations of intracortical microstimulation
evoked movements mapped in cortical area 4 in adult menkeys are dramatically
altered by a brief period of practice at s small cbject retrieval task [68]. Positive
representational changes are specific for movements employed in the behavior. 4)
The representations of the hand surfaces that 8 monkey uses to palpate and
retrieve the same small objects expand approximalely 2X afler a few days of
practice at this behavior. Roughly inverse changes in receptive held sizes and
significant changes in local representational topographies are recorded in parallel
169]. 5) The representations of species-specific vocalizations of an adult marmoset
monkey come to be very highly selective for the vocalizations of a mate thal was
first introduced several weeks earlier [70].  6) The representation of the reading-
engaged digital surfaces in a human Braille reader who initiates reading in the
middle years of childhood appears Lo be substantially greater than are the
representations of the same surfaces of control hands [71}. Motor cortical
representations of key movements for Braille reading also appear Lo be
representationally enlarged in these subjects [72).
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This class of contemporary studies extend a more than 30-year history of
glud_y of the positive physical neurological consequences of 8 period of
environmental en_nd:mznl." for the cerebral cortex. Such studies have repeatedly
shown that behavioral experience results in highly significant changes in cortical
thickness, neuropil area and connectional complexity [see 23-25, for review), with
a capacity for change a) recorded over at least most of the neocortex, and b}
maintained almost equivalently throughout life, fading only in senescence
[73.24.25]. These contemporary studies show that any new, behaviorally
important experiential epoch will generate changes in cortical representations on
2 major scale. _'l‘hose cortical changes clearly constitute & large part of the
emergent, evolving behavior.

Cortical plasticity in the re resentation of
classical (Pavloviannconditi:ninl specific stimull induced by
In perhaps the best studied contemporary classical conditioning cortical
& plasticity model employing more specific sensory stimuli, changes in the selective
responses to tones have been induced by a brief period of classical conditioning in
auditory cortical fields studied in rats [74], guinea pigs {75,761, rabbits {77], cats
[78-81] apd monkeys [82]. By that conditioning, an exaggerated representation of
the specl_ﬁc sound frequencies used in associative conditioning [74-81) and an
increase in the coupling of neurona across the cortical zone that is engaged by the
condnponed qumulus [82] emerges. Changee endure as long as conditioning is
sustained - indeed, over the durations of test periods extending up to as much as
8 weeks [83) --- and are at Jeast roughly reversed by behavioral extinction
[14,77.78.—5_!2]. Dimensionally similer changes in the cortical representations of
the oopdnhoned response and the unconditioned stimulus have also been recorded
in I.h.el_r appropriate cortical areas [e.g., 84-87]. In fact, studies of the plasticity of
conditioned responses —- and of cortically mediated motor learning in general ---
have prqv:ded a second major model for studying the cortical processes underlying
associative conditioning {e.g., 84,89,27,12].

In both a rodent [75] and primate [82] auditory cortex plasticity model,
negalive repl_'esent.al.iona] changes have also been recorded for non-associated (5-)
stimuli applied as a part of an alternative S+ {associated) / 5- (non-associated}
Pavlovian conditioning paradigm --- 88 predicted must be the case on the basis of
classical S+ / 5- conditioning experiments conducted by Paviov [14]. Moreover, 88
noted mbove, in the macaque monkey S+ conditioning has been demonstrated to
generate specific input-strengthening effects not only for afferent inputs to the
cortex, _buL as Hgbb predicted musi occur {17], for intrinsic cell-assembly
connections within the cortical network itself. S- schedules weaken such
connections.

The gignificance of the generation of both leamning and “unlearning” effects
has !mportant theoretical implications that have been perhaps most extensively
considered by Cooper, Bienenstock and colleagues [90.91; also see 92]. Evidence
for cellular mechaniams underlying the “long term depression” (LTD) that
prgs_um.gbly contributes Lo “unlearning’, and ite relationship to "long term
facilitation” (LTP) that contributes to associative learning have further aflirmed
their prgbable joint and connected roles in represeniational plasticity mechanisms
accounting for cortical contributions to Jearning 193.94; see 21 for review].
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Plasticity induced by operant or instrumental conditioning o
1t was historically argued that the changes induced by Paviovian condiioning
might occur on a greater scale than with operant conditioning le-g.. 05). In fact,
relatively few early studies of cortical response plasticily have used operant
conditioning procedures. Moreover, classical conditioning most .commol}ly
employed an aversive unconditioned stimulus, confounding comparnsons with
operant conditioning studies employing relatively weaker food reinforcement.
Several operant conditioning models developed over the past geveral years
have revealed changes like those induced by classical conditioning. They include:
1) Changes in the representations of long vibrissae indistinguishable from those
recorded in vibrissal “experience” studies were recorded over a much ghorter time
courae {after only hours of training), when adult rats were conditioned to perform
a surface roughness discrimination Y-maze behavioral task [66]. 2) The cortical
representations of behaviorally engaged finger surfaces were enlarged several-fold
in extent in monkeys trained in 8 manual task requiring the maintaining of digit
contact pressures for several seconds per food reward [96]. Receplive fields
representing these behaviorally engaged skin surfaces were a fraction of Lheir pre-
training sizes. 3) The population of neurons in somatosensory cortical area 3b
driven by specific Lactile stimuli in 8 flutter-vibration stimulus detection Lask did
not significantly increase in its extent with training, but the temporal coherence
of cortically evoked neurconal responses sharpened progressively, presumably due
to a strengthening of intrinsic connections in the engaged sector of somalosensory
cortex. Thie progressive change in local positive network coupling accounted for a
dramatic (more than 10X) improvement in flutter-vibration stimulus detection
thresholds with practice [97]. 4) The population of neurons engaged by 8 tactile
probe in a vibratory frequency difference discrimination task enlarged
progressively as the animals performance at the task improved. Receptive fields
representing the engaged skin zone were usually enlarged severalfold, and
responses representing ongoing stimulus cycles became progressively more
strongly temporally eoherent. This latter change, believed to be mainly due to
progressively stronger positive pyramidal cell coupling in the engaged cortical
network seclor, correlated strongly with these animals'-‘training-based
improvements in frequency discrimination abilities (98-100). 5) The extent of
cortex engaged by behaviorally impoertant stimuli expanded several-fold, in adull
monkeys trained in an auditory frequency discrimination task (101). Significant
changes in receptive field bandwidths were also recorded within the directly
exciled cortical area Al sector. The former measure was correlated with these
monkeys' progressive improvements in sound frequency discrimination abilities.
6) Training a menkey in a visual target-specific reaching task resulted in the
rapid emergence of responses that were progreasively more sclective for the target
or reach trajectory, within a premaotor cortical area (102]. T) Training & monkey in
an auditory-cued motor task resulted in modification of unit responses thal came
Lo more closely represent the sound-cued movement set, within a premotor
cortical area [103]. B) Performance improvements achieved by training a monkey
in 8 visual tracking task were closely paralleled by changes in unit response
behavior by neurons in the middle temporal visual cortical held (field MT) [104].
9) Training of monkeys in 3 taste aversion behavior could apparently be
attributed to physical changes induced in a small gustatory cortex zone [1051. 10)
Training monkeys in a motoric task resulted in the emergence of specific, Lrained-
movement-related responses for neurons studied in the supplementary motor
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cortex [106]. 11) Brief training of monkeys in the recognition of a specific face
reauited in significant positive changes in neuronal responses to that face in the
appropriate sector of temporal cortex {107]. 12] Significant positive areal
representational changes were induced in frontal cortical areas including primary
motor cortex, in humans practicing 8 sequenced finger movement [108]. 12}
Training monkeys in a delayed nonmatch-to-sample or stimulus-pair association
behavior resulted in a rapid emergence of highly stimulus-specific responses in
several subdivisions of the inferotemporal cortex [e.g., 109-111; see 112 for
review),

Thus, changes induced by operant conditioning have been recorded in all
major sensory systems and all across the motor hierarchy, in virtually every
cortical area that has been studied in a learning context. Moreover, recorded
changes are commonly specifically relatable to performance gains attributable to
behavioral training.

BISTRIBUTED REPRESENTATIONS OF LEARNED BEHAVIORS

Neural changes induced with lesrning; some principles

Before summarizing what we cow understand about the apecific distributed
forms of representations of learned behaviors, it is useful to review some basic
"rules” of the cortical plasticity that generates them. Among those principles are
the following:

1) There is an input coincigence rule for synaptic effectivenesses changes.
Again, contemporary studies demonstrate that a main determinant of cortical
representational detail is a coinadent input basis for the alteration of synaptic
effectivenesses, as initially formally hypothesized by Hebb. Considered in detail,
cortical repregentations are time-based constructs. The many topographic
representations that occupy much of the cerebral cortex, when considered in
detail, actually represent input time continua (45,48-50,113,114]. Coincident
input-based processes are especally powerful in representing behaviorally
important stimuli because they provide a versatile basis for input selection. That
is, any combination of inputs that a) nearly co-concur in time, and b) are
delivered into convergent cortical network space in a given cortical area can be
selected together to generate speafic responses to numerous --- or in some cortical
areas, virtually innummerable -~ particular inpul combinations. Historicaily,
specific responses of neurons in the cortex were regarded to be the product of
inherited anatemical structures. or to represent an excilatory peak in a
background sea of inhibition. We now understand that a) each cortical location
receives a rich input repertoire that is operated on by coincident input-based
Hebb-like co-selection mechanisms to mold representational detail to adapt to
new behaviorally-driven conditions: and b) that each specific cortical response is
the product of a coupled cortical neuronal "group” [113-115] or "cell assembly” [17)
(see below). The input selection process involves both directly linked excitatory
and inhibitory and learning and uniearning plasticity eflects.

It should be noted that some aspects of cortically recorded changes are often
termed “non-Hebbian”, i.e., do not fullow the specific hypothetical rule for change
{input effectivenesses increased wien they arrive at the time that a neuron is
depolarized by a preceding inputi postulaled by Hebb (e.g., 116-121). At the same
Lime, described alternative mechanisms, with one possible exception [122], are
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still approximately time-coincidence based, although a) they may effectively
prolong the operational integrative time constant for the cortical input selection
machinery, and b) change synaptic effectiveneases for nearby but not directly
stimulated neurons, e.g., by the persistence of a diffusible second messenger.

2) Competition for synaptic space; ‘normalization’ or ‘zero-sum’ learning
rules. Cortical representational changes induced in learning are also clearly
compelitive by nature. Competition reflects an apparent vying for effective
synaptic dominance of cortical neurons, and by reasonable presumption, of their
synaptic space. In computational models of cortical plasticity following a Hebb-
like coincident input-based learning rule, limits in the extents of inducible
changes - a "normalization rule" or "zero-sum synapee substitution rule"-- are
commonly imposed for any small part of the neocortex Lo simulate changes
recorded in in vive models. A compelitive "Hebbian network” model operating
with limited synaptic space in a simulation including pyramidal angd inhibitory
neurons can provide a reasonable replication of the main findings of in vive
cortical plasticity/learning experiments [e.g., 123-124]. It might be noted that
relative, but not strict synapse number limits probably apply in real cortex, as
overall synapse numbers can apparently be significantly increased in a
differentially engaged cortical sector by a period of enriched experience [125] or
associative conditioning [27).

Competition has been manifested in moat contemporary plasticity studies.
Thus, for example: a) Cortical representations of nearby, always-innervated
sectore of sensory epithelia rapidly move to occupy sectors that are silenced by
deafferentation [e.g., 28-37,126-128], in some camivore, monkey and human cases
over cortical distances of up to several centimeters [33,34,126-128]. Note that the
thalamic, cortical and other extrinsic inputs that are functionally disabled by such
manipulations are all physically intact, but are competitively disarmed by their
relative quiescence. b) As has been demonstrated in almost every plasticity study
employing specific conditioning stimuli and requiring specific responses, training
of rodents, lagomorphs, carnivores or primates with application of specific
behaviorally important tactile or auditory or visual stimuli and/or evoking specific
regular movements commonly results in enlarged cortical zones of representations
of those stimuli or movements, at the neceasary expense of other, previously-
dominant afferent inputs and/or outputa. ¢} Receptive fields are progressively and
syatematically reduced in size in training experiments in which stimuli move
across the skin or vary in sound frequency, consistent with the operation of
competitive network mechanisms. In that case, each small akin or cochlear locus
is an effective source of coincident input in a competitive network organizing itselfl
on the basis of a coincident input-based learning rule [e.g., 64,69,96]. d} When
stimuli are delivered to an absclutely invariant skin location in a behavioral task,
receptive fields can enlarge severalfoid, consistent with the operation of
competition-based remodeling in which there is a competitive winner, i.e., that
specific, heavily differentially engaged skin spot {99,100}. €} Intracortical
microstimulation at a particular location in somatesensory or motor cortex can
result in the competitive enlargement of the representation of the specific inputs
initially overtly represented only at the conditioning site [129,130] --- or of the
specific movements evoked by intracortical microstimulation only at that siie
(1311. These newly effective inpuls --- in the case of mator cortex, newly evoked
mavements --- come to be represented over progressively larger cortical territories,
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achieved by a dramatic compelitive substitution for previously dominant inputs
and/or effective outputs.

3} Neuronal group/cell assembly formation. As hae been earlier
emphasized, Hebb initially postulated that nearly pimultaneously activated
cortical neurons will strengthen their mutual connectione in a cortical net, and
thereby become progressively more atrongly coupled members of cooperative cell
assemblies. Edelman and later other investigators refined and extended those
arguments [see 114,23, for reviews] 8) by positing that functional groups of
cooperating neurons constitute the input co-selecting machine, and b) by
demonstrating that such groups form from realistically configured cortical
network modele driven to change using coincident input-based learning rules
1113, 2, 132).

In support of this general view, experimentalists and theorists have pointed
out that: 8) Single neurons convey relatively little information about behaviorally
important stimuli le.g., 133-135}). Distributed population responses are reguired
to accouni for stimulus recognition or for the representations of learned
-behavioral capabililies [136-138,97,100). b} In several imporiant iest cases, it
would appear that progressively strengthened coupling of neurons in the cortical
neiwork thal emerges with behavioral training accounts for the increasingly
stronger distributed neuronal response coherence that underlies improvements in
behavioral performances [97.100]. ¢) Neurone recorded together at any given
cortical locus have a significant prabability of responding like their neighbors,
although that probability declines as one ascends sensory system hierarchies le.g.,
133-135]. d) Dense-sample response mapping experiments have provided a direct
reconstruction of neuronal groups in the primary somatosensory cortex. There,
large groups of neurons up to 8 millimeter or more across cBn emerge in
behavioral experiments thal engage cortical networks with powerfully coherent,
repetitive inputs [49.99,100}. The thousands of pyramidal cells within a given
layer in these large groups of cooperative neurons have virtually identical
response properiies, and appear Lo be so strongly positively coupled that they
respond nearly simultaneously Lo behaviorally important stimuli. €) Finally, the
neuronal memberships of cooperating cell groups have been experimentally
manipulated. In intracortical microstimulation conditioning experiments, for
example, the populations of neurons representing & specific input combination can
be easily enlarged several hundred-fold [129,130]. These striking neuronal group
membership changes are closely paralleled by changes in coupling strengths
between neuron members of the remodeled neuronal group [139], and as an
apparent consequence, by & dramatic sharpening of the distributed temporal
coherence of stimulus-evoked responses [140].

It might be noted that the formation of very large, continuous neuronal groups
that participate together in generating cortical response specificily is more
powerfully expressed in cortical areas that have more anatomically topographic
and less convergent/divergent inputs, because they are delivered proportionally
more powerful temporally coherent inputs into the cortical net.

There is & growing appreciation that the specific responses of cortical neurons
are also contributed Lo by cortical activity in a broad surround -- as revealed, for
example, by manipulating those perimeter influences [e.g., 141-144). Paviov
perhaps first understood thal the engagemenl of a specific inpul in a learning
task conferred changes that applied for widely surrounding inputs [14]. Such
“glimulus gencralization™ effects imply conferred changes away from the most

7

directly engaged cortical network zone into a significant surround. Such effects
have now been directly demonstrated in cortical learning studies [99,100; 97].

4) Multiple-field representation of learned behaviors. Any real behavior
engages many cortical areas. There are on the order of 100 functional areas in the
human cerebral cortex [145,146). These cortical areas have ficld-specific a) input
sources, b} input dispersions, ¢ functional response properties, and d) output
projection destinations. Any new behavior engages many cortical fields, and
behavioral performance gaine are almost invariably accounted for by changes in
muitiple areas, which make area-specific contributions to emergent or refined
abilities. To cite a specific studied example, if 8 monkey ie trained to detecl a
difference between stimuli applied to the hand when it is held in static position,
signalling that detection by moving the hand, &) changes in cortical area 3b are
induced that reflect progressive improvements in fine discriminative abilities
[99,100}; b) almost equaliy gignificant representational changes can be induced in
cortical area 1, although their contributions to the evolving behavior are not clear;
¢) marked changes in cortical area Ja are believed to reflect the role that this
cortical aren plays in providing inputs to area 4 that contribute to the initiation of
a hand movement [147); and d) on the basia of other studies, we know that cortical
area 4 would be remodeled to exaggerate the representation of the specific hand
movement adopted as the motor response. Another dozen or more sensory and
motor cortical areas would also be relatively directly engaged by this simple
behavior. Given the near universality of positive cortical plasticity changes
recorded in learning experiments within every cortical system and ares in which
they have been looked for, it is likely that all or nearly of these fields would be
modified by thie evolving behavior, and that each would contribute individually to
its practice-based improvement.

§) Modulation of plastic changes as a function of behavioral stale; stable
representational platforms and the formation of "habits”. In operant conditioning
studies, changes in cortical representations are induced in altended behaviors,
but not by application of equally heavy, passively received inputs [99,100,101). In
classical conditioning studies, changes are directly correlated with the emergence
or conditioning, endure as long as conditioning endures, and are reversed by
behavioral extinction [e.g., 74,77-82,87). ——

In the development of many learned behaviors, initial practice trials are
closely attended to, but as the behavior progresses it comes to be more and more
automatically performed. In the initial, closely attended epoch of learning,
cortical engagement appears to be far greater {148, and unpublished resulis}. As
the behavior is repeatedly performed it becomes progressively more automatic,
and st least some of the cortical representational changes induced in the early
Jearning period will fade, returning cortical representations back to a base form.

Thie reversion of cortical "maps” to a base form was hypothesized to occur by
Leyton and Sherrington [7], in their studies of the plasticity of movement maps in
great apes. William James had earlier emphasized the advantages of the cortex
operating as a learning machine that could carry leaming to the level of
automatic behavior ("habit") --- at which point the plasticity machinery would no
longer have Lo be directly engaged to sustain the behavior [1].

There are at least two ways that an adepl movement behavior or fine
discriminative ability might be sustained as the behavior passes into a more
automatic performance epoch. Bolh may come into play in sustaining trained
abilities. First, the behavior may be sustained substantially extracortically, with
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a powerful cortical form of representation contributing as a teacher to the creation
of parallel basal ganglion and/or cerebellar and/or other representations whose
subsequent maintenance does not necessitate close behavioral attention or
behavioral reinformement. Second, some crucial aspects of the representation of
the behavior may be sustained in the cortex while other initially-induced
representational changea fade. In practice, we overpractice core behaviors that
come to be relatively automatic and that can be sustained with limited attended
rehearsal over long periods of time. In learning such behaviors, the cortex ia
massively engaged, and subject to dramatic representational remodeling, which
reverts back in the direction of a base form as the behavior comes to be automatic.
These core behaviors constitute relatively predictable platforms for their many
refinements and extensions that mark our behavioral progress in life.
Maintenance of behavioral refinements require attentive practice to develop, and
often require continual attentive practice to sustain. This lifelong learning and
active behavioral maintenance presumably continually heavily engages the
learning machinery of the cerebral cortex.

Summary. Main features of spatiotemporal response patterns induced
by learning .

On the basia of these contemporary studies of cortical plasticity induced by
learning, we have a growing understanding of the basic form of the cortical
representations of learned behaviors and memories -- the long-sought "cortical
engram” [149; also see 12]. What can we now say about its specific form?

1} Main spatial features. When learning engages the cerebral cortex,
emergent or improving behaviors are represented at multiple aystem levels. Each
cortical area that is relatively directly engaged by the behavior is remodeled by it,
By that remaodeling, the behavior is represented in a more salient way, in Ltwo
respects. First, through initial, closely attended practice repetitions, it is
represented by progressively larger neuronal populations. Second, as learning
progresses, excited neurons are progressively more stronger positively coupled Lo
form more salient and more robust neuronal groups and distributed assemblies.

In relatively anatomically constrained cortical areas like cortical area 3b, new
behaviors commonly deliver powerfully coherent inputs into the cortical network
zones that they engage. Nearly simultaneously delivered inputs are co-selected
there by the operation of competitive, coincident input-based selection processes.
Further, progressively more cocherently responding groups of cortical neurons
provide strongly temporally synchronized schedules of inputs that are delivered
into the cortical network itself. This growing cortical source of synchronized
activity contributes to the recruitment of neuron members to enlarging
cooperative cortical neuronal groups that are representing the key sensory inputs
that are crucial to the behavior. Moreover, these powerful cortical foci of
temporally synchronous activity have proportionally strong influences on input
selection over a wide cortical surround. Such distributed horizontal network
effecta confer the behavicoral gains that emerge for surrounding skin or retinal or
cochlear regions that were not directly engaged in the behavioral training.

In relatively anatomically constrained cortical areas, i.e., that are a) more
strictly lopopraphic, b) fed by less divergently and convergently projected
alTerents ¢) that are delivered in a simpler form from fewer input sources --- fields
like cortical areas S1 or Al --- the neurons representing key sensory inputs crucial
to the behavior can be arrayed in largely continuous patches that can extend over
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cortical distances of more than a millimeter, with Ltens of thousands of pyramidal
cells over continuous sectors having nearly identical stimulus-specific response
characteristica. The spatial form of representation of pieces of learned behaviors
contributed by different cortical arcas must differ systematicaily at progressively
more divergently and convergently connected cortical zones, i.e., at successively
"higher” levels in the limited hierarchies of cortical "systems”. These differences

.Brise because more temporally dispersec inputs are delivered into these levels.
Higher-level inputs come from progressively more diverse cortical sources, and are

progressively more widely anatomically distributed into these fields --- until, at
the "top” of serial cortical systems, cortical areas receive virtually all-to-all inputs
that are complexly derivative from many “lower” cortical areas. Operating on the
basia of coincident input-based selection mechanisms in a high-level field, a given,
behaviorally important input can very rapidly dominate neuronai responses
because no specific earlier input can ordinarily establish a competitive
atranglehold. However, that rapidly emergent representation can apply only for
amall, acattered neuronal iglands. While neuronal memberships in the locally
coupled groups at higher representational levels appear to be very small, response
sampling results derived in hundreds of waking monkey experiments indicate
that many thousands, or tens or hundreda of thousands of such small neuronal
groups must contribute to the representation of any practiced behavior or memory
at high system levels. At all involved cortical areas and levels, hundreds of
thousands or millions of cortical neurons must be engaged in their representation.

2) Main temporal features. Cortical plasticity carried into the cortical
network generates progressively more strongly coupled cell assemblies. That
progressive increase in coupling strengths contributes to representational
salience, in two main ways. First, it results in the production of a progressively
more temporally coherent responding, more sharply marking all temporal events
in the representation of behaviorally important stimuli. Second, with this
increased distributed response synchronicity, the more temporally coherent
outputs of the cortical cell assemblies representing pieces of the learmed behavior
provide a far more powerful input to higher-level areas that are undergoing
parallel remedeling on the basis of a coincident-input plasticity rule. Abeles,
Gerstein and others (150,151] have emphasized that progressive changes in
network coupling will generate progressively more synchronous cortical
responses. Recent studies have repeatedly confirmed that the alignment of
distributed responses in time due to increased positive coupling in cortical
networka is a main feature of learning-induced plasticity.

It should be noted that temporal input coincidence-based learning systems
will use all temporal events as a basis for generating a complex stimulus
representation. Inputs are delivered into the cortical network over time from
muitiple extrinsic and intrinsic sources. The temporal structure of the input
stream is enriched by these other stimulus-induced and cognitively-generated
input sources, which add important temporal complexity to stimulus
representations. While this subject in beyond the scope of the present review [see
152-154}, it should be understood that this temporal event signature is what the
cortex operates on {0 preduce its context-sensitive, temporal coincident-based
representational constructions.
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