e T L R | 1 AL Al UM O LNEMhNOUY AU ENCY | e

€ #} UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION mm
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS |===
L.C.TP, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

H4.SMR/854-2

College on Computational Physics

15 May - 9 June 1995

Introductory Lectures II

C. Rebbi

Boston University
Boston, USA

Maww Buioing Straoa Corrmaa, 11 Tan 224011] Tasax 224

163 Taex 460392 Aomiamco Guest Houss Via Guignano, 9 Tan224241 Tamax 224531 Tamx 460449
Miczoraoczsson Las. Via Bemor, 31

T 224471 Tamwx 224600 Tam 460392 Gaueo Guost Houss Via Barur, 7 Te 22401 Tamax 2240310 Teex 460392

2.3. Methods of integration

Our task is to solve the system of equations,
Ty = %?-:fk(xkr,t), kk=12,....M (2.3.1)

by approximating the values that the variables, zx, take for a discrete set of values,
1n, of the independent variable t. In most applications the t, will be equally spaced,
with spacing 6. Thus we will consider the sequence, ¢ = fo, 21 = %o 48, ta = tg+26,...,
T. One can also generalize the methods we discuss here to the case where the spacing
between successive times changes in the course of the evolution. We will discuss this
in more detail later, but the necessity for this becomes obvious when one considers
problems where characteristics of the object whose evolution we are following, such as
its speed, change substantially as the system evolves. A typical case might be that of
a gravitational system with orbits that are highly eccentric. In such cases, the speed
of one of the gravitating objects may change by a large factor. In cases such as these,
the accuracy of the integration of the evolution equations would vary as a function of
time if the time discretization is held constant. A possible solution to this problem,
which we will discuss at greater length later, is to use a time step with a magnitude
which can change according to the value of some quantity which is being monitored.

We will also denote the values of the variables z; by zk ,, i.6. Tkn = Za(tn). Tio
will be the given initial data. Likewise, fi(Zia,tn) will be denoted by fi . and, for
economy of notation, we will refer to this term as the force term. Of course, frn
does not necessarily coincide with the components of the machanical force. In most
of the equations that we will use, the indices labelling the different variables will be
irrelevant, and will thus often not be written, so that, for example, we will often write
T as shorthand for z(¢.).

42 2. Ordinary Differential Equations

All of the numerical methods described here are based on a suitable approximation
to the derivatives 1y ,,, followed by an iterative solution of the algebraic equations that
follow. When approximating a derivative, however, because of the finite size of the
time step, the question immediately arises as to where in the interval should one
calculate the force term, f. Specifically, if we want to evolve the system from z = x;
to z = ri + At, we could consider several possibilities; we could use f at z;, or at
Iy + At, or somewhere in between. Furthermore, we could even imagine methods
which could improve these estimates by using information which is outside of this
integration interval. As we shall see, these various possibilities give rise to many
different methods for integrating the evolution equations.

2.3.1. The Euler method

The simplest approximation for the time derivatives is to use the forward differ-
ence approximation,

dn= T2 L O(6) = £ (znita) | (2.3.2)
to obtain,
Zntl = Zn + f (Zn,ta) 6 + O (6%) . (2.3.3)

This equation, neglecting the unknown O(6?), can be used iteratively to find z,
starting from zq. The error in the individual steps, or local error, is O(62). However,
going from the initial #o to a final ¢ = 9 + T requires a number of steps, N = T/6.
Since the local error in general will accumulate, we can expect a global error of order
N§2 = O(6) for fixed T. While this goes to zero for § — 0, the approximation is rather
poor; reducing the error in this procedure by a factor of two requires doubling the
amount of computing. As you might expect, there are better ways of getting there.
Also, as we shall see below, the inevitable violation of the conservation laws brought
about by the discretization (well, not quite inevitable, as we will explain later) is
particularly serious for this method. As we shall soon see, there is generally a conflict
between accuracy and stability on the one hand, and computational efficiency on the
other; the Euler method is surely the simplest from a computational point of view,
but let us not lose sight of the fact that what we are interested in is to study physical
phenomena, which this method is generally not adequate for. On its own, this method
should essentially never be used.

9.3 Methods of integration 43

2.3.2. Two-step method

We can obtain a better approximation by carrying out the expansion in Eq. (2.3.3)
to a higher order in §. It is convenient to use the notation f, to denote f(zn,tn).
Expanding zn+1 about z, to second order,

1

5 &n 8 + 0 (8% (2.3.4)

T+l :-Tn‘i‘i'né'f'
and, using z = f,
1.
Tn41 = Tn+ fab+ o fn 62+ 0(6%). (2.3.5)

We can now approximate j:,, with its backward difference approximation
fn - (fn - fﬂ—l) /‘5 + 0(6)
to obtain,

Tntl = Tn + (‘gfn - %fﬂ—l) 6 + O (63) . (2.3.6)

Iteration of this equation gives origin to the fwo-step method for integrating the
system of differential equations. The global error in the integration over a finite
evolution time 7' is now (O(6?), a substantial improvement over the Euler method.

Notice that the calculation of z,41 relies on the values of the variables z at the
two previous steps t, and fn—1. In general these are known, they are just the two
previous values generated by the iteration procedure, which will be kept in memory
(and, just as a side remark, it will be convenient to keep in memory also the value of
fa_1 previously calculated, rather than repeat its calculation at step n). But there
will be no previous value, zn_1, at the initial step for n = 0. This means that this
method, as well as many of the methods which we will subsequently encounter, must
be initialized. We must devise some different procedure to calculate z;, and this
should be done with an accuracy compatible with the accuracy that we can expect
for the subsequent steps. For instance, we could use the Euler method, but with a
much smaller interval &', to evolve the equations up to t = ¢ = tp + §. Or we could
use a power series expansion of the equations (see also the next section) for t = ¢p to
calculate x at t = 1;.

44 2. Ordinary Differential Equations

2.3.3. Taylor series method

In those cases where 8f/8z (by which we really mean all M? partial derivatives,
Ofi/0z;) and 8f/6t can be computed analytically in an efficient way, a useful method
of integration, potentially of high accuracy, can be derived.

Writing,
. §2 3
Tntl = Ty + fpb + fn-2- + O (6%) (2.3.7)
with
"Ed gz B

with all derivatives evaluated at t = tn.
This leads to,

. 2

Tpgl = Zn + fnb + (g;{— (Tnotn) fn + %?f (xn,tn)) —6-2— + O (63) (2.3.8)

The above procedure can be carried out to higher order in § to produce, corre-

spondingly, evolution equations for z which are of higher order in 6. However, in all

but the simplest cases, an explicit evaluation of the analytic expressions for the partial

derivatives of f is cumbersome and computationally impractical. It is therefore usu-

ally more practical to simply find suitable approximations to the time derivatives. As

a practical example we will now derive an immediate generalization of the two-step
method we discussed above to a fourth—order method.

2.3.4. Adams—Bashforth four-step method

To derive this method, begin by expanding Tp+1 about z, to fourth order in §,
and using & = f, to get,
A LI < R X 5
Tn41 =$n+fn5+fn§"+fng+ fn‘é‘z'l"O({s) . (239)
We must now find approximations to the various time derivatives of f which will
respect the overall O(6%) correction to this equation; for example, we need f accurate
to O($), but f accurate to O(62).
One way to do this is to construct the mterpolating polynomial for f which passes
through fn—3: fn—Q, fﬂ—l: a'nd fﬂ-r

F(t) = (t+8)(¢ 25236) (t + 36) ;- t(t+ 2;()5§t + 36) faot
4 t(t+ ?a(f"t + 36) P t(t+ ?5(; + 26) foa (2.3.10)

+ O (6)

2.3 Methods of integration 45

If we now expand f for small ¢ = § about ¢y,

f=fatfat+ i;—'itz + —fﬁ—"t3 +0(6Y), (2.3.11)
comparing this expansion with Eq. (2.3.10) gives us the time derivatives of f at iy

as the coefficients of a given power of t. Substituting the resulting expressions into
Eq. (2.3.9) leads to,

)
Tnti = Tn + (55fn — 59 fawy + 37 fn—2 — 9fn-3) 21 + O (55) (2.3.12)

Just as for the two—step method, Eq. (2.3.6), the four-step method is not self-
starting, since .4 requires information which is three steps in the past. As we
mentioned above, these methods require the use of a different, self-starting method
to get to the point where the evolution formulas can be used.

Up to this point, the methods we have discussed evaluate the force term, f,in
the evolution equation at either the beginning of the interval (the Euler method),
or at the beginning of the interval, but with some correction given by the values
of the derivatives of f there (the Taylor series method), or with corrections given
by information on the force term from points preceding the integration interval (the
multistep methods). Is it possible to use information which lies between the endpoints
of the integration interval? There are, in fact, several ways of doing this. One of the
most common, and certainly one of the most popular, is the basis for the Runge—Kutta
methods, which we now describe.

2.3.5. Runge—Kutta methods

Consider using the central difference approximation to # at the midpoint of the
interval, which we denote by, =, b with step size §/2. That is,

Tp4l =Tn+6f (:cn+%,tn + %6) +0(8%) . (2.3.13)

The problem with this expression is that we don’t know z_ }» 80 We can’t evaluate
f. One way of finding this value approximately, if to use the Euler method to write
)
$ﬂ+% = xn + an (2.3.14)
or

f (xn.{..%atn + %6) = f (-'L'u + fng';tn + %6) +0 (63) . (2315)

We can think of this method (sometimes called the Euler-Cauchy method) as a
two—step algorithm: First we evolve z from z, to the midpoint of the interval,

Eq. (2.3.14), and then we use the information at this point to evolve the system
to zn+1, Eq. (2.3.13).

52 2. Ordinary Differential Equations

2.3.6. Implicit methods

All the methods we have presented so far can develop instabilities if § is taken too
large. A class of methods that are intrinsically stable can be found, and, although
these are generally more demanding from a computational point of view than the
explicit methods we have looked at, they are sometimes desirable because of their
stability properties. The terminology needs some clarification. Explicit methods
are those in which all information required to compute z,43 from z, is contained
explicitly in the recursion relation. By contrast, implicit methods contain some of
this information implicitly in the force term. The simplest example of an implicit
method is the Backward Euler method, where one evaluates the force term at the end
of the interval,

Tntl = ZTu+6f ($n+11tn+1) . (2-3-26)

Another implicit method results when one uses as force term the average of the values
f takes at the beginning and end of the interval, and % is approximated to O(8) by
the central difference approximation, but using stepsize /2,

6
Tntl = T + 9 [.f (xn:tn) +f (xn-i-la tn+1)] . (2-3-27)

To use implicit methods like the above, one needs to solve a recursion relation
which is generally nonlinear. This is best done using iterative methods. One first
obtains some estimate of z,+1. Denote this first value by xfﬂil. The recursion is then

solved by using mf?ll in the right hand side of a recursion such as Eq. (2.3.27), to

(1)

obtain an improved value, z,},. Ths procedure is repeated until some convergence
criterion is met. Better methods of solving the recursion exist; we use this one only as
an illustration. The main advantage of implicit methods, and the only reason to use
them alone as integrators, is that they are unconditionally stable. We will come back
to this point later on when we study the stability of the various methods we have
discussed. Used in conjunction with other integrators, however, implicit methods can
be quite useful, as we now discuss.

2.3.7. Predictor—Corrector methods

One way of starting the recursion hecessary to use an implicit method could
be to obtain an approximation to z,4; using one of the explicit methods we have
discussed above. One can then improve this value by using an implicit method of the
same order. One of the advantages of these methods is that they allow a continuous
monitoring of the accuracy of the integration procedure. Let us mention at this point
an issue which is probably on your mind. What do we mean by saying that the
implicit method will improve the result of an explicit method of the same order?
What we mean is that, with the explicit method one evolves the initial data from
information at the beginning of the integration interval. The implicit methods, on the
other hand, may include information from anywhere in the interval, including both
endpoints. (The Runge-Kutta method is really an implicit method which we have

YT, s e . e D . . P

1

2.3

Methods of integration ‘ 53

managed to make explicit by a series of partial steps). It is sensible to think that
increasing the amount of information should improve the solution. This is always
true. In general, and this is a case in point, there is a clear difference between the
order of an approximation, and its accuracy. This Is very important: high order
doesn’t always imply high accuracy.

Some combinations of predictor and corrector algorithms are preferred over others.
The most popular combination is to use one of the multistep methods, particularly
the fourth—order Adams-Bashforth method, Eq. (2.3.12), as predictor, and an impheit
method of the same order, as corrector. The implicit method of choice in this case is
called the Adams—Moulton four-step method. The procedure is then to first,

PREDICT:

Tl = Tn + (55fn — 59 fa-1 + 37 fa2 — 9fn-3) 26—4 + 0 (%), (2.3.28)
followed by,
CORRECT:

6
TIntl = Tn + (9fu41 +19fn —5far + fa=2) 51 + O (65) . (2.3.29)

2.3.8. Hamiltonian systems

Some special methods exist to integrate the equations of motion for separable
Hamiltonian systems, that is, for systems whose dynamics can be derived from a
Hamiltonian function of the form

H=F(q)+G{(p) (2.3.30)
using Hamilton’s equations,
dpi _ _OH
dt = ¢’
(2.3.31)
da _ OM
dt = Opi

for the coordinates, g;, and the momenta, p;, which describe the system. A number of
properties of these systems will serve to both constrain, as well as to suggest, possible
integration algorithms.

For future reference, note that Eqs. (2.3.31) can be succinctly written as

=3 -V,H, (2.3.32)

TR TS et s e
! T T
i :

54

2. Ordinary Differential Equations

with,
2= (2) and J= ((IJ ’OI) , (2.3.33)

where, in d dimensions, I is the d x d—dimensional unit matrix.

A widely used method to study the evolution of Hamiltonjan systems such as
the above is called the Leapfrog method. The leapfrog method is applicable in a
larger class of problems, of course; the fact that we have used the variables g and p,
suggesting coordinates and momenta, doesn’t have any profound meaning; the only
restriction is on the form of the equations.

Define p at half-intervals,

Pny1j2 = p((n+1/2)6) . (2.3.34)

Then the algorithm is defined by the recursion,
Znt1 = Tn + G (Pnyay2) 6 + O (6%) (2.3.35)
Puts/z = Prirj2 + F (Tn41) 6+ O (6%) . (2.3.36)

It is interesting to note that the step from n to n + 1 can also be written as the
succession of two symmetric and reversible half-steps. To see this, define

s
Pn =Pa_1y2+F (24) 5 (2.3.37)

)
= Pn+1/2 = F (zs) R

for n = 0 one can define p, /; = pg+ F'(29)6/2 as the initialization step. The evolution
now proceeds as follows. We evolve,

(Tny Pn) = (Tnt1, Pat1) (2.3.38)
in three steps:

6
Tny Pn —* T, Pay1/2 = Pn + }-l(xﬂ) §'
Tny Png1/2 — Tntl = Tn + g’ (pn+1/2) 8, Pat1/2 (2339)
é
Tatls Png1/2 — Tatly Putl = Pryije + F ($n+1) § ’

In practice, to evolve z, the intermediate values of p at the interval endpoints, p,,
and py41 are not really needed, since the two successive steps,

)
Pnt1/2 = Pn+l = Puyija +F (Tni1) 3 (2.3.40)

)
Prtl = Paysjz = Patt +F (Tnn) 5,

could be combined into a single (leapfrog) step,

Patifz = Pn+3/2 = Putijz + F (Zn41) 6. (2.3.41)

2.3

Methods of integration ' 55

However, the first representation is useful for two reasons. First, it is adequate for t_he
first (zopo — Top1/2) step, and the last (znpp_y/2 — Tnpn) step; second, l:feca.use‘oflts
conceptual clarity in showing what are the most important features of this algorithm,
namely that it is reversible, that 1s,

if Tn, Pn — Tp4l, P+l
then Tu4+ly —Pn+l —* ZTny,—Pn-

and because the three transformations in Eq. (2.3.39) are canonical in the: sense of
classical mechanics, and therefore preserve the volume element dr dp (which really
refers to the M-dimensional phase-space volume dr; - --dz M dpy---dp y).

Another popular method, very commonly used in N-body simulations is called

the Verlet algorithm. It is applicable in the case where the equations we wish to solve
are of the form,

z=p, (2.3.42)
and
p=f(z), (2.3.43)

that is, the special case where G(p) in Eq. (2.3.30) is quadratic, where the system is
equivalent to,

= f(z). (2.3.44)
From |

Tn—-1 = Tn — Pu6 + %f’néz “+ O (63)

1 (2.3.45)
Tnt1 = 2o+ pub+ 5pas? + O (87)
one can cancel both the linear and cubic terms in é to get,
Tut+t = 22p — Tp-1 + f (-’1711) 52 + O (64) ’ (2.346)
and ()
_ \I'n41 — Tp-1
Pn = % (2.3.47)

2.3

Methods of integration 57

Notice that these recursions are, in fact, simply the resulting recursions for the direct
implementation of Eq. (2.3.44), using,

. In+l + Tp—1 — 2z,
By = = +0(8%) . (2.3.48)

In a moment we will derive a different algorithm, of O(6%), to solve second—order

equations such as Eq. (2.3.44) directly, but first we discuss the Velocity Verlet method,
which is the version of the Verlet method used in practice.

Considering still the restricted form of the equations, Eq. (2.3.42) and Eq. (2.3.43),
the Velocity Verlet method evolves z and p according to

. |
Zatl = 2o+ pub + o f (20) 62 + O (8%) (2.3.49)

followed by .
Prt1 =P+ 5[(2a) + f (2znat)] 6 + O (6%) . (2.3.50)

However, notice that, if we redefine

1
Prt 5f(2a)8 = puyrya, (2.3.51)
then the above equations reduce to

Tntl = ZTn + Ppiy/2b, (2.3.52)

and
1
Pny3/2 = Pni1+ §f (Zn+1) 6 = Poyaje + f (Tn41) 6, (2.3.53)

which is just the leapfrog method we have already derived.

The last method we present in this subsection, called the Numerov-Cowling al-
gorithm, is a high—order integrator for the second—order equation, & = f(z,).

The algorithm is most easily derived by considering the Taylor series expansions
for z(t + 6) and z(t — &) to O(&*). If one adds the two expansions, one finds that

n + Tp—1 — 2 n R 62
e T I T T et E L+ O (6Y) (2.3.54)
6 12
But fat1 + fat = 2,
e _ Foodntl a1 —2fp
I=f= = , (2.3.55)
therefore,
n -1 = 2
Tng1 = 2n + Zny = fubt 4 LT Sm1 =20 (8°), (2.3.56)

12

leaving, finally,

x 5 1
I %—5_152 =200 = a1 + 2ful 4 = fo180 4+ O (89) . (2.3.57)

LI

58

2. Ordinary Differential Equations

In general, this is very accurate, implicit, algorithm. Notice, however, that it can be
made explicit if the equation is linear. That 1s, if

flz,t) =K (t)z, (2.3.58)

then the left hand side of Eq. (2.3.57) reduces to

2
(1 — ﬂ%) Tntl, (2.3.59)

and the recursion becomes explicit.
Later on we will use the Numerov—Cowling method to solve the Schrodinger
equation,

2
Ly @) +V (@) (@) = Bv (@) (2.3.60)

which is just of the required form for this algorithm, with the function K in
Eq. (2.3.58) given by
2m

T (V(z) - E) . (2.3.61)

2.4. Accuracy considerations

We have derived several methods which, though different in other details, can
be classified according to their order, that is, according to the power of the time
step to which they are accurate. What if we want higher accuracy still? Generally,
as we have stressed, simply increasing the order of an algorithm doesn’t always pay
off. Furthermore, increasing the order of an algorithm always increases the compu-
tational cost as well. As we shall see, there exists a very powerful procedure which
increases the accuracy of any given method, at a very small computational cost. This
method, called Richardson’s extrapolation, can also be used to improve the accuracy
of quadrature methods (where it is called Romberg integration). The idea behind the
method is very simple.

Suppose we have computed the solution to an equation, z5(t), for a given stepsize
§, which is accurate to order 67. Assuming that the exact solution of the continuum
problem, which we shall call, X(t), has an expansion in 6, so that,

X(t)—zs(t) = 16" + ca6PF2 4 (2.4.1)

where the coefficients, cx are independent of §, but otherwise depend on x and its
derivatives evaluated at some point. Assume now that we use an integration method
of order p, which is consistent with the above expansion, to advance the solution
from ¢ to ¢ + 6. We use this method twice, once to go from t to ¢ + § using a stepsize
6, and once using two steps of stepsize § /2. Since the ¢y are independent of 4, the

A AR L T P e TS sy

24

Accuracy considerations 59

two approximate solutions at t + § are related to the exact solution, X(t + &) by the
following expressions,

X (t+6)~z(t;6) = ws +ep (6) ,

X(t+6)—z (t; g) Y (g)ﬂﬂ +oer (g) (2.4.2)

where e(6) stands for the total truncation error above O(6P*1), and where the extra
factor of 2 in the second expression above comes from the fact that it is composed of
two steps of size 6/2. It follows from the above that the combination,

i= Qpl_ - [2&: (t; g) - x(t;S)] (2.4.3)

cancels the leading error at ¢ + §, which was O(6711), and further reduces the trun-
cation error by a factor ~ 277, Furthermore, this process can obviously be iterated
(by successive refinement of the interval) to the numerical resolution of the computer
in a few steps.

It should be clear that an entirely analogous procedure can be used to improve
the results of a numerical quadrature algorithm.

Notice, however, that if we have warned you about interpolation, we will warn
you doubly about extrapolation. It is trivial to find examples where the extrapolation
we have described above will fail. The most obvious case is where the error term is
not, in fact, of the form shown in Eq. (2.4.1). Careful use of these techniques, though,
leads to very powerful tools.

Another aid in determining the accuracy of a solution to an initial value problem
1s to integrate the equations from ¢ = #, up to some time ¢t = T, and then to reverse
the procedure by integrating the equations back to tg. The accuracy with which this
process reproduces the initial data is a very good indicator of the accuracy of the
integrating method.

Finally, it is often useful, and sometimes essential, to compute the time—evolution
of quantities which are constants of motion for the continuum problem, and monitor
the extent to which the discretization procedure violates the conservation laws. It is
possible, in fact, to modify a given integration method, so that it is forced to satisfy
one or more conservation laws exactly, as we will show later.

60

2. Ordinary Differential Equations

2.5. Stability considerations

Up to this point, our main preocupation has been with deriving algorithms to
integrate differential equations which are both efficient from a computational point of
view, as well as numerically accurate locally. In this section we will explore a related
issue which is sometimes of equal importance. The point we wish to explore here
is how large can the discretization stepsize be made such that one can still expect
reasonable results or whether the results for a given § are stable after many iterations
of a given algorithm.

Suppose we have an exact solution, X(¢), to the equation

X)) =F(X(@),t). (2.5.1)
We would like to explore the stability of the solution under small perturbations. Write
r(t) =X (t) + s(t) ,where s(t) <1, (2.5.2)
and expand Eq. (2.5.1),
X(#®)+5@)=F(X +s,t)

oF (2.5.3)
It follows that s(¢) satisfies the linear equation,
. oF
L] (t) = -a-f (X,'t) 8 (t) . (2.54)

Similarly, in the discretized case, where s(t,) = sn, will satisfy a linear recursion
relation,

Snt1 = Asg . (2.5.5)

For a system of N coupled equations, s is an N-dimensional vector, and A is an
N x N matrix. For a general problem the form of the matrix, A, can depend on the
time step, so that the solution of Eq. (2.5.5) will be given by,

Sp = AnAn-—-] s A]SO . (2.5-6)

It is interesting and instructive to consider the case of a linear equation, where A is
fixed, in which case the solution of Eq. (2.5.5) is given by,

sn = (A" so, (2.5.7)

and |s| will remain bounded if, and only if, all eigenvalues of .4 are less or equal to one.
If any of the eigenvalues of A exceeds unity, the error in the approximate solution, z,
will be amplified by successive integration steps. There is more to stability than this,
but this will be sufficient for our present purposes. Qur interest, then, is to determine
the conditions under which the methods we have described are stable in the above
sense, namely that the method does not amplify the error term associated with a
given approximation. These properties will, in general, be specific not only to the

62 2. Ordinary Differential Equations

2.5.2. Leapfrog method

The algorithm is given by,
Tntl = In + Pryy/26,
T T ey (2.5.15)
Pa+3/2 = Pnyijz — Tn416,

which can be written as

1 0 a:n+1)_(1 5)(;.;,,)
(6 1) (pn+3/2 - 0 1 pn+1/2 Y (2516)
= In
YR = (pﬂ-l-l/z) ’

1 0 1 4

This can be easily solved to give,

_(1 0\ /(1§
=16 1) o 1)¥

or, defining,

we can write,

(2.5.18)
_ {1 &
“\-6 1-42) ¥n
The eigenvalues of the evolution matrix are then given by the solution of
1-)) —0
-8 1=
(2.5.19)

1-(2-6)A+A2=0,

2 4
A= 1—%i\/—62+£—
4 (2.5.20)

62
=1 1 & — — .
+1 5 +

leading finally to,

which agrees, as expected, with the continuum evolution result, exp(+it), including
the 0(62) term. Notice also that, if 62 > 6*/4, that is, if § < 2, the term in the square
root above becomes negative, and one finds,

AP =1. (2.5.21)
This implies that, for any § < 2, the leapfrog method is stable for this set of equations;

it also implies that this method conserves energy exactly, for the special case of the
harmonic oscillator (up to roundoff errors, of course) for 6 < 2.

25 Stability considerations 63

2.5.3. Two—step method

The evolution equations for the method are given by,

$n+1=:zn4'?;Pn"§Pn—l

35 (2.5.22)
Pnt+l = Pn — ‘Exn + 5-’%—1 .
These can be written compactly for the four-component vector,
In
= Pn
¥n = Tp—1)
Pr-1
leading to, . .
I 2.5.23
Yut1 = 1 o 0 o0 | ¥n . (2.5.23)
0 1 0 O
The eigenvalues are given by,
62
Meg=1xib——+--
s 2 (2.5.24)
)\3,4=:ti-+---
2
therefore,
gl =1+0 () +--,
§ (2.5.25)

Pagl=5+--

Although two of the eigenvalues correspond to the correct solution of the equations
to order 62, the other two eigenvalues correspond to other solutions of the recurrence
equations (called parasitic solutions) are not solutions of the diferential equations
at all. This is a general problem with multistep methods; although the differential
equations have a unique solution for a given initial state (one arbitrary constant for
each one of the differential equations), the recurrence relation for an M-step method
has a general solution which is a linear combination of M independent solutions.
‘ Only one of these solutions, generally called the principal solution, corresponds to a
| solution of the differential equations. The remaining M —1 parasitic solutions can, in

general, dominate over the principal solution (especially for large M), and render the

method useless. Notice that the growth in the number of parasitic solutions in these

methods is an independent source of instability, quite unrelated to the instability
. which we observed for the Euler method. The desired solution, corresponding to Aj 2,
- is in itself unstable, with |A;2| > 1, so that the global error in this method grows
with time, as in the Euler method, but with a smaller coefficient (for § < 1).

2.5 Stability considerations 61

integration algorithm, but also to the particular differential equation this algorithm
1s applied to.

As a first example, we will consider the dynamical equations for a one-dimensional
harmonic oscillator,

zT=p
I.):-"—LE,

(2.5.8)

where we have rescaled p and z so that the oscillator frequency is unity. Using this
system, we will explore the stability of the Euler, leapfrog, and multistep algorithms
we have derived.

2.5.1. Euler method

The method can be written as

Zntl = Tn + Pn‘sg

2.5.9
Pntl = Pn — 17!:6 . ()

In terms of the two—component vector,

y= (;) , (2.5.10)

the above recurrence can be written as,

f(aarY (1 6 (za)_ 2.5.11
y"+l~<Pn+l)_(—6 1) (p“)_.Ay,.. (2:5.11)

We can easily find the eigenvalues of .4 by solving,

1I-x 5§
I T 1o =0, (2.5.12)
which gives,
Q-2 +6 =0, (2.5.13)
or,
A=1+16. (2.5.14)

This implies that, as expected, the recurrence reproduces the continuum solution,
exp(=%it), to order §. However, because |\| > 1, the approximation will deteriorate
with time. Furthermore, notice that |A\| = /(1 + 62) &~ 1 + §2/2, so that the energy,
which is proportional to |y|?> = 2% + p?, increases linearly with the duration T of
the evolution with a coeflicient proportional to §. As announced before, the Euler
algorithm is one to use only with extreme care.

a L

9. Ordinary Differential Equations

2.5.4. Pitfalls

Stability considerations are usually of paramount importance, and ignoring this
issue can result in catastrophe. As a further example of what an ill-chosen method
can do, consider one which might seem attractive from the point of view of both
computational efficiency, as well as being of O(6%). The method is based on the
central—difference approximation. Despite its superficial attractions, the approxima-
tion, as we shall soon see, is not as good as it appears to be.

Consider solving £ = —z using the central-difference approximation to the first
derivative, .
% (Trt+1 — Tp-1) = —Zn, (2.5.26)

corresponding to the matrix evolution,

()= (2 3) () -

The eigenvalues are given by,

Mz=—-8+v6+1. (2.5.28)
Expanding the term in the square root we see thé.t one of the eigenvalues has what
seems to be the correct expansion of the solution of £ = —z to O(6?%),
&2
.\1=1—6+—2—+---. (2.5.29)

However, there is also an unstable eigenvalue,

52
}.2=—(1+6+-§-+---)<—1 for all 6 >0, (2-5.30)

which is the expansion of the spurious solution, —e*® to O(6%). Because {Az{ > 1 for
any 6, this algorithm is intrisically unstable.

2.5 Stability considerations 65

2.5.5. Implicit methods

As a final example, we will investigate the stability of an implicit method (for the

test case z = —z). Consider the method,
)
:En_{_l = Iy — '2" (xn,-{—] + wn) . (2-5-31)
which can be solved for T+,
1—-8
ntl = T . 2.5.32
Tn+1 1 + % n ()

If we expand this solution for small § we see that, as expected, it agrees with the
exact solution to O(é%). Moreover, though, the algorithm is stable for any value of
0. This property, alluded to before, is what makes implicit algorithms most useful.
This situation is to be contrasted with the explicit algorithms, where, as we have
seen, large values of § will in general make the iteration unstable. For example, the
application of the simple Runge-Kutta method, Eq. {2.3.24), to the same equation,
z = —z, leads to,
62
Tnt1 = (1 -6+ 5) Tn , (2.5.33)

which will grow exponentially when § > 2. Of course, you think that this is irrelevant,
since 4 is supposed to be a small number. This ob jection is valid in the case of ordinary
differential equations. However, as we shall see later on, essentially the same stability
analysis, when applied to the case of partial differential equations. In this case, the
results are similar but the quantity which must be kept small to avoid instability is
not simply 8, the discretization step, but rather Aé, where A denote the eigenvalues
of some discretized differential operator. Therefore, even if § is small, the quantity
controlling the stability of a recurrence, A6, can easlly exceed the stability bounds.
We will return to this point when we study numerical methods for the solution of
partial differential equations.

In the case of the solution of partial differential equations, the extra computational
effort involved in using these methods is sometimes a small price to pay if by using
them one can solve systems for which explicit methods are unstable.

Chapter 3.

/

Boundary value problems

In contrast with the case we discussed in Chapter 2, where we were interested
in the time evolution of initial data as an example of initial value problems, in this
Chapter we will explore a different class of problems whose solution requires initial
data to be given at two or more points. As the main physical example of this type of
problem, we will solve the time—independent Schrodinger equation for a bound state
of heavy (non-relativistic) particles.

3.1. The Schrodinger equation

Our present understanding of the physics of the strong interactions between el-
ementary particles is embodied in a quantum field theory called Quantum Chromo-
dynamics (QCD). According to this theory, the particles which feel the strong force,
called hadrons, are described in terms of elementary constituents called quarks and
gluons. Examples of hadrons are the baryons, such as the proton (p) and the neutron
(r), and the mesons, such as the pion (7), K mesons, and the rho meson ()

Quarks and gluons are described by quantized, relativistic fields and hadrons
emerge as bound states of quarks, kept together by the forces which result out of
the highly non-linear dynamics of the gluonic field. In general, the problem of de-
scribing the interactions of quarks and gluons is quite complex and, if approached
from a computational point of view, requires considering systems with an extremely
large number of degrees of freedom. Very substantial simplifications however occur if
one consider the case of heavy quarks, quarks whose mass (converted to energy units
according to E = mc?) is much larger then the typical energy scale of gluonic interac-
tions. Then the motion of the quarks becomes pon-relativistic and the complicated

3.1

The Schrodinger equation 65

interactions due to the gluonic fields can be accounted for by an effective potential
between quarks. To a very good first approximation, this effective potential is given
by the superposition of a short-range Coulombic potential, —£, and a long-range,
confining, linearly increasing potential 7.

The masses and other properties of mesones consisting of a bound state of a heavy
quark and a heavy antiquark can thus be found by solving the Schrodinger equation
that describes the §q bound states in the presence of effective Coulomb plus linear
potential.

In particle physics one customarily adopts units where ¢, the speed of light, and A,
the reduced Planck constant, are set to unity. In these units, lengths, times, masses,
momenta, energies are all expressed in terms of (suitable powers) of the unit for any
of these quantities. We will use an energy unit, the GeV (10° electron volts) as a
fundamental unit; with ¢ = 1 mass and momentum are also given in units of energy,
and we will measure these in GeV as well. In these units, where ¢ = k = 1, the
unit of length is the inverse of that of energy. In fermis (fm), with 1fm = 10~ m,
(GeV)~ 1 = 0.197327053(59) fm ~ 0.2 fm.

The masses of the quarks are not uniquely defined, since quarks do not exist as
free particles. However one can assign values of mass to the various quarks (which
are definition dependent) what are called Lagrangian masses (that is, the masses that
appear in the fundamental Lagrangian describing the theory). From phenomenology,
these masses have the approximate values given in table below.

Symbol Name Charge Mass (GeV)
u up +%e 0.005
d down - %e 0.01
8 strange —%e 0.15
c charm +2e 1.5
b bottom —%e 5.0

Table 3.1.1: Mass and electric charge of the quarks

The mases and quark content of a few hadrons are given in the following table,

The typical range of energies due to gluonic interactions is of the oder of a few
hundred MeV, that is, in the 0.1-1 GeV domain. Thus a non-relativistic approxima-
tion may work resonably well for the bound states of ¢ and T, and should work very
well for bound states of b and 3. Among the bound states of the heavy quarks, the

two most prominent are the J/¥ and T mesons, whose properties are summarized in
the table below,

The Schrodinger equation for the bound states of ¢ and € or of b and b is

#2v2
N 2mp

+ V(r)J ¥ = EV (3.1.1)

66

3. Boundary value problems
Symbol Name Quark content Mass (GeV)
p proton uud 0.9383
n neutron udd 0.9396
A lambda uds 1.1156
i charged pions ud + ud 0.1396
=0 neutral pion Tu + dd 0.1350
n eta 38 + Tu + dd 0.5488
K+ charged kaons us + us 0.4936

Table 3.1.2: Mass and quark content of a few hadrons

Symbol Quark content Mass (GeV)
J/¥ uud 3.0968
T udd 9.4603

Table 3.1.3: Mass and quark content of two heavy—quark bound
states

where mp is the reduced mass of the system. With a bound state of two identical
quarks mp = 52 . The effective potential we want to use is therefore (including the
rest energy of the quarks, 2m,),

V(r)=2mg;— %-}- Tr . (3.1.2)
The coefficient in the Coulomb term in the potential, &, depends on the range of the
interaction (the average separation between ¢ and) This comes about from the fact
that the above is not the exact interaction potential, but only an approximation. o
is dimensionless and its typical values are in the range 0.2 — —0.5.

The coefficient of the linear term in the potential, 7, is called the string tension and
can be determined from the phenomenology of light mesons (from the relation between
mass and angular momentum). 7 is measured in energy/length. With [length] =
[energy]™!, 7 is thus measured in units of [energy]?. A good phenomenological value
for the string tension is,

7 % (420MeV)? = 0.1764 GeV? ~ 0.88GeV /fm.
The equation we want to solve is thus (remember i = 1},

_.Yj+(2mq——‘:-+rr)]T=E\I‘.

LY

(3.1.3)

The eigenvalues of the above equation, E, will give the rest energies, that is, the
masses, of the ¢§ bound states.

3.1

The Schraodinger equation 67

The angular part of the wave function W¥(r,¥,¢) can be factored out by writing

U(r)

r

U(r,d,p) = Vim (3, 0) a (3.1.4)

where Y}, is a spherical harmonic with angular momentum [.
In the angular representation, Eq. (3.1.3) thus reduces to

__Zl__dzU(r)

2
mg dr

I(1+1)
mgr?

+ U(r)+ (qu — % + 'rr) U(r)=EU(r) . (3.1.5)

with the radial wave function, U(r), satisfying some definite boundary conditions at
r =0 and r = oo, which we now deduce.
For r = 0 the dominant terms in the equation are

1 d*U

my dr?

and
I+ 1)U
mer?

If we set

U 1(I+1)U
ez T rZ =0

we get,

Uoxritl o Uoxrt,

The second choice produces a singular wave function ¥ and we conclude that the
boundary condition for r = 0 is that U must vanish at the origin and, indeed, behave
as r*+1 in the neighborhood of this point.)

For r — oo the term 7rU(r) dominates and the equation reduces to

1 &2U
-.._—’;";Ez—--{-‘rrU'}'.—-—O,

where the ellipsis stand for other subdominant terms. The equation
U" — (const) x rU = 0,

cannot be solved in terms of elementary transcendental functions (its solution can be
expressed in terms of Airy’s functions), but, if we try an Ansatz U = e‘“slz, we get
U" = 9_"2’.6—&3/2 _ Efr—lﬂe—cra’z_

4
The second term is subdominant, and we see that the solution will be of the form

68

3. Boundary value problems

3/2
-cr
Uxe ,

2 .
plus terms which are subdominant for r — oo provided that f—;q— = 7. The leading
behavior for large r is thus given by,

U (r) Xr—oo €XP (:{:g,/mp-r r3/2) ,

and, of course, only the upper, negative sign leads to an acceptable solution.
Finally, therefore, the equation we must solve to obtain the masses of the heavy—
quark bound states takes the form,

1 d2U+I(l+1)U+(2mq_%+”)u=EU (3.1.6)

mq dr? mgr?

* subject to the boundary conditions U(0) = U (o0) = 0. We will use this equation as

an example to study the general case of computational methods for the solution of
boundary value ordinary differential equations.

3.2. Methods of solution

We will consider equations of the general form,

Vi=f (y, v, :1:) , (3.2.1)

where primes indicate differentiation with respext to the independent variable (z).
In this equation, and for most of what follows, y(z) can refer to several dependent
variables, y;(z). There is no point studying equations with derivatives of order higher
than second; first, equations of higher order are not all that common, but, more
importantly, it is always possible to write higher-order equations as coupled systems
of lower order. For example, an equation such as, " = f(y, y",z), can also be written
as,

N
y1 =2
3.2.2
va = f(y,92,2) - (3.22)
We will assume that z varies in the interval (a,b), with either limit possibly infinite.
Boundary conditions will be expressed by constraints of the form,

an(y,y)=0 at z=a,
92(y,y')=0 at z=0b.

(3.2.3)

Typical examples

3.3

The shooling method 69

linear, non-homogeneous:
V(@) =p(z), y@=y®) =0,

or ' (a) = ¥ (b) = 0;
linear, homogeneous:

—¥" (2) + U(2)y (2) = Ey(z), y(a)=y(b)=0;

non-linear:

¥’ (2) — siny(z) = 0, y{(=00) =0, y(o0) = .

3.3. The shooting method

Supply additional information at €.g. ¢ = asufficient to integrate the equation

forward from a to b. Vary then the parameters until the condition at b is
satisfied.

Classes of equations:

(1) general, non-linear
v'=f(ny'z).

The constraints are, for example, v(e) = n1, y(d) = y2. Introduce V'(a) = c as
parameter and integrate then the equation forward from a to b starting from y(a) = y;
¥'(a) = c. The value of y at b, y(b) will depend on c: y(b) = y(b, c). Vary then ¢ until

b,c) = y2.
“ V\)fith b fixed y(b,c) is a function of ¢ which we will denote by y;(c). We can
write a subroutine that, given ¢, returns ¥(c). Solving the equation becomes then
equivalent to finding the zeroes of the function

v (c) — ys.

In principle the procedure can be followed also if there are several dependent variables
yi1(z), ya(z)... If, for instance, the boundary conditions are yi{a) = 111 y2(a) =
y2,1--. and y1(5) = 1,2 ¥2(8) = y22..., we can assign to y3(a), y(a)... values cj,
cz ... and integrate the equations to find the values at b, denoted by y;;, which will
depend on all the ¢;
Yip =wip{cr,cz,...).

We would then vary c; c; ... trying to find a simultaneous set of zeroes of all the
functions

ns{ac...) -y,

70

3. Boundary value problems

yab (c1e2...) — ¥2.2,

yaplcica...) —y3,2

The procedure becomes, however, much more complex, because the problem of finding
the simultaneous solution of several non-linear equations is a rather difficult one.

(i) Linear, non-homogeneous equations:

y' = v (z)y+v2(z)y +v3(z).

Again, we will consider, for definiteness, boundary conditions y(a) = 1, y(b) = y2.

Once more, we can assume a value c for y'(a) and integrate the equation, adjusting
¢ so that the other boundary condition is satisfied. (Of course, if the boundary
condition at a were on ', e.g. y'(a) = y1, we would take y(a) = c as parameter. This
remark applies also to the case considered in (i}).

While the method is the same as in (i), the linearity of the equation induces a
simplification.

Indeed, imagine that starting from y'(a) = c1, we obtain y(b) = di and that,
starting from y'(a) = c2, we obtain y(b) = da.

If we now start from y'(a) = ¢ we will obtain

_ c—Cy _
y(B) =di+ ——_(dz —d)

because y(b) is a linesr function of y'(a). Thus, we only need to integrate the equation
forward for two different values of y’(a) and we can then solve for the value of y'(a) = ¢
which satisfies the boundary condition y(b) = ya.

This does generalize easily to the case of n variables y1(z)... yn(z). We can
integrate the equations with n 4+ 1 independent sets of initial values and solve the
resulting linear system of n equations in the n unknown coefficients ¢; = vi(a).

Example: n = 2.

i) Integrate forward with i (a) = y4(a) = 0 to obtain y(b) = d{ln)’ y2(b) = dg”). .
ii) Integrate forward with ¥j(a) = 1, y3(a) = 0 to obtain y(b) = d(ll), y2(b) = dgl}.
iii) Integrate forward with y}(a) = 0, y3(a) = 1 to obtain y1(b) = di*, ya(b) = d}.

The initial conditions yj(a) = c1, ¥(a) = c2 will now produce
n@y=d"+ (dgl) - dgo)) a+ (dsz) - dgo)) ez,
)= 49+ (&9~ d9) o+ (49—)

Equating the r.h.s. to the values that y;(b) and y2(b) must assume to satisfy the
boundary conditions we obtain a system of 2 linear equations in 2 unknowns which
we can solve for ¢ and c3. .

(iii) Linear, homogeneous equations:

3.3

The shooling method 71

V' =n(g)y+v(2)y,

and boundary conditions that are also homogeneous (e.g. y(a) = y(b) = 0, or y'(a) =
y'(b) = 0, or c1y(a)+c2y'(a) = 0 and dyy(b)+da2y'(b) = 0; but not boundary conditions
such as y(a) = ¢; # 0. With this boundary condition the equation is no longer a
homogeneous equation).

Generally v1(z) and/or v2(z) will contain some parameter that can be varied and
non-trivial (i.e. non zero) solutions will exist only in correspondence of special values
for this parameter.

Typical example is the eigenvalue equation

—y'=Fy—-v (z) v,

with y{a) = y(b) = 0.

With linear, homogeneous equation varying y'(e) does not help, because the whole
solution changes by the same factor. Rather, we start with a fixed /(a), e.g. 3/(a) = 1,
and integrate the equation for different values of the parameter(s) in v1(z) and v2(z)
until we find a value such that the boundary condition at b is satisfied. Thus, in the
eigenvalue equation

—'y" = Ey - v(z) Y,.

if we start from y(a) = 0, y'(a) = 1 and integrate, the value of y at b, y is a non-linear
function of E: yp = y3(E). The eigenvalues are then given by the zeroes of y;(E).

In all of the above equations one does not have, of course, to integrate forward
from £ = a. One can equally well integrate backward from z = b down to z = a or
forward from z = a to some z = z,, and simultaneously backward from z = b to
the same value z = z,,. These alternate integration procedures may help one avoid
instabilities in the integration of the equations (see later).

If we integrate the equation from z = a to z = z,, and fromz = b to z = z,, in
general we will have to specify one additional parameter, e.g. y'(a) = ¢, at a, and
another parameter, e.g. y'(b) = c2, at b. We shell then demand that the solutions
¥y (z) and y*(z), obtained integrating from z = @ and ¢ = b respectively, agree
together with their derivatives at z,,: -

v~ (@m) =37 (zm),

¥ (2m) =y (zm).

This gives origin to two equations for the two parameters ¢; and cs.
However, if the equation is linear and homogeneous, one can start with y'(a) = 1
and y'(b) = 1 and simply demand that

-t +!
v y
F = F at = Im ,
yml y-l-l

i.e., that the Wronskian W = det vanishes at z = z,,.

y~ oyt

72

3. Boundary value problems

This determinant will depend on the eigenvalue parameter (i.e. E) and thus one
recovers one (non-linear) equation, whose zeroes produce the eigenvalues.

3.4. Instabilities in the solution procedure

With b = oo (or even at finite a or b) typically it will happen that the solution
diverges rapidly for general values of either the initial parameter or the eigenvalue
parameter. For example, the solution of

—y"=Ey—v(z)y

for v(z) > E is a linear combination of an exponentially decreasing solution and an
exponentially increasing one, given, to leading order, by

y~ e’ J V@B et J*e-Bd'

a; and az will be functions of E and the eigenvalues are preciéely those values of E
that cause az to vanish.

However, even if E is an exact eigenvalue, because of the pumerical approximation
in the integration procedure or because of round-off errors the divergent solution will
eventually dominate. Moreover, if the integraton is carried out to very large values
of z, the sensitivity of the solution to the changes in E will be so big that searching
for a zero in the coefficient of the exponentially increasing term may be problematic.

All of this can also happen at finite z (so that changing the range by a change of
independent variable or integrating down, for instance, from oo to 0 rather then from
0 to oo, does not help). For example, the equation

dy I(1+1
&y 10D, @)

has a solution given by

i+1 i

y=a1z " +ax
and the second term diverges for z — 0.
In presence of such singular behaviours we can:

i) demand that y = 0 at a large but finite T = ZTwmaz. Then we can increase
T = Tmaz While tuning the eigenvalue parameter (however, the above mentioned sen-
sitivity of y(z) on E for very large z will, in general, still prevent us from considering
exceedingly large £ = Tmaz)- '

If we know the asymptotic behaviour of the correct solution, for instance that it
must behave as e~°%, we can take this to our advantage demanding that

y' (Imaz) = —cy (Imaz) 3

3.5

Alernative methods 73

rather then y(zmaz) = 0. This will produce good results with much lower values of

Tmax-

ii) Rescale the solution by the expected divergent asymptotic behaviour (this is
particularly easy with linear homogeneous equations solved by iteration

y(z+dz) = fi(2)y(z) + f2 (2) y (z — dz).

All we need to do is to replace the current values for ¥(z) and y(z — dz) with the
rescaled ones).

iii) Integrate down from z = Z,; to some intermidiate Zm {(in this integration
the “correct” solution will now dominate) and similarly integrate up from z = z,4i,

to r,, and demand

y=' oyt 0
det | ¥ _ = 0.
y~ oyt

3.5. Alternative methods

Consider all the values y(a) y(a + dz) y(a + 2dzr) ... y(b) as unknown and
solve the system of equations that follow from the discretization of the differential
equation.

Solving is easy for a linear system, because of the special form of the matrix of
coefficients. E.g., the equation —y" = p(z) with y(a) = ¥(5) = 0 becomes

2y (a + dz) — y(a + 2dz) -y (a)
(da)?

= p(a+ dz)

2y(a+2dz) —y(a+3dz) ~y(a+ dz)
(dz)’?

= p(a+ 2dz)

or, denoting y(a+idz) byy; (i=1... n— 1),
251 — 12 = (dz)’ gy

2y2 — y3 — y1 = (dz)* ps

2Ypn—2 — Yn—1 —Yn-3 = (dI)2 Pn--2

2Yn-1 — Yn-2 = (dz)? pu_y

74 3. Boundary value problems

or, in matrix notation

2
2 -1 w1 (dm)2 1
-1 2 -1 2 (dx)” p2
-1 2 -1 vs | _ (dm)2p3
-1 2 -1 Yn—-2 (d.’l:)2 Pn—2
-1 2 Yn—1 (da’)z Pn-1

This system can be solved easily by assigning a value ¢ for y1 , and going forward
through the first n —2 equations to find y2 ... Yn—2 Un-1. The last equation —yp—2+
2yn—1 = (dz)%pn—1 will not be satisfied for an arbitrary choice of c. However, the
whole expression —yn—2 + 2yYn—1 — (dz)?pn-1 is a linear function of ¢ and so we can
easily determine the value of c that will make it equal to 0.

In practice, this coincides with the shooting method, and the corresponding al-
ternatives in the solution procedure (such as solving forward from y; and backward
from ygp-1, imposing consistency in the middl€) that help avoid instabilities can also
be used.

A direct solution of the system by a general purpose routine can also be done,
although this is less economical. ‘ '

A direct solution of the discretized set of equations in the non-linear case is much
more problematic, unless the equations can be derived from a minimizaton principle.

For instance, the equation

" (@ +M(@)=0, y(a)=y(b)= given

follows from the requirement that
b 1, 2, A 4 .
1= [W@ +30@1Ye, y@=y0)= gven

by minimum. Similarly, the discretized version

_y(z+dz) +y(z—dz) —2y(2)
(d=)*

follows from the demand that

2
I =Z{1 [y(x+dx)—y(z)] +%Ay4(z)}

+ 22 (z)=0

9 dz

be minimum.
Then one can use powerful methods of minimization for I considered as a function
of the variables y(a +dz) ... y(b—dz).

Example: relaxation method for the solution of

~y" (z2) +v(z) y(z) = Ey(z).

3.5

Alternative methods s

We want the lowest eigenvalue(s) and corresponding eigenfunctions.
We use continuum notation for simplicity, but the method works also for a dis-
cretized system (indeed, the numerical procedure is only defined for a discretized

system).

Let Ey < E; < E3 ... be the eigenvalues and y;(z), y2(z), y3(z) ... the corre-
sponding normalized solutions.

We can expand any y(z) as

y(z) =ayi(z) + a2p2 () + ...

Consider now the equation

d
S == (v +v(2)y)
for a solution y(z,t) of = and of a fictitious time variable .

If we expand
Yyt =ar()n(z)+a(®)y2(z)+ ...

and substitute into the equation we see that the coefficients a;(t), a2(t), ... satisfy

dal_(t) _— _Elal (t) ,

dt

ia‘;g')' = —Fay (t) ’

Thus a;(t) = a{(O)e”E"‘.
For large t, therefore, y(z,t) will be dominated by the first term

y(z,t) — a(@)n(z).
t— 00

In this way, by evolving the original equation in time (relaxation) we can obtain
the eigenfunction y;(x) corresponding to the lowest eigenvalue and, from the rate of
decay, also the eigenvalue E (NB: if y(z,t) decreases too fast, we may rescale it 8o as
to keep its normalization constant at each iteration, or every few time steps. If the
rescaling factor, for a time interval At, is r, for large t r — e®18* which can used
to read off E;).

Using the fact that the eigenfunctions y1(z) y2(z) ... are orthogonal (with
respect to some suitable definition of inner product, frequently just

i, 1) = [don (D0 T n @n @)

one can use the relaxation method to find a few of the lowest eigenvalues, not just
the one corresponding to the lowest E.

76

3. Boundary velue problems

Minimization principles can also be used to find a “good” discretization of a
continuum equation, where a priori the discretization is ambigous or not obvious.
For instance, the equation

dy 1dy
~@ "ra TrOv=ED

follows from the minimization of

Ji5 (2) +rne.

This suggest that we consider

I zl;{ (ri +4ri+1) (yi+:1: yi),z + E-E-zgi)y?}dr

and minimize with respect to y;.
This gives

ri+ riql Yi ~ Yi+1
2 dr2

+ ("" + r.'_1) (yi — y"l) (from the term with y; and yi_1)

2 dr?
+riv(ri)yi=0.

With equally spaced r; this can also be rewriten as

20i —yi+1 —¥i-1 1 yit1 — ¥i-1 N
dr2 2r; dr to(r)ui=0,

but, for some reasons, we might have wanted to r;’s which are not equally spaced and
the discretization would then not have been so obvious. Similarly, if the equation had
been of the form

& I
~u() T - () F He()y=0.

