INTERNATIONAL ATOMIC ENERGY AGENCY
UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZAT 10N

ﬁ
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS &
LCT.P, PO. BOX 586, 34100 TRIESTE, ITALY, Caste CENTRATOM TRIESTE. —

H4.5MR/854-14

College on Computational Physics

15 May - 9 June 1995
An Introduction to PVM (Parallel Virtual Machine)

F. Massaioli

Universita "la Sapienza”
Rome, Italy

: An Introduction to PVM |
5 (Parallel Virtual Machine)

Describing PVM Version 3.1

Robert Manchek
University of Tennessee

Computer Science Department

August 4-5, 1993

4 August 1993 Robert Manchek University of Tennessee Depagtinent of Comptiter Scienee Kuoxville TN 37006 130]

Wednesday

9:00 - 12:00 Lecture
introduction
Qverview of PYM
Using PVM

PVM Programming Interface
Writing PVM Applications

13:00 - 17:00 Lab

Running PVM
Building, running example programs
[Writing an application)

Thursday
9:00 - 12:00 Lecture

Writing PVM Applications cont'd
Advanced Topics
Debugging
PVM Implementation
13:00 - 17:00 Lab
Writing an application

2

4 August 1997 Rohen Manchek University of Teanessee Department of Computer Science Knoxville TN 37096-1301

re ™

™y

Carolyn Aebischer

Weicheng Jiang
Rohert Manchek
Keith Moore

Pindvprsity of Tromogae,

Adam Beguelin
Carseri Slolon Pabveraly,

Piteboarph Superoommsier Dedber

Jack Dongarra

Planvursity of Poaeasie

frak Hudpe ™Mathmoi Laborator

Al Geist

Ohak Ridge Matieaal Labootars

Yaidy Sunderam

Faany Dabveraiiy

3

4 August 1993 Kohern Manchek Univetsity of Tennessee Depaiment of Computer Science Knuzwalle TN 37996 1301

PVM is a software package that permits a heterogeneous
collection of serial, parallel, and vector computers
on a network to appear as one large computing resource.

@ [t's a poor man’s supercomputer allowing one to
exploit the aggregate power of unused workstations
during off-hours.

@ |t'a a metacomputer allowing multiple supercomputers
distributed around the worlid to be linked together to
achieve Grand Chalienge performance.

@® |t's an educational tool allowing colleges without
access to parallel computers to teach parallel
programming COUrses.

4

A Augast 1923 Roben Manchek University of Teanessee Department of Computer Suienee Kaoxville TN 37096301

Overview of PVM

5

4 August 1997 Robert Manchek University of Tennessee Department of Computer Science Knoawlle TN 17596-1301

Major Features of PVM

@ Easy to install — can be done by any user,
can be shared between users

@ Easy to configure — using your own host file

@ Your configuration can overlap with other users’ PVMs
without conflict

@® Easy to write programs - standard message—passing interface

@ C and Fortran applications supported

& Multiple Applications can run simultaneously on one PVM

& Package is small — requires only a few Mb disk space

6

4 Augast 1997 Robert Manchek University of Tennessee Department of Computer Science Knoaville TN 37996-1301

e

L)

rs

ra

Heterogeneity i

Portability

® PVM source code is very portable across Unix
PVM supports heterogeneity at three levels machines, porting generally means setting options.

PVM currently runs on:

@ Application 80386/486 with BSDI Alliant FX/8
, _ DEC Alpha/OSF-1 BBN TC2000
Subtasks can exploit the architecture DEC Microvax Convex
best suited to their solution DECstation Cray YMP and C90
DG Aviion IBM 3090
HP 9000/300 Intel Paragon
HP 9000/700 Intel iPSC/2
& Machine IBM RS/6000 intel iPSC/860
IBM/RT Kendall Square KSR-1
Computers with different data formats NeXT Sequent Symmetry
: : Silicon Graphics IRIS Stardent Titan
apd archltecturt:es (serial / parallel), sun 3 Thinking Machines CM-2, CM-5
different operating systems Sun 4, Sparc

@ Version 3 portable to non-Unix machines and

@ Network multiprocessors

Different network types, e.g., @ iPSC/860, Paragon, CM-5 ports running and available,
FDDI, Token Ring, Ethernet KSR-1 port in progress

@ VMS port soon ?

7

4 August 193 Robert Manchek University of Tennessee Deparement of Computer Science Knoxville TN 379961301 4 Auguas | 9Y Haowst Manchek University of Tennessee 1cpzantment of Computer Science Knoxville TN 37986-1301

Evolution of PVM

The PVM System

System is composed of:
@ Version 1 written during summer of 1989 at ORNL

Proof of concept — never released @ Pvmd daemon program

. . Runs on each host of virtual machine
@ Version 2 written March 1991 at UTK

Intended as substrate for HeNCE

. _ _ Provides inter-host point of contact
Stable, robust version - first released publicly

Authenticates tasks

@ Version 3 written September 1992 — February 1993 Execs processes on host
Second release, 3.1, has been available 3 months.
Version 3.2 TBR August 93 Provides fault detection

Mainly a message router, but is also
a source and sink of messages

More robust than application components

9 10

4 August 1993 Rohert Manchek University of Tennessee Department of Comiputer Svience Knoxville TN 37596 130 4 August 1991 Rohert Manchek University of Tennessee Department of Compulter Science Knoaville TN 37996-1301

System is composed of:
@ Libpvm programming library
Linked with each application component (program)

Kept as simple as possible

Functions are low-level PVM "syscalls"

@ Application components

Written by user in PVM message-passing calls

Are executed as PVM "tasks"

bl

4 August 1990 Robert Manchek University of Tennessee Department of Camputer Seience Kaoxville TN 37996 10

high-speed

lirnk

tasks 1,2, 3
<Jmputation

task 9 | task 4
graphical | (console)
display I

tasks 5, 6,7, 8
computation

12

F August 1997 Rohert Manchek University of Tennessee Deparument ol Computer Science Knoxville TN 379961301

Changes from v2 to v3

Internal Changes in v3

@ Pvmds have fault detection / recovery,

Can build fault-tolerant applications @ Task identified by a single integer (TID)

Allows more efficient implementation
@ Console not built into pvmd; is a normal task Can build symbolic/group libraries on top

@ Portable to multiprocessors @® Pvmd-pvmd communication uses UDP
lost—packet retry based on host-host RTT

@ Dynamic configuration of virtual machine;

able to add and delete hosts while running @® Scalable to larger number of hosts / reduced centrality

Each pvmd can assign TIDs autonomously
@ Multiple message buffers available in libpvm Require a master host to manage host table
Messages can be saved, forwarded

@ Modular communication layers / easier to

@ Vsnd() interface removed replace with custom transport mechansims

Routing is done automatically

@ New libpvm function names
Won't collide with other libraries

13 14

4 August 1097 Robert Manchek University of Tennessee Depariment of Computer Science Knoxville TN 17906- 120 2 August 1993 Rohert Manchek Ulniversity of Tennessee Department of Computer Science Knoxville TN 37996-1M1

How to Obtain PVM

Y
H

Source code, User's guide, Examples, and related
material are published on netlib, a software repository

with sites at ORNL and ATT.

Using PVM

T

To get started, send emaii to netlib:

% mail netlib®ornl.gov
Subject: send index from pvm3

Instructions will be mailed back automatically.

Also available via anonymous FTP from:

netlib2.C8.UTK.EDU

Questions and problems can be addressed to:

pvm@Emsy .epm.ornl.gov

15 16
4 August 1993 Kohent Maachek University of Tennessee Departmient of Computer Science Knoxvitke TN 3799 1101

4 August 1595 Robert Manchek Universily of Tennessee Department of Computer Science Kpoxville TN 37996- 1361

Building PVM

@® To build PVM, chdir to top of distribution (pvm3)
and type "make"

® This builds:
pvmd3 The pvm daemon
pvm The console program
libpvm3.a The C programming library
libfpvm3.a The FORTRAN library

and installs in pvm3/lib/ARCH

® Copy to other machines if necessary.

17

4 August 1993 Robert Manchek University of Tennessee Department of Computer Scienve Knonville TN 37996 T30

nstaling PVM)

@ By default, PVM is installed in $HOME/pvm3/

pvm3/1lib Pvmd, libraries, scripts
pvm3/include Header files
pvm3/bin Application binaries
pvm3/src PVM system source

@ |t can be installed in a shared directory:
satenv PVM_ROOT /usr/local/pvm3
or:

mkdir $HOME/pvm3
foreach d {(conf include lib src examples)

In -s /usr/local/pvm3/$d SHOME/pvm3
end

@ pvm3/bin directory is generally private

18

4 August 1991 Rohert Manchek [iniversity of Tennessee [epartment of Computer Science Knoxville TN 379961301

Host

Virtual Machine
Process

Task

TID

PVMD
Message

Group

| Programming Concepts

A physical machine, e.g.
Unix workstation
Hypercube

A mata-machine composed of one or more hosts

A program, data, stack, elc. e.g.;
A Unix procass
A ncde program

A PVM process - the smallast unit of computation

The unique {per vitual machine) identifier
associated with each task.

The PYM daemon, e.g. pvm3/lib/ARCH/pvmd3

An ordered list of data sent betweaen tasks

An ordered list of tasks assigned a symbolic name
Each task has a unigue index in the group
Any task may be in zero or mora groups

19

1 August 1997 Robert Manchek University of Tennessee Department of Computer Science Knoxville TN 37996 13

— o Hostﬁl_é S .

@ You can use a hostfile to specify a configuration
or set per—host parameters

@ Each host listed in hostfile is automatically added
unless preceded by an ampersand (&)

@ Hosts entered one per line, name followed by options

DEFAULTS

lo= Different loginname same
pw Pvmd asks for password don't ask; use rsh
dx= Special location of pvmd pvm3/Lib/pymd
ep= Special a.out search path pvm3 /bin/%
ms Requires manual startup don't

@ Can specify default settings using host "™

@® Example: % = ARCH
this is a comment line
1g
#honk

thud ep=appll:pvm3/bin/%

remaining hosts don’t trust us
*pw

cobra

& viper lo=rijm

20

4 August 1997 Robert Manchek University of Temessee Departinent of Computer Scienee Knoxville TN 37096 101

Starting PVM

Console automatically starts a pvmd if needed:

ig% pvm
pvm> conf
1 host, 1 data format
HOST DTID ARCH SPEED
ig 40000 ALPHA 1

Pvmd can be started by hand to supply a hostfile
or passwords:

ig% echo "thud pw" > H

ig% ~/pvm3/lib/pvmd H

Pagsword {thud:manchek):

~Z

Suspended

ig% bg

[1] /leather/homes/manchek/pva/lib/pvmd H &

1g% pvm
pvmd already running

pvm> conf
2 hosts, 2 data formats

HOST DTID ARCH SPEED
ig 40000 ALPHA 1
thud 80000 SUN4 1

21

4 August 1993 Robert Manchek Universily of Tenncsses DPepartment of Computer Science Knoxville TN 370941301

Adding Hosts

The add and delete commands reconfigure the machine:

pvm> conf
2 hosts, 2 data formats

HOST DTID ARCH SPEED
ig 40000 ALPHA 1
speedy 80000 RS6K 1

pvmm> add thud honk

2 successful
HOST DTID
thud <0000
honk 100000

pvmn> delete speedy
1 successful
HOST STATUS
speedy deleted

pvm> conf
3 hosts, 2 data formats

HOST DTID ARCH SPEED

ig 40000 ALPHA 1
thud c0000 SUN4 1
honk 100000 ALPHA 1

® |f a password is needed to add a host, be sure the
master pvmd is still running in the foreground!

(Use a different window for the console)

22

4 August 1993 Robert Manchek University of Tennessee Department of LUomputer Science Knoxville TN 37996- 1301

e

ry ™

s

P T

Programming in PVM

3

4 August 1907 Robert Manchek University of Tennesses Department of Compater Scrence Knoavilla TN 376096 1301

PVM provides C (or C++) and FORTRAN programmers with
a library of about 70 functions

C applications:
#include <pvm3.h>
Compiling:
cc -I$PVM ROOT/include myprog.c -LSPVM_ROOT/lib -lpvm3

FORTRAN applications:
Header file in include/fpvm3.h
Compiling and linking more system-dependent than for C
Need to link with _ifpym3 @and _ipvm3
Programs using group library need to link with ~ -lgpvm3
Extra libraries are required on some hosts.

Look at pvm3/console/ARCH/Makefile for hints

24

4 Augnst 1993 Roberr Manchek Umversity of Tennessee Depatment of Computes Science Kaoxvifle TN 17996 131

PVM 3.x C Routines (1/2) PVM 3.x C Routines (2/2)

Process Control

[Tt S T T T T T T T : Message Passing
I int cc = pvm_spawn{ char *aout, char **argv, int flag, o
char *where, int cnt, int *tids)
int cc = pvm kill{ int tid) int cc = pvm advise{ route)}
void pvm_exit {})
izt E;g : :x:;:':-:ﬁé)() int cc = pvm pkbyte(char *cp, int cnt, int std) '
int stat = pvm pstat(int tid) zf.nt cc = pvm pkeplx(£float *xp, int cnt, :.Lnt std) i
int stat = pvm mstat(char *host) int cc = pvm pkdcplx(double *dp, int cnt, int std) :
int cc = pvm_pkdouble(double *dp, int cnt, int std)
int cc = pvm_config(int *host, int *arch, int cc = pvm_pkfloat{ float *fp, int cnt, int std)
struct hostinfo **hostp) ‘ int cc = pvm_pkint(int *np, int cnt, int std)
int cc = pvm_addhosts{char **hosts, int cnt, int *st) ‘ int cc = pvm pklong(long *np, int cnt, int std)
int cc = pvm dalhost.s(chnr **hosts, int cnt, int *st) : int cc = pvm _pkshort(short *np, int cnt, int std)
Co R s o o e int cc = pvm pkstr{ char *cp) :
Dynamlc Process GTOUDS int cc = pvm_send(int tid, int msgtag) ‘
int c¢e¢ = pvm mcast(int tids, int ntask, int msgtag }
‘ int cc = pvm_bcast(char *group, int msgtag |}
i int inum = pvm_joingroup(char *group) int buf = pvm probe(int tid, int msgtag)
int cc = pvmwlvgz?up(char *group }) : : int buf = pvm nrecv{int tid, int msgtag)
1..nt t.::.d = pvmﬁqett.::.d(char *group, :i.nt inum »o : int buf = pvm recv(int tid, int msgtag)
int inum = pvm _getinst(char *group, inmt tid) | int ce = pvm bufinfo{int buf, int *len,
:.Lnt ce = pvm,vba:.:r:.er(char *group, int cnt) : int *msgtag, int *tid)
int size = pvm_gsize(char *group)
o int cc = pvm upkbyte(char *cp, int cnt, int std) _
Message Buffers int cc = pvm_upkcplx(float *xp, int cnt, int std) |
o e int cc = pvm_upkdeplx(double *dp, int cnt, int std)
| |Err0r Handhng int cc = pvm upkdoubls{double *dp, int cnt, int std)
int buf = pvm_mkbuf(int encoding } ; ‘ int c¢¢ = pvm_upkfloat(float *fp, int cnt, int std) |
int cc = pvm_freebuf{ int buf) TomemTmm s : int - , kint { int * ’ int t’ int std)
int buf » pvmn_getsbuf() int info = pvm__perror(char *msg ¢c = pvm _uprin n np, int cnt, int s
int buf = pvm getrbuf () int info = pvm_ serror(int how) E int cc = pvm_upklong(long *np, int cnt, int std) |
int oldbuf = pvm setsbuf(int buf) R el ji’nt: cc = pvm_upkshort(short *np, int cnt, int std) |
| int oldbuf = pvm:setrbuf(int buf) nt cc = pvm upkstr(char *cp) :
|l int buf ™ - : R I e e e |

pvm_initsend{ int encodin |) e

25 26

4 August 1993 Rohert Manchek University of Tennessee Department of Computer Science Kaoaville TN 37996- 1301 4 August 1993 Roben Manchek University of Tenressee Depariment of Computer Science Knozville TN 379%6-1301

PVM 3.x FORTRAN Routines (2/2

T,

PVM 3.x FORTRAN Routines (1/2) \

Process Control
R e - Message Passing

call pvmfspawn{task, flag, where, ntask,tids, info)
call pvmfkill{tid, info)

call pvmfexit_:(imlfo) call pvmfpack(what, xp, nitem, stride, info)
i call pvmfmytid(tid)
call pvmfparent{tid) call pvmfsend{ tid, magtag, info)

call pvmfpstat(tid, pstat)

call pvmfmstat{host, mstat) call pvmfmcast(ntask, tids, magtag, info)}

call pvmfconfig(nhost, narch, info) call pvmfnrecv(tid, msgtag, buf)

call pvmfaddhost (host, info) call pvmfrecv(tid, msgtag, buf))

call pvmfdelhost (host, info) call pvmfbufinfo(buf, bytes, msgtag, tid, info)
call pvmfnotify(who, about, data, info) call pvmfunpack(what, xp, nitem, stride, info)

Dynamic Process Groups

what options

call pvmfjoingroup{group, inum)
. call pvmflvgroup{ group, info)
| call pvmfwhois(group, inum, tid) i
call pvmfgetinst({ group, tid, inum) i
call pvmfbarrier{ group, cnt, info) STRING REAL4
BYTE1 COMPLEXB
INTEGER2 REALS

Multiple Msg Buffers INTEGER4 COMPLEX16

| ‘ Error Handling
i call pvmfmkbuf (encoding, info)

call pvmffreebuf(buf, info) | o
| call pvmfgetsbuf (buf)] call pvmfperror(msg, info)
" call pvnfgetrbuf {buf) | call pvmfserror(how, info)
} call pvmfsetsbuf (buf, aldbuf) b e T - e
i call pwvmfsetrbuf(buf, oldbuf) !

call pvmfinitsend(encoding, info) \

— i

27 28

4 August 1997 Robert Manchek Vniversity of Tennessce Department of Computer Science Knosvitle TN 37996 1301 4 Angust F997 Rubert Manchek University of Tennessee Department of Commuter Seienee Kanewitie TR 37006.1 31001

Error Handling

PVM C functions return status value

In FORTRAN status is passed back in an extra parameter

Generally, a status of >= 0 is successful,
negative status indicates an error.

When an error occurs, libpym automatically prints a
message indicating the task ID, function and error, e.g.:

libpvm [t40001): pvm_sendsig{): Bad Parameter

Automatic error reporting can be disabled by calling
pvm_serror ()

Error reports can be generated manually by calling
pvm_perror ()

29

4 August 1993 Robert Manchek University of Tennessee Iepartment of Computer Scicnce Knoxville TN 17996-1301

Messages

PVM provides functions for composing messages
containing mixed data types

Any C data type can be packed in a message

Example:

send_job{worker, name, wd, ht, coeffs}
int worker:
char *name;
int wd, ht;
double *coeffs;

pvm_initsend(PvmDataDefault);
pvin_pkstr (name) ;

pvm_pkint (&wd, 1, 1);
pvm_pkint {(&ht, 1, 1);
pvm_pkdouble {coeffs, 6};
pvi_send (worker, 12);

Matching calls can unpack the data on the receiving end.

Packing and unpacking structures, lists, etc.
requires writing functions.

30

4 August 1993 Robert Manchek University of Tennessee Depanment of Computer Science Knoxville TN 379961301

ra

Messages, cont'd

Each message has an encoding, either:
Native data format of host that packed it (RAW)
Externalized (XDR)

Determined by paramtc pym_initsend () OF pvm_mkbuf {}
PvmDataDefault gr PvmDataRaw

RAW format packs and unpacks faster
XDR format can be passed between unlike hosts.

Task receiving message can decode XDR + 1 other format,

may not be able to read message.
Task can forward message without reading it, however.

in—place packing is like RAW but data remains in place
until sent. Only descriptors of the data are packed.

Faster for large, dense data
Uses less memory (for buffers)
Has side—effect: message is a "template”.

i

4 August 1997 Rohert Manchek University of Tennessee Nepartment of Computer Science Knoxville TN 17996-1301

Messages, cont'd

Once composed, a message can be:

Sent to another task
Multicast to a list of tasks
Broadcast to a group (if using the group library}

Any number of times without repacking

Send operation is non-blocking:
Returns ASAP
Does not imply receipt

Messages are downloaded to receiving task and
put in a queue to be accepted.

Recv operation downloads messages until matching
one in queue, removes and returns it

Messages sent between any two tasks A and B
will arrive in the order they are sent

Recv picks messages by sender and/or code
can pull messages from queue out of order

3z

4 August 1993 Rohen Manchek Universily of Tennessee Depanment of Comnputer Science Knoxville TN 37996-10H

Group Library

An optional library is available to facilitate writing
applications by providing naming structure.

Tasks can enroll in names groups and can be
addressed by the group name and an index

Functions are provided to allow tasks to:
Join, leave groups

Lookup a group member by group name and
index or TID

Broadcast to a group

Perform barrier synchronization within a group

33

4 August 1953 Robert Manchek University of Tennessce Depaniment of Computer Science Kroxville TN 379%6- 110

Writing PVM Applications

34

4 August 1993 Rober Manchek University of Tennessee Depariment of Computer Sueice - Knoxwville TN 37996 1301

e

e

s

Hello World

Simple example composed of two programs
Program "hello.c”, the main program:

#include <pvm3 . h>

main)
{
int tid;
char reply[30];

printf("I'm £%x\n", pvm_mytid{))

if {pvm_spawn|{"hello2", (char**)0, ¢, ", 1, &tid) == 1}

pvm_recv{-1, -1}
pvm_bufinfo(pvm_getrbuf{}, {(int*)0, (int*}0,
pvm_upkstr {reply);
printf ("From t%x: %s\n", tid, reply);

} else
printf("Can’'t start hello2\n");

pvm_exit () ;

}

Program "hello2.c", the auxiliary program:

#include <pwvm3.h>

main{)

{
int ptid; /* parent’'s tid */
char buf{100];

ptid = pvm_parent():

strepy (buf, "hello, world from ");
gethostname (buf + strlen(buf), &4);
pvm_initsend (PvmDataDefault):
pvm_pkstr{buf};

pvm_send(ptid, 1};

pvm_exit{};

a5

4 August 1993 Roben Manchek University of Tennesser Department of Computer Science Knoxwille TN 37996 130]

&tid);

{

Pllizing Applications o

How should you Parallelize your application?

As a sort of "Network Assembly Language”,
PVM leaves the decisions up to you.

What to put in "component" tasks
What messages to pass between tasks

How many tasks to have, where to run them

Some applications divide up naturally into, f.e.
computation and interactive components.

Look for separable calculations:

Speedup depends on

cpu speed
network speed

communlca.\tlon and
computation

ratios

36

4 August 1993 Robert Manchek Ulmversity of Tennessee Department of Computer Science Knoxville TN 37996- 1301

Dynamically discovers a tree of calculations

Calculation parameters are handed to worker

Worker may do the work or delegate half to
another worker

The calculation might proceed:

Using a pool of workers may be faster than
actually creating new tasks

37

4 August 1993 Rohert Manchek University of Tennessee Department of Computer Science Knoaville TN 37996- 1305

Bag—of-Tasks |

Simple model that provides load balancing

Given a list of jobs and a set of workers, how to
schedule all the jobs?

" State of each job: ~ State of each worker:

. &

% BUSY

FINISHED O
|

foreach job J
J.state <- UNSTARTED
foreach worker W
W.state <- IDLE
forever do
while (E{(J:J.state = UNSTARTED} & E{W:W.state = IDLE)}
J.state <- RUNNING
W.iob <- J
W.state <- BUSY
if (!E(W:W.state = BUSY))
break
wait for reply from worker (W)
W.job.state <- FINISHED
W.state <~ IDLE

38

4 August 1987 Robert Manchek University of Tennessee Depariment of Computer Science Knoxville TN 37096-1301

e

e

re

BOT can be modified in many ways

Adjust sizes of jobs
Slower workers get smaller jobs

Start bigger jobs first

BOT can also be used when workers must

communicate between themselves

Have to take this into account when scheduling

May need a special constraint system

Refinements can improve performance greatly

but may make the code very convoluted

Q manager library or system needed

39

Angust 1993 Robert Manchek University of Tennessee Depariment of Computer Science Knoxwille TN V7906 1301

Bag-of-Tasks, cont'd

Default — task—task messages routed through PYMDs
Canuse pvm_advise () to control routing

Advise parameter is one of:

PvmbDontRoute Task won't attempt to route directly
and will refuse requests

PvmAllowDirect Task won't attempt to route directly
but will grant requests

PvmRouteDirect rask will attempt to route directly

(request may be refused)

Routing policy only applies to future messages
and doesn't affect current connections

Once direct route established between tasks,
both will use the route.

Successtul routing also depends on max. # open files

40

4 August 1993 Robert Manchek University of Tennessce Department of Compater Science Knoawlle TN 37996 1301

Fast Message Routing

Using pvm_getfds ()

PVM tasks are usually either computing or blocked on recv
May need to service input from other sources

Can get a list of FDs in use by libpvm for use
with e.g. select ()

Xep example uses getfds to get input from workers
and X events at the same time

This is simple with default message routing,
more complex when using direct routing — FD set changes

This function is experimental

41

4 August 1993 Robert Manchek Universily of Tennessee Department of Computer Science Knoavilie TN 317996-1301

More Messages — recvi ()

Recv means:

pvia_nrecv(), pvm_probe(), pvm_recv{)

Recv uses "matching function” to pick a message from
receive queue.

Default function picks by sender and/or code
Specifying either as -1 indicates wildcard

Use pvim_recvef () toinstall different matching function

Recv calls function for each message in queue

match{int mid, int tid, int code)

mid Message butfer D
tid TID passed to recv
code Code passed to recv

Match function returns preference to recv:

<0 Error condition; stop

0 Don’t pick this message

1 Pick this message; stop now

>1 Pick highest preference over all
42

4 August 1993 Robert Manchek University of Tennessee Depariment of Compaater Science Kpoxville TN 179961301

=

A

Using notify

Task using notify can request a message when
an exceptional condition occurs:

A (different) task exits or fails
A pvmd (host} is deleted or fails

[Not implemented

mesen31] A new pvmd (host) is added to the machine

Task can specify message code to be used

Message body contains data specific to the event

PvmTaskExit TID of one task
PvmHostDelete pvmd-TID of one host
PvriHostAdd [NI'Y] count of new hosts and pvmd-TIDs

For example:

int tidsl2], x;

pvm_spawn{..., 2, tids)

pvm_notify (PvmTaskExit, 666, 2, tids);
recv(-1, 666);

pvm_upkint (&x, 1, 1);

printf{"eek, t%x exited\n", x);

TaskExit and HostDelete reply even if task
or host already dead (avoids a race).

43

4 Angust 1997 Robert Manchek University of Teanessee Depatment of Computer Scwence Koaoxville TN 17596 | U001

Bag—of-Tasks Revisitedw

Notify can be used to build a failure~tolerant BOT

It a worker fails, the algorithm would normally

block waiting for a response

The notify message would be received instead of

the response, allowing the master to re—schedule
Can use HostAdd to respond to new resources.

The state diagrams are modified like so:

Job state Worker state

new warker
UNSTARTED

IDLE

O
§ :
0 @

failed
O FINISHED

44

A August 199% Rohen Manchek Toriversity of Tennessee Department of Corguter Science Kuoxville TN 37996- 1101

Debugging PVM Applications

Task run by hand can be started under a debugger

Modify program slightly - add PvmTaskDebug
to the pvm_spawn () flags parameter

From console, use -? flag with spawn
Pvmd runs spawned program in debugger

Use the following steps when debugging:

@® Run program as a single task - eliminate
computational errors

@ Run program in parallel on a single host —

eliminate errors in message passing

@ Run program on a few workstations to
look for problems with synchronization
and deadlock

45

4 August 1993 Robert Manchek University of Tennessee Department of Computer Science Knoxville TN 37996-1301

The Debugger Script

@ During normal spawn, pvmd execs:

pvm3/bin/ARCH/a.out argl arg2

@ When PvmTaskDebug is set, pvmd execs:

pvmi/lib/debugger pvm3/bin/ARCH/a.out argl arg2z

@ The debugger script supplied starts an xterm

process connected to a debugger process (dbx)
debugging the a.out

@ The script can be modified to do something else.
The following one-liner times each spawned a.out:

/bin/time *"$@* 2>> $HOME/time.out

@ This is an area of ongoing research...
Changing name of debugger script
Coordinated debugging of multiple tasks
Needs to scale better

46

4 August 1993 Robert Manchek Univetsity of Tennessee Department of Computer Science Knaxville TN 27996-1301

kY
1

PVM Implementation

B A R oA

Details of version 3 implementation

Potentially useful to consider when writing applications

47

4 August 992 Rohert Manchek University of Tennessec Department of Computer Science Knoxwille TN ATH06-131

o i - i - v -t

10€1-966L8 NI 2llTaxomy 30watag Innduio)) Jo 1meunieda(] 9assuma] Jo ANSISAM) YoYU Maqoy €661 W0ENY ¢

14

£6 9 b1 ats3 xeun

Awmoleuy ¢ UOTSIAA WA BUTUSTSTT 39%P0S 4Ol

393205 dDL
39%205 4dn

Yswy WA

seasoxd ucwewp puad

(s)pmad Aue
o) patprene
(8)ys®} @[OosSuod

123UUA2AT “TIOIU
Furmp ATUo 151X

‘Yse) pue pwad
eIMUIYINE 0} S2Y

H

LosZeewe/dua)

T T

adid
adid LI2/INOP}S
IIaNopls

JAYIOUE U0 0) N
spwiad Bunasuuos
£137205 FI0MI2U

\

ﬁﬁ:a
.Suuamo:obo G
\
PN pmad/dwy / u

SSAIPPE TE20]
UE>muum9Mmﬂ

10§ 2[1] Ippey20s8 TO0S:T 0 0" LET

pmad o
Jse) Jumpauuos
$197D0s [B20]

£00S:1°0°0" LTT !

adid ynopis
ou ‘pmad g
pauseds jou Ysey

" TID - Task Identifier

@ Task Identifier is 32-bit integer:

Host Part — 12 bits Local Part - 18 bits

@ Host part determines "owning" host of tid
® Host numbers synchronized by global host table
@ | ocal part defined by each pvmd - key to MPP ports

® Routing a message is easy
Route to correct pvmd, forwards to task

@ | ocal part can be subdivided, e.g.:

On Cube ! Cube Node of cube
1 bit 6 bits 11 bits

49

4 Angust 199Y - Robert Manchek University of Tennessee Liepartment of Computer Scienve Knoxville TN AT9% 12l

Wait Contexts

@ Wait contexts save state

® Pvmd can’t block while waiting

@ Wait context has unigue ID

® Waits are "peered” for multi-host operations

Host 1 Host 2 Host 3
Task T1 Pvmd D1 Pvmd D2 [Task T2] Pvmd D3 [Task D3]
-p;w;n(T vt e et et e S oot 5 s
e ———
"W3ip w3l ¢
:rk() -
(pause) aXec{) =————esmsie fork{}
 ra—— OXOC (|} m—
: wai's- i
‘.-—-__

{continue}

5

4 Avgusi 1993 Rabert Manchek Unversity of Tennessee Department of Computer Science Knoaville TR 37996-1301

@ Pvmd recovers automatically,
Application must do own recovery

& Model: dead host stays dead
Host can be readded later

@ Driven by pvmd-pvmd message system

@ Triggered by retry timeout

@ Libpvm operations won't hang

@ Task can request to be notified

|

1 August 1991 Robert Maachek University of Tennessee Departiment of Computer Scivnee Knoxville TN 37996 1301

Fault Detection)

Fault Recovery -

Message graph showing fault recovery:

Host 1 Host 2
Task T1 Task T2 Pvmd D1 Pvmd D2

{continue; fail)

(continue; fall)

52

4 August 1997 Robett Manchek University of Tennessee Department of Computet Science Knoxville TN 379961301

e

e

TCP vs. UDP B w Protocols Used -

o _
What protocols are available? Pvmd-Pvmd uses UDP

can sat up connections

Must scale to 100s of hosts yilh no N'72 endi-end
Don't need high bandwidth

D-D messages are "packet-like’

® UDP

Datagrams of limited length Want to do fault detection

Unreliable delivery TCP may still be the right choice ?

No circuit required
® Task-Pvmd uses TCP [unlike v2]

@® TCP UDP isn't reliable even within a host, and

Stream of unbounded length Model: Task can't be interrupted

Reliable

® Task-Task uses TCP
Regquires a circuit

Tests showed UDP can reach or surpass
TCP performance, but...

® Others ? This beats up the hosts
Not readily available. Don’t want to reinvent TCP

Should encourage clueful vendors

5 54

4 August 1993 Robert Manchek niversity of Tennessee Department of Computer Science Knoxville TN 37996-1301 4 August 19 Robert Manchek Unmiversity of Tennessee Department of Computer Science Knoxvilie TN 37946-1301

Changes in V.3.2

Majority of changes in version 3.2 are under the hood
A few changes affect the API
) pvm_advise({), pvm_setdebugl}, pvm_serror ()

will be combined into a single function:

pvmn_setopt (int what, int val)

What is one of:
PvmSetRoute
PvmSetDebug
PvmSetAutcErr

and possibly:
PvmSetFragSize
pPvmGetFragSize

o struct hostinfo losesthe hi_mtu field

because it wasn't useful

o Libfpvm functions pvmfcontig{). pvmftasks () have more parameters
Are now called nhosts (or ntasks) times,

return all fields of struct hostinfo and struct taskinfo

35

4 August 1991 Robert Manchek Umiversity of Tennessee Department of Computer Scienee Knoxville TN 37996-1101

Work going into next version

@ More scalability — 100s of hosts
Parallel startup
@ Better debugging support
Libpvm generates trace messages

@ Better high—speed network utilization
FDDI fiber - DEC Alpha

@ Better console program

Quoting, command aliases and history

Other work

@ | oad balancing

@ Automatic application fault tolerance
@ X-Window console (Tk-based ?)
® TCL-based shell

56

1 August 1993 Rohert Manchek University of Tennessee Department of Compuier Science Knoxville TN 37996-130]

Work In Progress |

re ™

Future: Big Picture

References

Internet RFCs
Load
Monitor

768 Postel, J. B. User Datagram Protocol
7 X

o ; 791 Postel, J. B. Intemnet Protccol
- // 793 Postel, J. B. Transmission Control Protocol
L (xevan
Scheduler e
-

1014 Sun Microsystems, Inc. XDR: Extemal Data Representation standard
Debugger 1323 Jacobson, V.; Braden, R.; Borman, D. TCP Extensions for High Performarnce
Host and ,
Process control e .
L PVM 3.0 User's Guide and Reference Manuat
Resource manager B ~ Programming °
. 77\ Environments
accounting & auth PVM Core N

High performance Forige

msg passing w/
Group | Desteffortoptions | File system server | 21
server T
AN
Dynamic \ \
groups and 1 \
context 1 AN
! \
1‘ \
! Multimedia
57

4 August 1993 Rohert Manchek Umversity of Tennessee Department of Computer Science Knoxville TN 37996 1301

5%

4 August 1993 Robert Manchek Ulniversity of Tennessee Depariment of Computer Science Kpoxville TN 37096 1301

Version 3 Implementation

@ Task ldentifier is 32-bit integer:

Host Part - 12 bits Local Part - 18 bits

@ Host part determines "owning" host of tid
@ Host numbers synchronized by global host table
@ Local part defined by each pvmd - key to MPP ports

@ Routing a message is easy
Route to correct pvmd, forwards to task

@ | ocal part can be subdivided, e.g.:

Cube Node of cube — 13 bits
5 bits

The PVM System

System is composed of:
@ Pvmd daemon program

Runs on each host of virtual machine
Provides inter-host point of contact
Authenticates tasks

Execs processes on host

Provides fault detection

Mainly a message router, but is also
a source and sink of messages

More robust than application components

TR N T

.

The PVM System

System is composed of:

@ Libpvm programming library
Linked with each application component (program)
Kept as simple as possible

Functions are fow-level PVM "syscalls"

@ Application components

Written by user in PVM message-passing calls

Are executed as PVM "tasks"

e

ry

